Metode Numerik - Interpolasi Kubik

  • Uploaded by: Fajrin Siddiq
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Metode Numerik - Interpolasi Kubik as PDF for free.

More details

  • Words: 612
  • Pages: 4
Fajrin Siddiq 0310610029

TUGAS MATA KULIAH

METODE NUMERIK

Disusun Oleh : Fajrin Siddiq 0310610029 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN SIPIL - MALANG 2005

Metode Numerik

Fajrin Siddiq 0310610029 1. Data hubungan antara temperatur dan kedalaman suatu danau : Temperatur (oC)

Kedalaman (m)

19.1

0

19.1

-1

19

-2

18.8

-3

18.7

-4

18.3

-5

18.2

-6

17.6

-7

11.7

-8

9.9

-9

9.1

-10

Tentukan temperatur danau pada kedalaman -7.5 meter dengan menggunakan Interpolasi Kubik (Menggunakan Operasi Matrik) ! Penyelesaian :

z = −9 z = −8 z = −7 z = −6

T (−9) = 9.9 T (−8) = 11.7 T (−7) = 17.6 T (−6) = 18.2

Persamaan umum Metode Langsung (Direct Method) Interpolasi Kubik : T ( z ) = a 0 + a1 z + a 2 z 2 + a 3 z 3 • T (−9) = a0 + a1 (−9) + a2 (−9) 2 + a3 (−9) 3 9.9 = a0 − 9a1 + 81a2 − 729a3

................

(1)

• T (−8) = a0 + a1 (−8) + a 2 (−8) 2 + a3 (−8) 3 11.7 = a 0 − 8a1 + 64a 2 − 512a 3

................

( 2)

• T (−7) = a 0 + a1 (−7) + a 2 (−7) 2 + a3 (−7) 3 17.6 = a 0 − 7 a1 + 49a 2 − 343a 3

................

(3)

Metode Numerik 9.9 = a0 − 9a1 + 81a2 − 729a3

Fajrin Siddiq 0310610029 2 3 • T (−6) = a 0 + a1 (−6) + a 2 (−6) + a3 (−6)

18.2 = a 0 − 6a1 + 36a 2 − 216a 3

................

(1)

a 0 − 9a1 + 81a 2 − 729a3 = 9.9

( 2)

a 0 − 8a1 + 64a 2 − 512a 3 = 11.7

(3)

a 0 − 7 a1 + 49a 2 − 343a 3 = 17.6

( 4)

a 0 − 6a1 + 36a 2 − 216a 3 = 18.2

     

1

−9

81

1

−8

64

1

−7

49

1

−6

36

a0   1 a   1  1 =   a2   1     a3   1

− 729 a0   9.9  − 512   a1  11.7  × = − 343 a2  17.6      − 216  a3  18.2

−9

81

−8

64

−7

49

−6

36

a0   − 56  a  − 24.333  1 =  a2   − 3.5     a3  − 0.1667

(4)

−1

− 729  9.9   11.7  − 512   × 17.6 − 343    − 216 18.2

189

− 216

79.5 11

− 87 − 11.5

0.5

− 0.5

  9.9  31.833  11.7  ×  17.6 4    0.167  18.2 84

a0   − 615.9   a  − 262.583  1 =   a2   − 35.55       a3   − 1.567  a0 = −615.9 Jadi :

a1 = −262.583 a2 = −35.55 a3 = −1.5637

Metode Numerik

Fajrin Siddiq 0310610029 Dengan demikian, temperatur danau pada kedalaman -7.5 meter adalah : T (−7.5) = a0 + a1 z + a2 z 2 + a3 z 3 T (−7.5) = −615.9 − 262.583(−7.5) − 35.55(−7.5) 2 − 1.567(−7.5)3 T (−7.5) = −615.9 − 262.583(−7.5) − 35.55(56.25) − 1.567(−421.875) T (−7.5) = −615.9 + 1969.3725 − 1999.6875 + 661.078125 T (−7.5) = 14.863

Metode Numerik

Related Documents


More Documents from "Cahyo Dwi Pambudi"