Solar Thermal Power Generation

  • Uploaded by: Avnish Narula
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solar Thermal Power Generation as PDF for free.

More details

  • Words: 4,334
  • Pages: 101
S l Th Solar Thermall P Power ffor IIndia di Dr Shireesh B. Dr. B Kedare Adjunct Associate Professor Department of Energy Science and Engineering, IIT-Bombay Director Clique Developments Pvt. Ltd., Mumbai

S l B Solar Beltlt

Solar Belt

Solar Belt

Solar Thermal Power : Abundance !

Concentrating Solar Power G Generation ti

CSP Plants will become one of the leading energy technologies within the next years

630,000

Cumulated installed power in MWel / Forecast 21,540

5,990 354* 2002

365**

1,550

2005

2010

2015

2020

* Mojave Desert/USA (9 power plants) ** Plants under implementation (165 MW)

Source: ”Solar thermal power in 2020“, Greenpeace/ESTIA

2040

5% of world wide energy world-wide demand

CSP Plants will become one of the leading energy technologies within the next years

Concentrating Optics

Focus

Parabolic Reflector

Concentrators

Parabolic rotational solids Concentrate the irradiance up to 2 2,000 000 times

8

Extruded parabolic profiles Concentrate the irradiance up to 200 times

Fresnel Concentrators

9

Concentrator Applications

Dish Stirling Systems 5 – 25 kWe Off-grid / long-term pilot plants

Solar Tower Systems

5 – 100 MWe On-grid / long-term pilot plants

Parabolic Trough 5 – 200 MWe On-grid / commercial operation

Linear Fresnel

5 – 200 MWe On-grid / pilot plants 10

Parabolic Troughs {

{ { {

{

11

Typical application: solar radiation is reflected to a linear focus (receiver pipe) which is cooled by synthetic oil Temperature range 200 – 390°C Capacity range: 10 – 200 MWe The heat is used in conventional power processes Status: 354 MWe in commercial operation since 1989 : 65 MW since 2006

Parabolic Trough CSP plants l t in i the th US {

C Constructed: d z z z z

Ten Parabolic Trough Plants Sizes between 1 MWe and 80 MWe Installed between 1986 and today Status: Under operation { {

{

{

Under construction/development/recent: z

12

electricity costs approx. approx 120 USD/MWhe Investment cost between 2800 (80 MW SEGS IX) and 4500 USD/kW (13 MW SEGS I) Operation cost approx. 20 USD/MWh

One PBT Plant 64 MWe in Nevada, Nevada groundbreaking January ‘06, commissioned ‘07

Parabolic Trough CSP plants l t in i th the US : C California lif i Kramer Junction SEGS III: 30 S GS IV: SEGS 30 SEGS V: 30 SEGS VI: 30 SEGS VII: 30 Total: 150 MWe

13

MW MW MW MW MW

Harper Lake SEGS VIII: 80 MW S GS IX: SEGS 80 MW Total: 160 MWe

Parabolic Trough CSP plants Kramer Junction in the US

Parabolic Trough CSP plants Harper Lake in the US

Parabolic Trough CSP plants l t in i th the US : C California lif i Net Output (MWe)

Solar field Dispatchability details outlet temp (C)

I

13 8 13.8

307

II

30

316

3 h thermal storage Gas fired boiler

III / IV / V

30

349

Gas fired boiler

VI / VII

30

390

Gas fired boiler

VIII / IX

80

390

Gas fired HTF heater

16

Parabolic Trough CSP plants in the US: The Nevada Solar-One Plant

Parabolic Trough CSP plants in the US: The Nevada Solar-One Plant { { { { {

{ { {

Parabolic Trough system commissioned 2007 Capacity : 64 MW Collector fluid: Dowtherm @ 390°C Generates steam to run Rankine cycle Capital Investment : $266 million : $4.16 $4 16 million/MW : Rs.17 Rs 17 Cr/MW Energy Cost : 21 – 30 c/kWh : Rs. 8 to 12/kWh Annual Generation : 2100 hr/yr Area required : 400 acres : 2.5 Ha/MW

