“PERFORMANCE TESTING OF SOLAR THERMAL DEVICES” by Prof. S. C. Mullick Centre for Energy Studies, Indian Institute of Technology Delhi, New-Delhi-110016, India
INTRODUCTION Solar energy – one of the most promising renewable energy source For thermal applications – Solar collectors Components of a flat plate collector Glass cover
Absorber plate
Side Insulation
Bottom insulation Tubes
Optical Performance Related Issues of a Solar Collector Incident Solar Energy
Reflection from Glazing
Absorption in glazing Transmitted Energy
Reflection from Absorber Absorber Plate
Glazing Thickness
Energy Absorbed Optical Efficiency = Incident Solar (Radiation) Energy
Energy Absorbed = Incident Solar Radiation Optical Losses
Thermal Efficiency
=
Useful Energy Collected Incident Solar Energy
Useful Energy Collected = Energy Absorbed Thermal Losses . "
Q u 0 I t U L (Tp Ta )
U L Ut Ub U s
F '
" & Qu o
Heat Exchange Efficiency Factor Rate of Heat Loss Per Unit Area Optical Efficiency
It
Total Insolation
UL
Overall Heat Loss Factor
Tp
Average Plate Temperature
Ta
Ambient Temperature
UT
Top Heat Loss Factor
Ub
Bottom Heat Loss Factor
Us
Side Heat Loss Factor
F
'
o
Collector Parameters
UL
It
Climatic Variables
Ta
Tp
Operating Variable
Upward Heat Losses in a Single Glazed Flat Plate Collector Ta
Glass cover
hw (Convective)
Tg
hcpg
Absorber plate Bottom insulation
(Convective)
Tp
hrga
(Radiative)
hrpg (Radiative)
Under steady state conditions
• Rate of upward heat loss per unit area from absorber plate to glass cover is 4 4 ( T T p g ) Qt'' hcpg (Tp Tg ) 1 1 1 p g
(1)
• Rate of upward heat loss per unit area from glass cover to the atmosphere is
Qt'' g (Tg4 Ts4 ) hw (Tg Ta ) •
Tg
(2)
can be found by solving equations (1) and (2)
• The top heat loss factor is
Qt'' Ut (Tp Ta )
(3)
Analytical Equations -
Mullick and Samdarshi (1988) – Single Glazed FPC
Tp Tg 2
U t hcpg
2
T
p
Tg
1/ p 1/ g 1
1
hw
g Tg Ts 4
Tg Ta
1
4
Lg / k g
Tg Ta hw 0.38 0.567 p 0.403 Tp / 429 Tp Ta Samdarshi and Mullick (1991; 1994) -- Double Glazed FPC -- FPC with N glass covers
Akhtar and Mullick (1999) 12 X 10
f
8
T
a
0.2Tp hw
1
3
6 X 108 0.028 T 0.5T 3 0.6 L0.2 p p a
Tg
0.3L g
T
p
Ta cos
fTp Ta 1 f
Akhar and Mullick (2007) - glass cover temperarures (Double Glazed Collector)
1
0.25
Estimation of hcpg ------------------------------1. Holland’s correlation: +
+
Ra cos φ 1708 1708( sin 1.8φ ) Nu = 1 + 1.44 1 − − 1 + 1 − Ra cos φ Ra cos φ 5830 for 0 ≤φ≤60 deg and 0
1.6
1/ 3
2. Buchberg correlation: 1708 Nu = 1 +1.446 1 − Ra cos φ
Nu = 0.229( Ra cos φ )
0.252
Nu = 0.157( Ra cos φ )
0.285
+
for
1708 < Ra cosφ <5900
for
5900 < Ra cosφ <9.23x104
for 9.23X104 < Racosφ <106
Estimation of hw -----------------------• McAdams (1954) hw = 5.7 + 3.8 V
( Wind tunnel )
• Wattmuff (1977) hw = 2.8 + 3 V
( Wind tunnel )
• Test et al.(1981) hw = 8.55 + 2.56 V
( Field study )
• Mullick et al. (2007)
hw = 7.07 + 3.25 V
V 1.12m / s
Estimation of sky temperature 1. Bliss correlation: Tdp − 273 Ts = Ta 0.8 + 250
1/ 4
2. Swinbank correlation:
Ts = 0.0552(Ta )1.5
Thermal Performance of Collector
To It
."
