Silabus Cikembar Bab 6

  • Uploaded by: Denok sisilia
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Silabus Cikembar Bab 6 as PDF for free.

More details

  • Words: 1,397
  • Pages: 5
Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester

: : : :

SMA NEGERI 1 CIKEMBAR MATEMATIKA XI / IPA GENAP

STANDAR KOMPETENSI: 5. Menentukan komposisi dua fungsi dan invers suatu fungsi. Kompetensi Dasar

5.1.Menentukan komposisi fungsi dari dua fungsi.

Materi Ajar Komposisi fungsi dan fungsi invers.



Sifat khusus yang mungkin dimiliki oleh fungsi:

-

Fungsi satusatu (Injektif).

-

Fungsi pada (Surjektif).

-

Fungsi satusatu pada (Bijektif). Kesamaan dua fungsi



Kegiatan Pembelajaran •







Aljabar fungsi •

Mengingat kembali materi kelas X mengenai pengertian fungsi dan jenis-jenis fungsi khusus.

Indikator



Memahami sifat khusus yang mungkin dimiliki oleh sebuah fungsi yaitu fungsi satu-satu, pada, serta satu-satu dan pada.

Menentukan sifat khusus yang mungkin dimiliki oleh sebuah fungsi.

Teknik Tugas individu.

Penilaian Bentuk Instrumen Uraian singkat.

Contoh Instrumen

1.

Apakah fungsi berikut merupakan fungsi bijektif? a. f :    x a 2x  3 f :   b.

Alokasi Waktu (menit) 2  45 menit.

Sumber/Bahan /Alat Sumber:



x a 2 x2  5

Memahami sifat kesamaan dari dua fungsi.

Memahami operasi-operasi yang diterapkan pada fungsi. Menentukan daerah asal dari fungsi hasil operasi yang diterapkan.



Melakukan operasioperasi aljabar yang diterapkan pada fungsi.

2.

Diketahui f  x   x  2 dan 2 . 3x  6 Tentukan rumus fungsi berikut dan tentukan pula daerah asalnya (D). a.  f  g   x  g  x 

b. c.



Buku paket (Buku Matematika SMA dan MA ESIS Kelas XI Semester 2 Jilid 2B, karangan Sri Kurnianingsi h,dkk) hal. 62-75. Buku referensi lain.

Alat: • Laptop • LCD • OHP

 f  g   x  f  g   x  f   x   g

d. 

Silabus Matematika SMA dan MA Kelas XI Semester Genap (2B) Prog. IPA

24



Komposisi fungsi: Pengertian komposisi fungsi. Komposisi fungsi pada sistem bilangan real. Sifat-sifat dari komposisi fungsi.







Memahami pengertian komposisi fungsi



Menjelaskan komposisi fungsi pada sistem bilangan real yang meliputi nilai fungsi komposisi terhadap komponen pembentuknya. Menentukan rumus fungsi dari setiap fungsi yang diberikan.

• Komposisi fungsi dan fungsi invers. • Sifat khusus yang mungkin dimiliki oleh fungsi • Aljabar fungsi • Komposisi fungsi



2  45 menit.

Uraian singkat.

Menentukan rumus fungsi dari setiap fungsi yang diberikan.

1.

Diketahui f :    dengan f  x   2 x  2

Sumber:



dan g :    dengan g  x   x 2  1 .



Tentukanlah: a.  f og   x  , b. c. •



Tugas individu.

Menentukan komponen pembentuk fungsi komposisi bila aturan komposisi dan komponen lainnya diketahui.

2.

Menentukan komponen pembentuk fungsi komposisi bila aturan komposisi dan komponen lainnya diketahui.

 g o f   x ,  f og   x  1

Buku paket hal. 75-81. Buku referensi lain.

Alat: • Laptop • LCD • OHP

Tentukan rumus fungsi g(x) jika diketahui f(x) = x + 2 dan (fog)(x) = 3x – 5.

Menjelaskan sifat-sifat dari komposisi fungsi. Melakukan ulangan harian berisi materi yang berkaitan dengan sifat khusus yang mungkin dimiliki oleh sebuah fungsi, operasi-operasi yang diterapkan pada fungsi, daerah asal dari fungsi hasil operasi yang diterapkan, menjelaskan nilai fungsi komposisi terhadap komponen pembentuknya, menentukan komponen pembentuk fungsi komposisi bila aturan komposisi dan komponen lainnya diketahui, dan menyebutkan sifat-sifat dari komposisi fungsi.

Silabus Matematika SMA dan MA Kelas XI Semester Genap (2B) Prog. IPA



• Mengerjakan soal dengan baik berkaitan dengan sifat khusus yang mungkin dimiliki oleh sebuah fungsi, operasi-operasi yang diterapkan pada fungsi, daerah asal dari fungsi hasil operasi yang diterapkan, menjelaskan nilai fungsi komposisi terhadap komponen pembentuknya, menentukan komponen pembentuk fungsi komposisi bila aturan

Ulangan Harian

Pilihan Ganda.