Source: official plant website – www.nevadasolarone.net

Parabolic Trough g CSP p plants in the US: Arizona { { { {

{ {

Parabolic Trough system commissioned 2006 Capacity : 1 MW Collector fluid: Thermic fluid @ 300°C Organic Rankine cycle : n-Pentane, vapour at 22.4 bar, 204°C Cycle efficiency : 20.7% 20 7% Annual Generation: 2000 hr/yr

PT based CSP at Murqab, near Dubai S l ARC 34 PBT SolarARC

Murqab SolarARC 4 x 34 MW T t l 136 MWe Total:

20

PT based CSP at Murqab, near Dubai S l ARC 34 PBT SolarARC

21

Murqab site SolarARC 34 PBT Pl t Data Plant D t and d project j t conditions diti Electric capacity 34.0 MWel per module { Thermal Storage 270 MWhth per module { Fossil F il Backup B k plus l 15% off solar l output t t { Electrical output ~ 108 GWhel p.a. per module (97 GWhel thereof solar only, i.e. 2850 hr/yr ) { Land use 120 ha i.e. 3.53 ha/MW { Collector Area:311,000 sq.m i.e.9150 sq.m/MW { Lifetime over 25 years {

22

Murqab site SolarARC 34 PBT Pl t Data Plant D t and d project j t conditions diti { {

{

{ {

{ { { {

23

Direct normal irradiation of 2230 Loan frame 80% of invest at 5% interest rate (15 years run time) Electricity selling price of 840 – 930 AED/MWh at electricity generating costs of 500 AED/MWh Operating and Maintenance costs of 77 – 90 AED/MWh Land use free of charge 136 MWe total capacity approx. 435 GWhe electricity produced per year IRR20 of 15.3 % - 18.5 % (based on 20% equity capital) Payback Period of approx. 8-9 years

Parabolic Troughs - Components LS-1 Collector

24

Parabolic Troughs - Components

LS-2 Collector Curved glass 2 x 2 modules Width 5 m CR ~ 100

25

Parabolic Troughs - Components

Absorber Tube Pipe diameter 50 mm Evacuated glass cover Selective coating Temp Limit 400 C Bellows for expansion

26

Parabolic Troughs - Components Mechanical torque transfer Hydraulic drive Solar brain – hardware & software control

Tracking system and controls

Parabolic Troughs - Components

Piping C Connections on ffar side d

28

Parabolic Troughs - Components

Steam Generator Fossil fuel hybrid

29

Parabolic Troughs - Components

Steam Turbine y Steam Rankine cycle Organic Rankine cycle

30

Parabolic Trough characteristics - NREL

Parabolic Trough – Power System : Schematic

Parabolic Trough – Power System

35

Parabolic Trough – Power System

36

Parabolic Trough – Power System

37

Parabolic Trough – Power System

Solar Tower Systems {

{ { {

{ {

Typical T i l application: li i solar l radiation di i iis reflected fl db by heliostats to the top of a tower (80 m) Temperature range: 350 to 1500 °C C Capacity range: 5 – 100 MWe The heat is used in conventional power processes Salt storage system St t Status: 10 MWe long-term l t pilots il t in operation

39

Solar Tower Systems

Solar Tower Systems

Heleostats-Central Tower CSP plants l t iin E Europe {

Constructed: z

{

{

Only pilot plants (approx. 15 MWe)

Under construction/ development: Spain: approx. 500 MWe in total

{

42

Greece: pp 50 MWe approx.

PS10 att Granada, G d Spain S i { { { {

Heleostat – Central Receiver Capacity : 10 MW Area required : ? Capital Investment : $56.5 million $5.65 65 million/MW o / : $5 : Rs.23.2 Cr/MW

Linear Fresnel

44

Linear Fresnel {

{ { {

{

Typical application: solar radiation is reflected by facets to a linear focus which is cooled by water/steam Temperature range 300 – 550 °C C Capacity range: 5 – 200 MWe The heat is used in conventional power processes Status: pilots in operation Applications

45

Dish Systems {

{ { {

{

Typical T i l application: li i solar l radiation di i iis reflected fl db by a reflective dish (diameter up to 25 m) to a point focus Temperature range: 650 to 800 °C C Capacity range: 0.01 – 0.025 MWe Absorbed heat is used to generate steam to run engine or turbine Status: A few pilots (50 kWe) i th in the pastt 46

