S l Th Solar Thermall P Power ffor IIndia di Dr Shireesh B. Dr. B Kedare Adjunct Associate Professor Department of Energy Science and Engineering, IIT-Bombay Director Clique Developments Pvt. Ltd., Mumbai
S l B Solar Beltlt
Solar Belt
Solar Belt
Solar Thermal Power : Abundance !
Concentrating Solar Power G Generation ti
CSP Plants will become one of the leading energy technologies within the next years
630,000
Cumulated installed power in MWel / Forecast 21,540
5,990 354* 2002
365**
1,550
2005
2010
2015
2020
* Mojave Desert/USA (9 power plants) ** Plants under implementation (165 MW)
Source: ”Solar thermal power in 2020“, Greenpeace/ESTIA
2040
5% of world wide energy world-wide demand
CSP Plants will become one of the leading energy technologies within the next years
Concentrating Optics
Focus
Parabolic Reflector
Concentrators
Parabolic rotational solids Concentrate the irradiance up to 2 2,000 000 times
8
Extruded parabolic profiles Concentrate the irradiance up to 200 times
Fresnel Concentrators
9
Concentrator Applications
Dish Stirling Systems 5 – 25 kWe Off-grid / long-term pilot plants
Solar Tower Systems
5 – 100 MWe On-grid / long-term pilot plants
Parabolic Trough 5 – 200 MWe On-grid / commercial operation
Linear Fresnel
5 – 200 MWe On-grid / pilot plants 10
Parabolic Troughs {
{ { {
{
11
Typical application: solar radiation is reflected to a linear focus (receiver pipe) which is cooled by synthetic oil Temperature range 200 – 390°C Capacity range: 10 – 200 MWe The heat is used in conventional power processes Status: 354 MWe in commercial operation since 1989 : 65 MW since 2006
Parabolic Trough CSP plants l t in i the th US {
C Constructed: d z z z z
Ten Parabolic Trough Plants Sizes between 1 MWe and 80 MWe Installed between 1986 and today Status: Under operation { {
{
{
Under construction/development/recent: z
12
electricity costs approx. approx 120 USD/MWhe Investment cost between 2800 (80 MW SEGS IX) and 4500 USD/kW (13 MW SEGS I) Operation cost approx. 20 USD/MWh
One PBT Plant 64 MWe in Nevada, Nevada groundbreaking January ‘06, commissioned ‘07
Parabolic Trough CSP plants l t in i th the US : C California lif i Kramer Junction SEGS III: 30 S GS IV: SEGS 30 SEGS V: 30 SEGS VI: 30 SEGS VII: 30 Total: 150 MWe
13
MW MW MW MW MW
Harper Lake SEGS VIII: 80 MW S GS IX: SEGS 80 MW Total: 160 MWe
Parabolic Trough CSP plants Kramer Junction in the US
Parabolic Trough CSP plants Harper Lake in the US
Parabolic Trough CSP plants l t in i th the US : C California lif i Net Output (MWe)
Solar field Dispatchability details outlet temp (C)
I
13 8 13.8
307
II
30
316
3 h thermal storage Gas fired boiler
III / IV / V
30
349
Gas fired boiler
VI / VII
30
390
Gas fired boiler
VIII / IX
80
390
Gas fired HTF heater
16
Parabolic Trough CSP plants in the US: The Nevada Solar-One Plant
Parabolic Trough CSP plants in the US: The Nevada Solar-One Plant { { { { {
{ { {
Parabolic Trough system commissioned 2007 Capacity : 64 MW Collector fluid: Dowtherm @ 390°C Generates steam to run Rankine cycle Capital Investment : $266 million : $4.16 $4 16 million/MW : Rs.17 Rs 17 Cr/MW Energy Cost : 21 – 30 c/kWh : Rs. 8 to 12/kWh Annual Generation : 2100 hr/yr Area required : 400 acres : 2.5 Ha/MW
