Estudio De La Ad Y Derivabilidad De Una Funcion

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Estudio De La Ad Y Derivabilidad De Una Funcion as PDF for free.

More details

  • Words: 238
  • Pages: 2
Estudia la continuidad y derivabilidad de esta función:

f(x) =

0 x2 x

si x < 0 si 0 ≤ x < 1 si x ≥ 1

Continuidad en x = 0. (1) f(0) = 0² = 0 (2)

(3)

lim x→0

-

f(x) =

+

f(x) =

lim x→0

lim

→ f(x) es continua en x = 0

0=0

x→0 lim

x2 = 0² = 0

x→0

Continuidad en x = 1. (1) f(1) = 1 (2)

(3)

lim

f(x) =

-

x →1 lim

+

x →1

f(x) =

lim x →1 lim x →1

x2 = 1² = 1

→ f(x) es continua en x = 1

x= 1

Por tanto f(x) es continua

∀x ∈

0 f´(x) = 2x 1

R – {0,1}

si x < 0 si 0 ≤ x < 1 si x ≥ 1

Derivabilidad en x = 0. (1) f´(0) = 2•0 = 0 (2)

(3)

lim x→0

-

f´(x) =

+

f´(x) =

lim x→0

lim x→0 lim x→0

0=0

2x = 2•0 = 0

→ f(x) es derivable en x = 0

Derivabilidad en x = 1. (1) f´(1) = 2•1 = 2 (2)

(3)

lim x → 1lim +

x →1

f´(x) =

f´(x) =

lim x →1 lim x →1

2x = 2•1 = 2

1 =1

Por tanto f(x) es derivable

∀x ∈

R – {1}

→ f(x) no es derivable en x = 1

Related Documents