Dish with 50kWe Steam Engine

300 m2 Sandia Dish, US, 1984

Dish with 50kWe Steam Engine

300 m2 Sandia Dish with Cavity Receiver

Dish with 50kWe Steam Engine

400 m2 ANU Dish with Cavity Receiver, Australia

Dish Stirling Systems { { { {

{ { { {

Typical T i l application: li ti solar l radiation di ti iis reflected fl t d b by a reflective dish (diameter up to 25 m) to a point focus Temperature range: 650 to 800 °C Capacity range: 10 – 25 kWe Absorbed heat is used in a Stirling engine Rs.45 Cr/MWe (Imptd) Rs.25 Cr/MWe / ((Ind)) Rs.8-12 /kWh Status: several long-term pilots (10 – 25 kWe) in operation 50

Dish with Stirling Engine

100 m2 Dish with Stirling Engine at Test Field

Dish with Stirling Engine

56 m2 Dish with Stirling Engine at VIT,

INDIA

Dish with Stirling Engine

100 m2 Dishes with Stirling Engine by SES for 500 & 800 MW plant at Mojave Desert, US

Solar Concentrators: Efficiency

54

Comparison

Peak Energy 29 % efficiency

23 %

21 %

20 %

Operating 800 °C temperature

550 – 1500 °C

390 °C

300 - 550 °C

Typical Size

0.025 MWe

5 - 25 MWe

30 – 80 MWe

10 – 100 MWe

Maturity

Pilot

Long-term pilot

Commercial operation Pilot

* Estimated values only ** Long-term price studies for solar only plants *** values for plants under commercial operation

55

List of CSP plants (announced)

I iti ti Initiatives in i IIndia di {

Concentrators for p process heat z z z

{

Thermal Power approaches z z z z

{

Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish

Cogeneration

I iti ti Initiatives in i IIndia di {

Concentrators for p process heat z z z

{

Thermal Power approaches z z z z

{

Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish

Cogeneration

Paraboloid Dish with Fixed Focus on ground

7 m2 Scheffler dish for cooking, INDIA

Paraboloid Dish with Fixed Focus on ground

7 m2 Scheffler dish for cooking, Mt.Abu, India

Scheffler Paraboloid Dish with Fixed Focus on ground 16 m2 Scheffler S h ffl di dish h ffor cooking, ki INDIA • Temp: p 100 to 150°C • Power capacity : 4 to 5 kW • Operating hours : 6 to 7 hours/day • Daily output : 30 kWhth / day • Capital cost : Rs.1,35,000 Rs 30,000 30 000 /kWth • Cost Parameter : Rs. : Rs. 4,500/(kWhth/day)

Fresnel Paraboloid Dish : ARUN™ ARUN ™ from Clique & IITIIT-Bombay

160 m2 dish for Pasteurization of Milk at Mahanand Dairy, y, Latur,, India saving about 75 lit Furnace Oil on every sunny day since Feb, 2006

Arun at Mahanand Dairy, y, Latur, India

63

•Paraboloid Fresnel mirror arrangement g Small mirror facets, protection provided

•Flat dish of space truss

Li ht lless costly, Light, tl ttested t d iin the th field fi ld storage volume, m 3 s

10000 Load temperature constraint

•Point focus fixed to the dish b

1000

volume region Maximized interceptoperating factor limits for

100

•Coiled tube cavity y absorber given area

m

10

Area limits for given volume

o

Minimized thermalMaximum losses temp.constraint a

Minimum Volume 1

•Automatic two-axes tracking (100°C)

50

0.1

70

90

110

130

150

170

190

210

230

F Facing i Areath the Sun, S maximum i iinsolation l ti Minimum Collector area,m 2

•Storage g & Hx for 24 h heat supply pp y •Optimized integration and efficiency improvement

64

ARUN160TM Concentrator

Steam for process heat applications

Steam Drum

Pump

65

ARUN160TM Concentrator Field

Steam for process heat applications

Steam Drum

Pump

66

ARUN Solar Concentrator: Improved For the FIRST TIME in India Fo Indi a solar ol concentrator on ent to is i available for Industrial Process Heat Applications. z z z z z z z z z z