Source: official plant website – www.nevadasolarone.net
Parabolic Trough g CSP p plants in the US: Arizona { { { {
{ {
Parabolic Trough system commissioned 2006 Capacity : 1 MW Collector fluid: Thermic fluid @ 300°C Organic Rankine cycle : n-Pentane, vapour at 22.4 bar, 204°C Cycle efficiency : 20.7% 20 7% Annual Generation: 2000 hr/yr
PT based CSP at Murqab, near Dubai S l ARC 34 PBT SolarARC
Murqab SolarARC 4 x 34 MW T t l 136 MWe Total:
20
PT based CSP at Murqab, near Dubai S l ARC 34 PBT SolarARC
21
Murqab site SolarARC 34 PBT Pl t Data Plant D t and d project j t conditions diti Electric capacity 34.0 MWel per module { Thermal Storage 270 MWhth per module { Fossil F il Backup B k plus l 15% off solar l output t t { Electrical output ~ 108 GWhel p.a. per module (97 GWhel thereof solar only, i.e. 2850 hr/yr ) { Land use 120 ha i.e. 3.53 ha/MW { Collector Area:311,000 sq.m i.e.9150 sq.m/MW { Lifetime over 25 years {
22
Murqab site SolarARC 34 PBT Pl t Data Plant D t and d project j t conditions diti { {
{
{ {
{ { { {
23
Direct normal irradiation of 2230 Loan frame 80% of invest at 5% interest rate (15 years run time) Electricity selling price of 840 – 930 AED/MWh at electricity generating costs of 500 AED/MWh Operating and Maintenance costs of 77 – 90 AED/MWh Land use free of charge 136 MWe total capacity approx. 435 GWhe electricity produced per year IRR20 of 15.3 % - 18.5 % (based on 20% equity capital) Payback Period of approx. 8-9 years
Parabolic Troughs - Components LS-1 Collector
24
Parabolic Troughs - Components
LS-2 Collector Curved glass 2 x 2 modules Width 5 m CR ~ 100
25
Parabolic Troughs - Components
Absorber Tube Pipe diameter 50 mm Evacuated glass cover Selective coating Temp Limit 400 C Bellows for expansion
26
Parabolic Troughs - Components Mechanical torque transfer Hydraulic drive Solar brain – hardware & software control
Tracking system and controls
Parabolic Troughs - Components
Piping C Connections on ffar side d
28
Parabolic Troughs - Components
Steam Generator Fossil fuel hybrid
29
Parabolic Troughs - Components
Steam Turbine y Steam Rankine cycle Organic Rankine cycle
30
Parabolic Trough characteristics - NREL
Parabolic Trough – Power System : Schematic
Parabolic Trough – Power System
35
Parabolic Trough – Power System
36
Parabolic Trough – Power System
37
Parabolic Trough – Power System
Solar Tower Systems {
{ { {
{ {
Typical T i l application: li i solar l radiation di i iis reflected fl db by heliostats to the top of a tower (80 m) Temperature range: 350 to 1500 °C C Capacity range: 5 – 100 MWe The heat is used in conventional power processes Salt storage system St t Status: 10 MWe long-term l t pilots il t in operation
39
Solar Tower Systems
Solar Tower Systems
Heleostats-Central Tower CSP plants l t iin E Europe {
Constructed: z
{
{
Only pilot plants (approx. 15 MWe)
Under construction/ development: Spain: approx. 500 MWe in total
{
42
Greece: pp 50 MWe approx.