.
Qu mc p To Ti It It
m Ti
. "
Q u o I t U L (Tp Ta
. "
Qu
F ' o I t U L T w Ta . "
Qu T w Ta ' ' F o F U L It It
Performance Curve of a Solar Collector Y
F’ηo Slope= -(F’UL)
η
X
Tw – Ta
Methods for Testing a Solar Collector • 2. 2.
•
Steady-State Collector Testing in a Closed Loop Set-Up National Bureau of Standards (NBS) Procedure ASHRAE Procedure
Testing by Two Test Method Open-Loop Collector Testing Following C.S.I.R.O.
Some of the Work on Collector Testing is Done at: • CSU • JPL • IIT Delhi
General Conditions for Conducting Tests Specified by NBS • Flow Rate = 0.02 Kg/s per m2 of the collector area • Variation in inlet and Outlet Temp of Water should not exceed 0.50C each • Inlet and Outlet temp of Water should be correct to 0.10C • I > 630 W/m2 • Ti – Ta Should Correspond to 10,30,50 and 70 degrees C • Testing Time Limits – 3 hrs., Before & After Solar Noon
Closed Loop Test Set-up Tf,o It
H.E.
Tf,i
Flowmeter
Pump
Cold Water
By-pass
mf By-pass Control
Schematic Diagram Showing Open Loop Testing Const. Head
Over Flow Tf,o
Hot Water
Tf,i
Water Collection
SOLAR COOKERS
Concentrating Type Solar Cooker
Bureau of Indian Standards Testing Method • The test procedure considered is based on Thermal Test Procedures for Box-Type Solar Cookers, by Mullick et al(1987). • This standard is presented in a more technical framework than ASAE S580. • provides two figures of merit, calculated so as to be as mostly independent of environmental conditions (such as ambient temperature, insolation, etc.) as possible.
• The two figures of merit are given by the following equations. F1 =
Tps − Tas
F1 ( MC ) w F2 ln At
Hs
1 Tw1 Ta 1 F1 H 1 Tw 2 Ta 1 F1 H
Variation of Plate Temperature with Time of the Day (Cooker Without Load) 140
Temperature(0C)
130 120 110 100 90 80 10.00
11.00
12.00
13.00
14.00 Time of the Day (hrs)
Under Stagnation, the Energy Balance for Horizontally Placed Empty Solar cooker is :
ηoHS = UL (Tps- Tas) ηo UL
=
(Tps- Tas) Hs
F1 = (Tps- Tas) Hs
Variation of Temperature of Water in the Vessels With Time of the Day (with load) 100
Water Temperature (0C)
95 90 85 80 75 70 65 11.20 11.40 12.00
ττ
12.20
12.40
13.00
Time of the Day (hrs)
MC w dTW Ad
o"
Qu UL F o I Tw Ta o '
d
Tw 2 MC w
A
Tw1
dTw
1 F ' I Tw Ta F1
F1 MC w '
AF ' o
F1 MC w '
F ' o
A
F 'o CR
1 I Tw 2 Ta F1 ln I 1 T T w1 a F1
F2
Tw1 Ta I Tw 2 Ta I
1 Tw1 Ta I F1 I ln I 1 Tw 2 Ta F I 1
1 I F1 ln I 1 F1
F1 MC w A
F1 ( MC ) w ln F2 A
boil
1 Tw 2 Ta 1 F1 I 1 Tw1 Ta 1 F1 I
F1 ( MC ) w 1 100 Ta ln 1 F2 A I F1
• Using the Equation, a characteristic curve can be developed that describes, for a given set of conditions, how long the cooker will take to reach the reference temperature (τboil).