Largest aperture area : 169 m2 Highest modular thermal output : About 700,000 kcal/day; about 70 to 90 kWth for 8 to 9 hours a day Highest stagnation temperature : 1050° to 1200°C Highest process temperature : 300 to 500°C Pressurized water / Oil as thermal / storage medium Integrable with various industrial processes Back-up heating for monsoon On-line On line data data-logging logging can be provided Saves about 75 to 85 lit/d or MORE (110 lit/d!) oil Testing procedure is developed that can characterize the dish

η = 0.765 – {0.4 + 2.4x10-5 (Tm - Tamb) + 0.9x10-3 (sin θz) } (Tm - Tamb) /Ibn η of PT = 0.78 – {0.35 + 4.3x10-5 (Tm - Tamb) + 0 } (Tm - Tamb) /Ibn

67

Potential { {

{

Fully indigenous technology At the fountainhead of z Providing about 30% of industrial process heat in India by solar energy saving of about 10% of our oil imports z Capable of supplying most economic solar heat for solar thermal power route through steam Rankine cycle / organic Rankine cycle / Combined gas cycle z Stirling-Dish system leading to Solar Farms z Experience gained leading to development of heleostats and central tower system z As tracker for solar PV panels z For concentrating g solar PV in future Great CDM potential and important role in reducing global warming 68

Improved Fresnel Paraboloid Dish : ARUN™ ARUN™ 169 m2 dish for Industrial Process Heat / Power

• Temp: 150 to 350°C • Power capacity : 80 to 85 kWth • Operating hours : 9 to 10 hours/day • Daily output : About 800 kWhth / day or 700,000 kcal / day • Capital C i l cost : Rs.28,50,000 R 28 50 000 , /kWth • Cost Parameter : Rs. 34,550 : Rs. 3,562/(kWhth/day)

Fixed Spheroidal Dish with Moving Focus

176 m2 Solar Bowl at CSR, Auroville, INDIA

Comparison of Solar Systems 2

Specific Cost (Capital cost / Area) (Rs./ m ) 40,000

Rs./ m2

35,000

37,500 , 33,750

30,000

25,000 25,000

21,429

20,000

15,000 15,000 5,000

14,793 12 000 12,000

10,000 10,000

16,000

7,500

9,500 7,000

5,000

ith

lo w

-ir

on

m i rr

or s

Ar un 16 0 w Ar un 16 0

Ar un 70

So Sc la rB he ffl ow er l co ok er (1 6 m 2)

So la ra ir he at So er la rw at Ev er ac he ua at t ed er Ev Tu ac ua be te C d ol tu le be ct or -H s ea tP ip e Sy st em Sa nd ia ,U S A AN U ,A us tra l ia Pa ra bo lic Tr ou gh

0

71

wi th

lo

n

er

ir o

ok

w-

co

i rr

or

16

s

un

0

22069

m

Ar

l

70

2)

ow

gh

l ia

un

m Ar

(1 6

rB

Tr ou la

lic

So

bo

str a

US A

s

40,000

0

er

ra

Au

ia,

or

em

ct

Sy st

l le

nd

U,

Sa

Pi pe

AN

at

Pa

-H e

f fl

be

Co

20,000

he

tu

be

er

23616

Sc

d

at

40909

16

te

Tu

50,000 48214

un

ua

d

he

r

60,000

Ar

ac

te

er

te

22140

Ev

at

ea

30,000

ac ua

rw

ir h

Rs/m 2

70,000

Ev

ra

80,000

la

la

90 000 90,000

So

So

Comparison of Solar Systems Cost / Efficiency ratio (Rs./m )

2

77159

53571 44835

35382 25509 24726

14000

10,000

-

72

Comparison of Solar Systems Power Cost (Capital cost / Power) at different operating temperatures (Rs./ kW th) R ss./ k W th