PS10 att Granada, G d Spain S i { { { {
Heleostat – Central Receiver Capacity : 10 MW Area required : ? Capital Investment : $56.5 million $5.65 65 million/MW o / : $5 : Rs.23.2 Cr/MW
Linear Fresnel
44
Linear Fresnel {
{ { {
{
Typical application: solar radiation is reflected by facets to a linear focus which is cooled by water/steam Temperature range 300 – 550 °C C Capacity range: 5 – 200 MWe The heat is used in conventional power processes Status: pilots in operation Applications
45
Dish Systems {
{ { {
{
Typical T i l application: li i solar l radiation di i iis reflected fl db by a reflective dish (diameter up to 25 m) to a point focus Temperature range: 650 to 800 °C C Capacity range: 0.01 – 0.025 MWe Absorbed heat is used to generate steam to run engine or turbine Status: A few pilots (50 kWe) i th in the pastt 46
Dish with 50kWe Steam Engine
300 m2 Sandia Dish, US, 1984
Dish with 50kWe Steam Engine
300 m2 Sandia Dish with Cavity Receiver
Dish with 50kWe Steam Engine
400 m2 ANU Dish with Cavity Receiver, Australia
Dish Stirling Systems { { { {
{ { { {
Typical T i l application: li ti solar l radiation di ti iis reflected fl t d b by a reflective dish (diameter up to 25 m) to a point focus Temperature range: 650 to 800 °C Capacity range: 10 – 25 kWe Absorbed heat is used in a Stirling engine Rs.45 Cr/MWe (Imptd) Rs.25 Cr/MWe / ((Ind)) Rs.8-12 /kWh Status: several long-term pilots (10 – 25 kWe) in operation 50
Dish with Stirling Engine
100 m2 Dish with Stirling Engine at Test Field
Dish with Stirling Engine
56 m2 Dish with Stirling Engine at VIT,
INDIA
Dish with Stirling Engine
100 m2 Dishes with Stirling Engine by SES for 500 & 800 MW plant at Mojave Desert, US
Solar Concentrators: Efficiency
54
Comparison
Peak Energy 29 % efficiency
23 %
21 %
20 %
Operating 800 °C temperature
550 – 1500 °C
390 °C
300 - 550 °C
Typical Size
0.025 MWe
5 - 25 MWe
30 – 80 MWe
10 – 100 MWe
Maturity
Pilot
Long-term pilot
Commercial operation Pilot
* Estimated values only ** Long-term price studies for solar only plants *** values for plants under commercial operation
55
List of CSP plants (announced)
I iti ti Initiatives in i IIndia di {
Concentrators for p process heat z z z
{
Thermal Power approaches z z z z
{
Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish
Cogeneration
I iti ti Initiatives in i IIndia di {
Concentrators for p process heat z z z
{
Thermal Power approaches z z z z
{
Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish
Cogeneration
Paraboloid Dish with Fixed Focus on ground
7 m2 Scheffler dish for cooking, INDIA
Paraboloid Dish with Fixed Focus on ground
7 m2 Scheffler dish for cooking, Mt.Abu, India
Scheffler Paraboloid Dish with Fixed Focus on ground 16 m2 Scheffler S h ffl di dish h ffor cooking, ki INDIA • Temp: p 100 to 150°C • Power capacity : 4 to 5 kW • Operating hours : 6 to 7 hours/day • Daily output : 30 kWhth / day • Capital cost : Rs.1,35,000 Rs 30,000 30 000 /kWth • Cost Parameter : Rs. : Rs. 4,500/(kWhth/day)
Fresnel Paraboloid Dish : ARUN™ ARUN ™ from Clique & IITIIT-Bombay
160 m2 dish for Pasteurization of Milk at Mahanand Dairy, y, Latur,, India saving about 75 lit Furnace Oil on every sunny day since Feb, 2006
Arun at Mahanand Dairy, y, Latur, India
63