Characteristic Curve of a Box Type Solar Cooker τboil = ∞
500
τBoil (minutes)
400 300
200
100
0 0.05 0.06 0.07 0.08 0.09
0.10
0.11 0.12
100 – Ta H
C
0
W/M
2
Paraboloid Concentrator Solar Cooker
Performance equation of Paraboloid Concentrator Solar Cooker :
T T T T a w1 a w2 I I F 'U L b b F 'o C 1 e o
e
o
Variation of F’ηo as the Bright Spot Moves Across the Bottom of Pot
F’ηo
0.60
0.50
0.40 12:30
12:40
12:50
13:00
Time of Day (hrs.)
13:10
Time for Sensible Heating of water from ambient temp. Up to 100oC
boil
1
o ln
F 'U L 1 100 Ta 1 F 'o C Ib
Characteristic Curve of a Paraboloid Concentrator Solar Cooker
τboil = ∞
250
τBoil (minutes)
200 150
100
50
0 0.05
0.10
0.15
0.20
100 – Ta Ib
0
C
W/M
2
The General Conditions for Conducting Tests as per European Standards : • Ambient temperature: 25°C-35°C • Wind velocity < 4 m/s (at the cooker) • Global irradiance (horizontal) >800 W/m2 • Diffuse fraction < 20%
References • Akhtar N. and Mullick S. C. (1999) Approximate method for computation of glass-cover temperature and top heatloss coefficient of solar collectors with single glazing. Solar Energy 66(5), 349-354. • Akhtar N. and Mullick S. C. (2007) Computation of glasscover temperatures and top heat loss coefficient of flatplate solar collectors with double glazing. Energy, 32(7), 1067-1074. • Bliss, R. W., Jr. (1981) Atomspheric radiation near the surface of ground. Solar Energy 5, 103-120. • Buchberg H., Catton I. and Edwards D. K. (1976) Natural convection in enclosed spaces- a review of application to solar energy collection. ASME Journal of Heat Transfer 98(2), 182-188. • Hollands K.G. T., Unny T.E., Raithby G.D. and Konicek L. (1976) Free convective heat transfer across inclined layers. ASME Journal of Heat Transfer 98, 189-192.
• McAdams W. H. (1954) Heat Transmission, 3rd edition. McGraw-Hill, New York. • Mullick S. C. and Samdarshi S. K. (1988) An improved technique for computing the top heat loss factor of a flat plate collector with a single glazing. ASME J. Solar Energy Engg.110, 262-267. • Samdarshi S. K. and Mullick S.C. (1991) An analytical equation for top heat loss factor of a flat-plate solar collector with double glazing. ASME J. Solar EnergyEngg.113, 117-122. • Samdarshi S. K. and Mullick S.C. (1994) Generalized analytical equation for the top heat loss factor of a flat plate collector with N covers. ASME J. Solar Energy Engg.116, 43-46.
• Swinbank W. C. (1963) Long wave radiation from clear skies. Quarterly Journal of Royal Metrological Society 89, 339-348. • Test F. L. Lessman R. C. L. and Johary A. (1981) Heat transfer during wind flow over rectangular bodies in natural environment. ASME J. Heat Transfer, 103, 262267. • Wattmuff J. H., Charters W. W. S. and Proctor D. (1977) Solar and wind induced external coefficients solar collectors. Int. revue d’ Hellio-technique 2, p.56. • Mullick S. C., Kumar Suresh, Chourasia B. K.(2007), Wind induced heat transfer coefficient from flat horizontal surfaces exposed to solar radiation, Proceedings of Energy Sustainability (ASME), June 2730, Long Beach,California
THANKS
Existing Standards • American Society of Agricultural Engineers Standard ASAE S580 • Bureau of Indian Standards Testing Method IS 13429(Parts 1,2 &3) • European Committee on Solar Cooking Research Testing Standard
Draw backs of ASAE S580 • The single figure of merit appears to be valueless for assessing why a cooker achieved a certain performance. • Therefore, any use of the ASAE standard to analyze the performance of a cooker, rather than simply compare its performance to another cooker would be very difficult.