94,538 85,084

48,128

30,010

29,089

Ev

0

or

un

m

i rr

Ar ir o

n

er

w-

ok

lo

co

wi th

er ff l

0 16 un

Sc

s

16

70 un

2) m (1 6

Ar

l rB la

So

ra

bo

lic

Au U,

ow

gh

st r

Tr ou

al

US ia, nd

Sa

AN

Pa

he

Ar

ac

ua

te

Ev

d

ac

tu

ua

be

te

d

-H e

at

Tu

be

Pi pe

Co

Sy

l le

st

ct

e

or

er at he er at

rw la So

ia

A

11,667

te ea ir h ra la So

41,626

25,963

19 680 19,680

18 450 18,450

52,747

45,387

r

100,000 90,000 80,000 70,000 60,000 50,000 40,000 30 000 30,000 20,000 10,000 0

73

Comparison of Solar Systems Typical Cost of Thermal Energy from different solar thermal units at different operating temperatures (Rs./kWhth)

6 4.89

5 R s ./ k W h th

4.15

4

3.57

3.74 2 84 2.84

3 2

2.56

1.37

1.46

1.47

1.32

1.28

Arun160

Arun160 w ith low iron 74 mirrors

0.86

1 0 Solar air heater

Solar w ater heater

Evacuated Evacuated Sandia, Tube tube-Heat USA Collectors Pipe System

ANU, Parabolic Australia Trough

Solar Bow l

Scheffler cooker (16 m2)

Arun70

Comparison of Solar Systems Scheffler cooker (16 m2) Evacuated tube-Heat Pipe System Arun160 Parabolic Trough

08 0.8

Arun160 with low-iron mirrors

SystemE Efficiency

0.7 06 0.6 0.5 04 0.4 0.3 02 0.2 0.1

(Topr-Ta), °C

00 0.0 50

100

150

200

250

300 75

Specific system cost based d on Therm mal Power Rs / kW th

Comparison of Solar Systems 70,000 65,000 60,000 55,000 50,000 45,000 , 40,000 35,000 30,000 , 25,000 20,000 50

100

150

200

Scheffler cooker (16 m2)

250 300 (Topr-Ta), °C

Evacuated tube-Heat Pipe System Arun160 Parabolic Trough Arun160 with low-iron mirrors

76

Comparativve Life Cycle e Cost of Delivered E Energy, Rs.// kWh th

Comparison of Solar Systems 5

4

3

2

1 50

100

150

200

Scheffler cooker (16 m2) Evacuated tube-Heat Pipe System Arun160 Parabolic Trough Electricity Light Diesel Oil (LDO) LPG Furnace Oil (FO) Natural Gas (PNG) Arun160 with low-iron mirrors

250

300 (Topr-Ta), °C

77

I iti ti Initiatives in i IIndia di {

Concentrators for p process heat z z z

{

Thermal Power approaches z z z z

{

Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish

Cogeneration

1 MW SOLAR THERMAL POWER PROJECT

Solar Boiler

1.9

3046

60

350

5.4 MW

SOLAR FIELD

H.ST.

WS

SH

HTF

WS

EV

WS

C ST C.ST.

HTF

PH

1.9

3046

60

400

0.5 MW 1.9

2785

60

276

1.4

2521

0.1013

46.2

4.4 MW

3 1 MW 3.1

1.9

1134

65

260

1.8 MW Ppump = 12.1 KW

P=60 P 60 T=350 MW=1 No RH, No RG

P = 1 MW

75.3 %

1.9

198

65

46

1.9

192

0.1013

46

Power Output: 1 MW Solar Boiler Heat i/p = 5.4 MW Efficiency: 18.4 % LEGENDS

Mass [Kg/S]

h [KJ/Kg]

P [bar]

T [0 C]

1 MW SOLAR THERMAL POWER PROJECT

Solar Boiler

1.6

3180

60

400

4.8 MW

SOLAR FIELD

H.ST.

WS

SH

HTF

WS

EV

WS

C ST C.ST.