Diketahui g :    ditentukan oleh fungsi

2  45 menit.

g  x   x 2  x  2 dan f :    sehingga f og  x   2 x 2  2 x  5 , maka f  x  sama dengan .... a. 2 x  3 b. 2 x  1 c. 2 x  1

d. 2 x  3 e. 2 x  9

25

komposisi dan komponen lainnya diketahui, dan menyebutkan sifatsifat dari komposisi fungsi.

5.2. Menentukan invers suatu fungsi.

• -

Fungsi Invers: Pengertian invers fungsi.

• • •

-



Menentukan rumus fungsi invers.

Grafik suatu fungsi dan grafik fungsi inversnya.



• •

Memahami pengertian dari invers suatu fungsi. Menjelaskan syarat suatu fungsi mempunyai invers. Menentukan apakah suatu fungsi mempunyai invers atau tidak. Menentukan rumus fungsi invers dari fungsi yang diketahui dan sebaliknya.

Menggambarkan grafik fungsi invers dari grafik fungsi asalnya. Menentukan daerah asal fungsi inversnya.



Menentukan rumus fungsi invers dari suatu fungsi.

Tugas individu.

Uraian singkat.

Tentukan invers dari fungsi atau relasi berikut kemudian gambarkan diagram panah fungsi atau relasi tersebut beserta diagram panah inversnya: a.

  3, 2  ;  2, 0  ;  1,  0,

2 × 45 menit.

 2

 4  ;  1,  6  ;  2,  8  

Tugas individu.

Uraian singkat.

Diketahui fungsi f  x   2 x  3 . Tentukan: 3

a. rumus fungsi f

1

 x

2  45 menit.

• • •



Membahas teorema yang berkenaan dengan fungsi invers. Menentukan rumus komposisi fungsi dari dua fungsi yang diberikan. Menentukan rumus fungsi invers dari fungsi kompisisi. Menentukan nilai fungsi

Silabus Matematika SMA dan MA Kelas XI Semester Genap (2B) Prog. IPA



,

b. daerah asal fungsi f  x 



Menentukan fungsi invers dari fungsi komposisi dan nilainya.

Tugas individu.

Uraian singkat.

Diketahui f ( x) 

3x  2 dan 4x  3

g ( x )  2 x  1 . Tentukan 1

( f og ) (3).

hal. 86-88. Buku referensi lain.

Alat: • Laptop • LCD • OHP

c. gambarlah grafik fungsi f  x  dan f 1  x  .

Fungsi invers dari fungsi komposisi

Sumber: •

dan f 1  x  ,



Buku paket hal. 81-86. Buku referensi lain.

Alat: • Laptop • LCD • OHP

  3, a  ;  2, b  ;  1, c  ;  0, d  

Menggambarkan grafik fungsi invers dari grafik fungsi asalnya.

• •

b.



Sumber:

2  45 menit.

Sumber:

• •

hal. 88-93. Buku referensi lain.

Alat: • Laptop • LCD • OHP

26

kompisisi dan fungsi invers dari fungsi komposisi tersebut.

• •

Fungsi Invers: Fungsi invers dari fungsi komposisi.



Melakukan ulangan harian berisi materi yang berkaitan dengan pengertian invers fungsi, menentukan rumus fungsi invers, menggambarkan grafik fungsi invers, dan teorema yang berkenaan dengan fungsi invers.



Mengerjakan soal dengan baik berkaitan dengan pengertian invers fungsi, menentukan rumus fungsi invers, menggambarkan grafik fungsi invers, dan teorema yang berkenaan dengan fungsi invers.

Ulangan harian

Pilihan ganda.

1. Diketahui f  x   5  6 x dan g  x   3x  12 , maka

2  45 menit.

 f 1 og   x   ....

a. 18 x  27 d. 2 x  19 d.

2 x  19

b. 18 x  67 e. Uraian singkat. e.

1 x4 3

1 x4 3

c. 2 x  29 2. Diketahui f  x   3  3 x3 dan g  x   3 x  1 . Tentukanlah: a. f 1  x  dan g 1  x  , d. b.



2 x  19

f og 

1

 x  dan

 g o f  1  2  , 1 e. x  4 3

c. Grafik fungsi f  x  , f 1  x  , g  x  , Silabus Matematika SMA dan MA Kelas XI Semester Genap (2B) Prog. IPA

27

g 1  x  , dan g 1 o f 1  x 

Mengetahui, Kepala Sekolah Dra. Hj. NURHIDAYATIEN, M.Pd NIP. 130 682 798

Silabus Matematika SMA dan MA Kelas XI Semester Genap (2B) Prog. IPA

Cikembar, ................................................... Guru Mata Pelajaran Matematika

Hj. NENGSIH, S.Pd NIP. 131 562 395

28

Related Documents

Silabus Cikembar Bab 6
December 2019 40
Silabus Cikembar Bab 4
December 2019 44
Silabus Cikembar Bab 3
December 2019 45
Silabus Cikembar Bab 5
December 2019 43
Silabus Cikembar Bab 7
December 2019 41
Rpp Cikembar Bab 6
December 2019 67

More Documents from "Eli Priyatna"

01b Rpp Pkn Smp
December 2019 40
1. Matematika Sd
December 2019 31
Silabus X,sem1 Pilihan
December 2019 37
6.penyusunan Ktsp,180208
December 2019 38