Cellular Respiration.docx

  • Uploaded by: Nurva Prastya Ningrum
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cellular Respiration.docx as PDF for free.

More details

  • Words: 732
  • Pages: 3


Cellular Respiration Respirasi sel adalah proses penggalian energi dalam bentuk ATP dari glukosa dalam makanan yang dimakan. Pada hakikatnya, respirasi adalah pemanfaatan energi bebas dalam makanan menjadi energi bebas yang ditimbun dalam bentuk ATP. Dalam sel, ATP digunakan sebagai sumber energi bagi seluruh aktivitas hidup yang memerlukan energi. Jadi respirasi seluler adalah proses perombakan molekul organik kompleks yang kaya akan energi potensial menjadi produk limbah yang berenergi lebih rendah (proses katabolik) pada tingkat seluler. Pada respirasi sel, oksigen terlibat sebagai reaktan bersama dengan bahan bakar organik dan akan menghasilkan air, karbon dioksida, serta produk energi utamanya ATP. ATP (adenosin trifosfat) memiliki energi untuk aktivitas sel seperti melakukan sintesis biomolekul dari molekul pemula yang lebih kecil, menjalankan kerja mekanik seperti pada kontraksi otot, dan mengangkut biomolekul atau ion melalui membran menuju daerah berkonsentrasi lebih tinggi. Mekanisme Respirasi Seluler . Secara garis besar, respirasi sel melibatkan proses-proses yang disebut glikolisis, siklus Krebs atau siklus asam 1. Glikolisis (di sitosol/sitoplasma)

Kata “glikolisis” berarti “menguraikan gula” dan itulah yang tepatnya terjadi selama jalur ini. Glukosa, gula berkarbon enam, diuraikan menjadi dua gula berkarbon tiga. Gula yang lebih kecil ini kemudian dioksidasi, dan atom sisanya disusun ulang untuk membuat dua molekul piruvat . Ada yang membedakan tahap ini menjadi dua yaitu glikolisis dan dekarbosilasi oksidatif. Glikolisis mengubah senyawa 6C menjadi senyawa 2C pada hasil akhir glikolisis. Yang dimaksud dekarbosilasi oksidatif adalah reaksi asam piruvat diubah menjadi asetil KoA (syamsuri, 1980) 2. Dekarboksilasi Oksidatif . Setelah memasuki mitokondria,asam piruvat mula-mula diubah menjadi suatu senyawa yang disebut asetilCoA. Dekarboksilasi Oksidatif ini merupakan persambungan antara glikolisis dan siklus krebs, yang diselesaikan oleh kompleks multi enzim yang mengkatalis 3 reaksi: 1. Gugus karboksil piruvat dikeluarkan dan dilepaskan sebagai molekul CO2

2. Fragmen ber-karbon dua yang tersisa dioksidasi untuk membuat senyawa yang dinamai asetat. Suatu enzim mentransfer electron yang diekstraksi ke NAD+ dan menyimpan energy dalam bentuk NADH. 3. Koenzim A (senyawa yang mengandung sulfur diikatkan pada asetat tadi oleh ikatan yang tidak stabil yang membuat gugus asetil sangat reaktif. 3. Siklus kreb / siklus asam sitrat (di mitokondria)

Glikolisis melepas energi kurang dari seperempat energi kimiawi yang tersimpan dalam glukosa, sebagian besar energi itu tetap tersimpan dalam dua molekul piruvet. Jika ada oksigen molekuler, piruvat itu memasuki mitokondria dimana enzim siklus krebs menyempurnakan oksidasi bahan bakar organiknya (champbell, 2002) Memasuki siklus krebs, asetil KoA direaksikan dengan asam oksaloasetat (4C) menjadi asam piruvat (6C). selanjutnya asam oksaloasetat memasuki daur menjadi berbagai macam zat yang akhirnya menjadi asam oksalosuksinat. Dalam perjalanannya, 1C (CO2) dilepaskan. Pada tiap tahapan, dilepaskan energi dalam bentuk ATP dan hidrogen. ATP yang dihasilkan langsung dapat digunakan. Sebaliknya, hidrogen berenergi digabungkan dengan penerima hidrogen yaitu NAD dan FAD, untuk dibawa ke sistem transport elektron. Dalam tahap ini dilepaskan energi, dan hidrogen direasikan dengan oksigen membentuk air. Seluruh reaksi siklus krebs berlangsung dengan memerlukan oksigen bebas (aerob). Siklus krebs berlangsung didalam mitokondria (Syamsuri, 1980).

4. Sistem Transpor Elektron (di mitokondria)

Energi yang terbentuk dari peristiwa glikolisis dan siklus krebs ada dua macam. Pertama dalam bentuk ikatan fosfat berenergi tinggi, yaitu ATP atau GTP (Guanin Tripospat). Energi ini merupakan energi siap pakai yang langsung dapat digunakan. Kedua dalam bentuk transport elektron, yaitu NADH (Nikotin Adenin Dinokleutida) dan FAD (Flafin adenine dinukleotida) dalam bentuk FADH2. Kedua macam sumber elektron ini dibawa kesistem transfer elektron. Proses transfer elektron ini sangat komplek, pada dasarnya, elektron dan H+ dan NADH dan FADH2 dibawa dari satu substrak ke substrak yang lain secara berantai. Setiap kali dipindahkan, energi yang terlepas digunakan untuk mengikatkan fosfat anorganik (P) kemolekul ADP sehingga terbentuk ATP. Pada bagian akhir terdapat oksigen sebagai penerima, sehingga terbentuklah H2O. katabolisme 1 glukosa melalui respirasi aerobik menghasilkan 3 ATP. Setiap reaksi pada glikolisis, siklus krebs dan transport elektron dihasilkan senyawa – senyawa antara. Senyawa itu digunakan bahan dasar anabolisme (Syamsuri, 1980). Selama respirasi seluler, pemanenan energi makanan untuk sintesis ATP jika satu molekul glukosa terurai secara sempurna maka fosforilasi tingkat substrat menghasilkan 4 ATP dan fosforilasi oksidatif menghasilkan 34 ATP. Proses oksidasi satu molekul glukosa dapat memanen energi sebanyak 38 ATP. Sementara itu, dalam oksidasi sempurna satu molekul glukosa melepaskan 686 kkal (DG = -686 kkal/mol), dan fosforilasi ADP menjadi ATP menyimpan sedikitnya 7,3 kkal per mol ATP. Oleh karena itu, efisiensi respirasi adalah 7,3 kali 38 dibagi 686, atau kira-kira 40%. Sedangkan sisa energi simpanan hilang sebagai panas untuk mempertahankan suhu tubuh, dan menghamburkan sisanya melalui keringat dan mekanisme pendinginan lainnya (Campbell et al., 2002)

Related Documents

Cellular
June 2020 28
Cellular
May 2020 20
Cellular
May 2020 16
Cellular Respiration
November 2019 39
Cellular Telephony
July 2020 20
Cellular Adaptations
July 2020 14

More Documents from "api-19916399"