HTF

PH

1.6

3180

60

400

0.63 MW 1.6

2785

60

276

1.6

2554

0.1013

46.2

3.8 MW

2 64 MW 2.64

1.6

1134

65

260

1.49 MW Ppump = 10.2 KW

P=60 T=400 MW=1 No RH, No

P = 1 MW

75.3 %

1.6

198

65

46

1.6

192

0.1013

46

Power Output: 1 MW Solar Boiler Heat i/p = 4.8 MW Efficiency: 21% LEGENDS

Mass [Kg/S]

h [KJ/Kg]

P [bar]

T [0 C]

1 MW SOLAR THERMAL POWER PROJECT

Solar Boiler

1.4

3303

60

450

4.32 MW

SOLAR FIELD

H.ST.

WS

SH

HTF

WS

EV

WS

C ST C.ST.

HTF

PH

1.4

3303

60

400

0.72 MW 1.4

2785

60

276

1.4

2585

0.1013

46.2

3.33 MW

2 3 MW 2.3

1.4

1134

65

260

1.3 MW Ppump = 8.9 KW

P=60 P 60 T=450 MW=1 No RH, No RG

P = 1 MW

75.3 %

1.4

198

65

46

1.4

192

0.1013

46

Power Output: 1 MW Solar Boiler Heat i/p = 4.32 MW Efficiency: 23.1% LEGENDS

Mass [Kg/S]

h [KJ/Kg]

P [bar]

T [0 C]

1 MW SOLAR THERMAL POWER PROJECT

Solar Boiler

1.73

3118

30

350

5.1 MW

SOLAR FIELD

H.ST.

WS

SH

HTF

WS

EV

WS

C ST C.ST.

HTF

PH

1.73

3233

30

400

0.5 MW 1.73

2832

30

276

1.73

2539

0.1013

46.2

4.1 MW

3 2 MW 3.2

1.73

990

35

260

1.4 MW Ppump = 6 KW

P=30 P 30 T=350 MW=1 No RH, No RG

P = 1 MW

75.3 %

1.73

192

0.1013

46

Power Output: 1 MW Solar Boiler Heat i/p = 5.1 MW Efficiency: 19.8 % LEGENDS

1.73

196

35

46

Mass [Kg/S]

h [KJ/Kg]

P [bar]

T [0 C]

1 MW SOLAR THERMAL POWER PROJECT

Solar Boiler

1.5

3233

30

400

4.6 MW

SOLAR FIELD

H.ST.

WS

SH

HTF

WS

EV

WS

C ST C.ST.

HTF

PH

1.5

3233

30

400

0.6 MW 1.5

2832

30

276

1.5

2568

0.1013

46.2

3.6 MW

2 8 MW 2.8

1.5

990

35

260

1.2 MW Ppump = 5.15 KW

P=30 P 30 T=400 MW=1 No RH, No RG

P = 1 MW

75.3 %

1.5

196

35

46

1.5

192

0.1013

46

Power Output: 1 MW Solar Boiler Heat i/p = 4.6 MW Efficiency: 21.9 % LEGENDS

Mass [Kg/S]

h [KJ/Kg]

P [bar]

T [0 C]

Cycle Efficiency = 0.047xTemperature + 2.0333 R2 = 0.9962

23.5

2.0

23 0 23.0

19 1.9

22.5

1.8 1.7

22 0 22.0 21.5

1.6

Mass Flow = -0.005xTemperature + 3.6333 R2 = 0.9868

1.5

21.0

11.44 1.3

20.5 20.0 300

320 Series1

340

360

Series2

380

400

Linear (Series1)

420

440

1.2 460

Linear (Series2)

Cycle Efficien cy [% ]

25 23.1

23 21.99 21 21

21 19.8 18.4

19 17 15 300

320

340

360

380

400

420

Temperature [C] Pressure=30 Bar

30 60

350 19.8 18.4

Pressure=60 Bar 400 21.9 21

450 23.1

440

460

Cycle E Efficiency y [%]

25 23.1 21 9 21.9

23 21 19.8

21 19

18 4 18.4

17 15 50

70

90

110

130

150

Degree of Superheat [C] Pressure=30 Bar 75 30 60

18.4

Pressure=60 Bar 125 19.8 21

175 21.9 23.1

170

190

Comparison of Solar Systems Scheffler cooker (16 m2) Evacuated tube-Heat Pipe System Arun160 Parabolic Trough