•Paraboloid Fresnel mirror arrangement g Small mirror facets, protection provided
•Flat dish of space truss
Li ht lless costly, Light, tl ttested t d iin the th field fi ld storage volume, m 3 s
10000 Load temperature constraint
•Point focus fixed to the dish b
1000
volume region Maximized interceptoperating factor limits for
100
•Coiled tube cavity y absorber given area
m
10
Area limits for given volume
o
Minimized thermalMaximum losses temp.constraint a
Minimum Volume 1
•Automatic two-axes tracking (100°C)
50
0.1
70
90
110
130
150
170
190
210
230
F Facing i Areath the Sun, S maximum i iinsolation l ti Minimum Collector area,m 2
•Storage g & Hx for 24 h heat supply pp y •Optimized integration and efficiency improvement
64
ARUN160TM Concentrator
Steam for process heat applications
Steam Drum
Pump
65
ARUN160TM Concentrator Field
Steam for process heat applications
Steam Drum
Pump
66
ARUN Solar Concentrator: Improved For the FIRST TIME in India Fo Indi a solar ol concentrator on ent to is i available for Industrial Process Heat Applications. z z z z z z z z z z
Largest aperture area : 169 m2 Highest modular thermal output : About 700,000 kcal/day; about 70 to 90 kWth for 8 to 9 hours a day Highest stagnation temperature : 1050° to 1200°C Highest process temperature : 300 to 500°C Pressurized water / Oil as thermal / storage medium Integrable with various industrial processes Back-up heating for monsoon On-line On line data data-logging logging can be provided Saves about 75 to 85 lit/d or MORE (110 lit/d!) oil Testing procedure is developed that can characterize the dish
η = 0.765 – {0.4 + 2.4x10-5 (Tm - Tamb) + 0.9x10-3 (sin θz) } (Tm - Tamb) /Ibn η of PT = 0.78 – {0.35 + 4.3x10-5 (Tm - Tamb) + 0 } (Tm - Tamb) /Ibn
67
Potential { {
{
Fully indigenous technology At the fountainhead of z Providing about 30% of industrial process heat in India by solar energy saving of about 10% of our oil imports z Capable of supplying most economic solar heat for solar thermal power route through steam Rankine cycle / organic Rankine cycle / Combined gas cycle z Stirling-Dish system leading to Solar Farms z Experience gained leading to development of heleostats and central tower system z As tracker for solar PV panels z For concentrating g solar PV in future Great CDM potential and important role in reducing global warming 68
Improved Fresnel Paraboloid Dish : ARUN™ ARUN™ 169 m2 dish for Industrial Process Heat / Power
• Temp: 150 to 350°C • Power capacity : 80 to 85 kWth • Operating hours : 9 to 10 hours/day • Daily output : About 800 kWhth / day or 700,000 kcal / day • Capital C i l cost : Rs.28,50,000 R 28 50 000 , /kWth • Cost Parameter : Rs. 34,550 : Rs. 3,562/(kWhth/day)
Fixed Spheroidal Dish with Moving Focus
176 m2 Solar Bowl at CSR, Auroville, INDIA
Comparison of Solar Systems 2
Specific Cost (Capital cost / Area) (Rs./ m ) 40,000
Rs./ m2
35,000
37,500 , 33,750
30,000
25,000 25,000
21,429
20,000
15,000 15,000 5,000
14,793 12 000 12,000
10,000 10,000
16,000
7,500
9,500 7,000
5,000
ith
lo w
-ir
on
m i rr
or s
Ar un 16 0 w Ar un 16 0
Ar un 70
So Sc la rB he ffl ow er l co ok er (1 6 m 2)
So la ra ir he at So er la rw at Ev er ac he ua at t ed er Ev Tu ac ua be te C d ol tu le be ct or -H s ea tP ip e Sy st em Sa nd ia ,U S A AN U ,A us tra l ia Pa ra bo lic Tr ou gh
