DMCT, Universidade do Minho C´alculo A e B / An´alise Matem´atica I
2007/2008 MIEEIC, MIECOM. MIEMAT, MIEPOL, MIEMEC / LEC
Regras de deriva¸c˜ao Na lista de derivadas que se segue, omitem-se os dom´ınios das fun¸c˜oes.
1. C 0 = 0,
sendo C uma constante 0
2. (kf (x))0 = kf 0 (x)
(k ∈ R)
3. (f (x) + g(x)) = f 0 (x) + g 0 (x)
4. (f α (x))0 = αf α−1 (x)f 0 (x)
5. (f (x)g(x))0 = f 0 (x)g(x) + f (x)g 0 (x)
6.
7. (f ◦ g)0 (x) = f 0 (g(x)) g 0 (x)
8. (f −1 )0 (x) =
9. (ef (x) )0 = f 0 (x) ef (x)
10. (ln f (x))0 =
11. (af (x) )0 = f 0 (x) af (x) ln a
12. (loga f (x))0 =
f (x) g(x)
0 =
(α ∈ R)
f 0 (x)g(x) − f (x)g 0 (x) g 2 (x) 1 f 0 (f −1 (x)) f 0 (x) f (x) f 0 (x) loga e f (x)
13. ((f (x))g(x) )0 = g(x)(f (x))g(x)−1 f 0 (x) + g 0 (x)(f (x))g(x) ln f (x) 14. (senf (x))0 = f 0 (x) cosf (x) 16. (tgf (x))0 =
f 0 (x) cos2 f (x)
18. (shf (x))0 = f 0 (x) chf (x) 20. (thf (x))0 =
f 0 (x) ch2 f (x)
22. (arcsenf (x))0 = p 24. (arctgf (x))0 =
1 − f 2 (x)
f 0 (x) 1 + f 2 (x)
26. (argshf (x))0 = p 28. (argthf (x))0 =
f 0 (x)
f 0 (x) 1 + f 2 (x)
f 0 (x) 1 − f 2 (x)
15. (cosf (x))0 = −f 0 (x) senf (x) 17. (cotgf (x))0 =
−f 0 (x) sen2 f (x)
19. (chf (x))0 = f 0 (x) shf (x) 21. (cothf (x))0 =
−f 0 (x) sh2 f (x)
−f 0 (x) 23. (arccosf (x))0 = p 1 − f 2 (x) 25. (arccotgf (x))0 =
−f 0 (x) 1 + f 2 (x)
27. (argchf (x))0 = p 29. (argcothf (x))0 =
f 0 (x) f 2 (x) − 1
f 0 (x) 1 − f 2 (x)