08 0.8

Arun160 with low-iron mirrors

SystemE Efficiency

0.7 06 0.6 0.5 04 0.4 0.3 02 0.2 0.1

(Topr-Ta), °C

00 0.0 50

100

150

200

250

300 87

Solar Thermal Power Technologies : T h i lC Technical Comparison i ffor IIndia di Typical concentration ratio

Optical efficiency, ηo

Scheffler system

150

0 581 0.581

2

Parabolic Trough

100

0.77

0.35

400

0 765 0.765

04 0.4

Arun160 with ith low-iron l i mirrors

Heat loss coefficient, Effective Ul, aperture at W/m2/K Lat < 20°

07 0.7

Effective aperture at Lat > 20°

07 0.7

0.8 – 0.9 0.6 – 0.8 10 1.0

10 1.0

Solar Thermal Power Technologies : P Parametric ti C Comparison i ffor IIndia di Scheffler Arun

Imported PT

Imported CLFR

DishStirling

Power

3.5 MW

5 MW

20 MW

20 MW ?

0.025 MW

Collector Area Sq.m / MW

12,000

8,450

9,500 – 10,500

?

6750

Land required Ha/MW

2.75

4.5

2.5 to 3.5

?

3

Capital Cost Rs./MW

18.3 Cr

20 Cr

17 Cr

14 Cr

16-20 Cr

Hrs/day

6 85 6.85

85 8.5

7

56 5.6

8

Ratio Rs.Cr/(MWh/d)

2.67

2.35

2.4

2.5

2 - 2.5

Energy Cost* Rs./kWh

9.00 9 00 – 13.50

8 00 – 7.83 7 83 – 8.00 11.75 12.00

8.33 8 33 – 12.50

10 – 12.50 12 50

* With annualized cost / capital cost = 13% and O&M @2% pa, no profit

I iti ti Initiatives in i IIndia di {

Concentrators for p process heat z z z

{

Thermal Power approaches z z z z

{

Scheffler cooker / concentrator Arun paraboloid concentrator Solar Bowl Scheffler Dish with MS storage Arun with (solid) storage Imported Parabolic Trough / CLFR Imported Stirling Engine / Dish

Cogeneration

Co-generation with process heat applications li ti

Co-generation with VAR-application

92

Co-generation with Multiple effect Desalination

G

93

Solar Thermal Power Technologies : R Research h iissues ffor IIndia di {

{ { { { {

{ {

Optimization p of Process Heat and Cogen systems Storage g material at high g temperature p Optimum sizing of storage, turbines Organic Rankine cycle PT: Evacuated tube and its coating High temperature receiver for central tower Thermal material for central tower Stirling engine

Solar Thermal Power Technologies : T h l Technology iissues ffor IIndia di {

{

{

{ {

Infrastructure available and cost in India for manufacturing: Labour, industrial components Technical quality, Reliability and Operating experience of indigenous systems vs imported systems Capital cost and Cost of maintenance of indigenous systems vs imported systems Testing standards Testing facility and demonstration plant – IIT Bombay

Solar Thermal Power Technologies : C Comparison i iissues ffor IIndia di { {

{

{ {

Cost and hours /day, hours /year Operating temperature affects solar collector ll efficiency ff as well ll as turbine b efficiency D i Design suitable i bl ffor indigenous i di maintenance S Storage sizing i i and d cost Are we going to put more plants for experimentation i t ti / R and dD?

CSP - Energy cost estimates : Reduction due to increased installations

CSP - Energy cost estimates : Reduction due to increased installations

CSP - Energy cost estimates : Reduction with respect to time

Solar Thermal Power Technologies : P li iissues ffor IIndia Policy di Apt and positive policy initiative ! { Strategy for indigenous technology development ?

{ { {

Completely imported plant l

Completely indigenous plant

α-Plant

β -Plant

Combination C bi ti off ttechnologies h l i ? Hybrid systems ? Co-gen systems ?

????

Thanks for your attention ! Queries and suggestions are welcome. Dr Shireesh B. Dr. B Kedare Adjunct Associate Professor Department of Energy Science and Engineering, IIT-Bombay [email protected] Director Clique Developments Pvt. Ltd., Mumbai [email protected] bk d @ il

Related Documents


More Documents from ""