0
71
wi th
lo
n
er
ir o
ok
w-
co
i rr
or
16
s
un
0
22069
m
Ar
l
70
2)
ow
gh
l ia
un
m Ar
(1 6
rB
Tr ou la
lic
So
bo
str a
US A
s
40,000
0
er
ra
Au
ia,
or
em
ct
Sy st
l le
nd
U,
Sa
Pi pe
AN
at
Pa
-H e
f fl
be
Co
20,000
he
tu
be
er
23616
Sc
d
at
40909
16
te
Tu
50,000 48214
un
ua
d
he
r
60,000
Ar
ac
te
er
te
22140
Ev
at
ea
30,000
ac ua
rw
ir h
Rs/m 2
70,000
Ev
ra
80,000
la
la
90 000 90,000
So
So
Comparison of Solar Systems Cost / Efficiency ratio (Rs./m )
2
77159
53571 44835
35382 25509 24726
14000
10,000
-
72
Comparison of Solar Systems Power Cost (Capital cost / Power) at different operating temperatures (Rs./ kW th) R ss./ k W th
94,538 85,084
48,128
30,010
29,089
Ev
0
or
un
m
i rr
Ar ir o
n
er
w-
ok
lo
co
wi th
er ff l
0 16 un
Sc
s
16
70 un
2) m (1 6
Ar
l rB la
So
ra
bo
lic
Au U,
ow
gh
st r
Tr ou
al
US ia, nd
Sa
AN
Pa
he
Ar
ac
ua
te
Ev
d
ac
tu
ua
be
te
d
-H e
at
Tu
be
Pi pe
Co
Sy
l le
st
ct
e
or
er at he er at
rw la So
ia
A
11,667
te ea ir h ra la So
41,626
25,963
19 680 19,680
18 450 18,450
52,747
45,387
r
100,000 90,000 80,000 70,000 60,000 50,000 40,000 30 000 30,000 20,000 10,000 0
73
Comparison of Solar Systems Typical Cost of Thermal Energy from different solar thermal units at different operating temperatures (Rs./kWhth)
6 4.89
5 R s ./ k W h th
4.15
4
3.57
3.74 2 84 2.84
3 2
2.56
1.37
1.46
1.47
1.32
1.28
Arun160
Arun160 w ith low iron 74 mirrors
0.86
1 0 Solar air heater
Solar w ater heater
Evacuated Evacuated Sandia, Tube tube-Heat USA Collectors Pipe System
ANU, Parabolic Australia Trough
Solar Bow l
Scheffler cooker (16 m2)
Arun70
Comparison of Solar Systems Scheffler cooker (16 m2) Evacuated tube-Heat Pipe System Arun160 Parabolic Trough
08 0.8
Arun160 with low-iron mirrors
SystemE Efficiency
0.7 06 0.6 0.5 04 0.4 0.3 02 0.2 0.1
(Topr-Ta), °C
00 0.0 50
100
150
200
250
300 75
Specific system cost based d on Therm mal Power Rs / kW th
Comparison of Solar Systems 70,000 65,000 60,000 55,000 50,000 45,000 , 40,000 35,000 30,000 , 25,000 20,000 50
100
150
200
Scheffler cooker (16 m2)
250 300 (Topr-Ta), °C
Evacuated tube-Heat Pipe System Arun160 Parabolic Trough Arun160 with low-iron mirrors
76
Comparativve Life Cycle e Cost of Delivered E Energy, Rs.// kWh th
Comparison of Solar Systems 5
4
3
2
1 50
100
150
200
Scheffler cooker (16 m2) Evacuated tube-Heat Pipe System Arun160 Parabolic Trough Electricity Light Diesel Oil (LDO) LPG Furnace Oil (FO) Natural Gas (PNG) Arun160 with low-iron mirrors
250
300 (Topr-Ta), °C
77
I iti ti Initiatives in i IIndia di {
Concentrators for p process heat z z z
{
Thermal Power approaches z z z z
{
Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish
Cogeneration
1 MW SOLAR THERMAL POWER PROJECT
Solar Boiler
1.9
3046
60
350
5.4 MW
SOLAR FIELD
H.ST.
WS
SH
HTF
WS
EV
WS
C ST C.ST.
HTF
PH
1.9
3046
60
400
0.5 MW 1.9
2785
60
276
1.4
2521
0.1013
46.2
4.4 MW
3 1 MW 3.1
1.9
1134
65
260
1.8 MW Ppump = 12.1 KW
P=60 P 60 T=350 MW=1 No RH, No RG
P = 1 MW
75.3 %
1.9
198
65
46
1.9
192
0.1013
46
Power Output: 1 MW Solar Boiler Heat i/p = 5.4 MW Efficiency: 18.4 % LEGENDS
Mass [Kg/S]
h [KJ/Kg]
P [bar]
T [0 C]
1 MW SOLAR THERMAL POWER PROJECT
Solar Boiler
1.6
3180
60
400
4.8 MW
SOLAR FIELD
H.ST.
WS
SH
HTF
WS
EV
WS
C ST C.ST.
HTF
PH
1.6
3180
60
400
0.63 MW 1.6
2785
60
276
1.6
2554
0.1013
46.2
3.8 MW
2 64 MW 2.64
1.6
1134
65
260
1.49 MW Ppump = 10.2 KW
P=60 T=400 MW=1 No RH, No
P = 1 MW
75.3 %
1.6
198
65
46
1.6
192
0.1013
46
Power Output: 1 MW Solar Boiler Heat i/p = 4.8 MW Efficiency: 21% LEGENDS
Mass [Kg/S]
h [KJ/Kg]
P [bar]
T [0 C]
1 MW SOLAR THERMAL POWER PROJECT
Solar Boiler
1.4
3303
60
450
4.32 MW
SOLAR FIELD
H.ST.
WS
SH
HTF
WS
EV
WS
C ST C.ST.
HTF
PH
1.4
3303
60
400
0.72 MW 1.4
2785
60
276
1.4
2585
0.1013
46.2
3.33 MW
2 3 MW 2.3
1.4
1134
65
260
1.3 MW Ppump = 8.9 KW
P=60 P 60 T=450 MW=1 No RH, No RG
P = 1 MW
75.3 %
1.4
198
65
46
1.4
192
0.1013
46
Power Output: 1 MW Solar Boiler Heat i/p = 4.32 MW Efficiency: 23.1% LEGENDS
Mass [Kg/S]
h [KJ/Kg]
P [bar]
T [0 C]
1 MW SOLAR THERMAL POWER PROJECT
Solar Boiler
1.73
3118
30
350
5.1 MW
SOLAR FIELD
H.ST.
WS
SH
HTF
WS
EV
WS
C ST C.ST.
HTF
PH
1.73
3233
30
400
0.5 MW 1.73
2832
30
276
1.73
2539
0.1013
46.2
4.1 MW
3 2 MW 3.2
1.73
990
35
260
1.4 MW Ppump = 6 KW
P=30 P 30 T=350 MW=1 No RH, No RG
P = 1 MW
75.3 %
1.73
192
0.1013
46
Power Output: 1 MW Solar Boiler Heat i/p = 5.1 MW Efficiency: 19.8 % LEGENDS
1.73
196
35
46
Mass [Kg/S]
h [KJ/Kg]
P [bar]
T [0 C]
1 MW SOLAR THERMAL POWER PROJECT
Solar Boiler
1.5
3233
30
400
4.6 MW
SOLAR FIELD
H.ST.
WS
SH
HTF
WS
EV
WS
C ST C.ST.
HTF
PH
1.5
3233
30
400
0.6 MW 1.5
2832
30
276
1.5
2568
0.1013
46.2
3.6 MW
2 8 MW 2.8
1.5
990
35
260
1.2 MW Ppump = 5.15 KW
P=30 P 30 T=400 MW=1 No RH, No RG
P = 1 MW
75.3 %
1.5
196
35
46
1.5
192
0.1013
46
Power Output: 1 MW Solar Boiler Heat i/p = 4.6 MW Efficiency: 21.9 % LEGENDS
Mass [Kg/S]
h [KJ/Kg]
P [bar]
T [0 C]
Cycle Efficiency = 0.047xTemperature + 2.0333 R2 = 0.9962
23.5
2.0
23 0 23.0
19 1.9
22.5
1.8 1.7
22 0 22.0 21.5
1.6
Mass Flow = -0.005xTemperature + 3.6333 R2 = 0.9868
1.5
21.0
11.44 1.3
20.5 20.0 300
320 Series1
340
360
Series2
380
400
Linear (Series1)
420
440
1.2 460
Linear (Series2)
Cycle Efficien cy [% ]
25 23.1
23 21.99 21 21
21 19.8 18.4
19 17 15 300
320
340
360
380
400
420
Temperature [C] Pressure=30 Bar
30 60
350 19.8 18.4
Pressure=60 Bar 400 21.9 21
450 23.1
440
460
Cycle E Efficiency y [%]
25 23.1 21 9 21.9
23 21 19.8
21 19
18 4 18.4
17 15 50
70
90
110
130
150
Degree of Superheat [C] Pressure=30 Bar 75 30 60
18.4
Pressure=60 Bar 125 19.8 21
175 21.9 23.1
170
190
Comparison of Solar Systems Scheffler cooker (16 m2) Evacuated tube-Heat Pipe System Arun160 Parabolic Trough
08 0.8
Arun160 with low-iron mirrors
SystemE Efficiency
0.7 06 0.6 0.5 04 0.4 0.3 02 0.2 0.1
(Topr-Ta), °C
00 0.0 50
100
150
200
250
300 87
Solar Thermal Power Technologies : T h i lC Technical Comparison i ffor IIndia di Typical concentration ratio
Optical efficiency, ηo
Scheffler system
150
0 581 0.581
2
Parabolic Trough
100
0.77
0.35
400
0 765 0.765
04 0.4
Arun160 with ith low-iron l i mirrors
Heat loss coefficient, Effective Ul, aperture at W/m2/K Lat < 20°
07 0.7
Effective aperture at Lat > 20°
07 0.7
0.8 – 0.9 0.6 – 0.8 10 1.0
10 1.0
Solar Thermal Power Technologies : P Parametric ti C Comparison i ffor IIndia di Scheffler Arun
Imported PT
Imported CLFR
DishStirling
Power
3.5 MW
5 MW
20 MW
20 MW ?
0.025 MW
Collector Area Sq.m / MW
12,000
8,450
9,500 – 10,500
?
6750
Land required Ha/MW
2.75
4.5
2.5 to 3.5
?
3
Capital Cost Rs./MW
18.3 Cr
20 Cr
17 Cr
14 Cr
16-20 Cr
Hrs/day
6 85 6.85
85 8.5
7
56 5.6
8
Ratio Rs.Cr/(MWh/d)
2.67
2.35
2.4
2.5
2 - 2.5
Energy Cost* Rs./kWh
9.00 9 00 – 13.50
8 00 – 7.83 7 83 – 8.00 11.75 12.00
8.33 8 33 – 12.50
10 – 12.50 12 50
* With annualized cost / capital cost = 13% and O&M @2% pa, no profit
I iti ti Initiatives in i IIndia di {
Concentrators for p process heat z z z
{
Thermal Power approaches z z z z
{
Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish
Cogeneration
Co-generation with process heat applications li ti
Co-generation with VAR-application
92
Co-generation with Multiple effect Desalination
G
93
Solar Thermal Power Technologies : R Research h iissues ffor IIndia di {
{ { { { {
{ {
Optimization p of Process Heat and Cogen systems Storage g material at high g temperature p Optimum sizing of storage, turbines Organic Rankine cycle PT: Evacuated tube and its coating High temperature receiver for central tower Thermal material for central tower Stirling engine
Solar Thermal Power Technologies : T h l Technology iissues ffor IIndia di {
{
{
{ {
Infrastructure available and cost in India for manufacturing: Labour, industrial components Technical quality, Reliability and Operating experience of indigenous systems vs imported systems Capital cost and Cost of maintenance of indigenous systems vs imported systems Testing standards Testing facility and demonstration plant – IIT Bombay
Solar Thermal Power Technologies : C Comparison i iissues ffor IIndia di { {
{
{ {
Cost and hours /day, hours /year Operating temperature affects solar collector ll efficiency ff as well ll as turbine b efficiency D i Design suitable i bl ffor indigenous i di maintenance S Storage sizing i i and d cost Are we going to put more plants for experimentation i t ti / R and dD?
CSP - Energy cost estimates : Reduction due to increased installations
CSP - Energy cost estimates : Reduction due to increased installations
CSP - Energy cost estimates : Reduction with respect to time
Solar Thermal Power Technologies : P li iissues ffor IIndia Policy di Apt and positive policy initiative ! { Strategy for indigenous technology development ?
{ { {
Completely imported plant l
Completely indigenous plant
α-Plant
β -Plant
Combination C bi ti off ttechnologies h l i ? Hybrid systems ? Co-gen systems ?
????
Thanks for your attention ! Queries and suggestions are welcome. Dr Shireesh B. Dr. B Kedare Adjunct Associate Professor Department of Energy Science and Engineering, IIT-Bombay
[email protected] Director Clique Developments Pvt. Ltd., Mumbai
[email protected] bk d @ il