Cellular

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cellular as PDF for free.

More details

  • Words: 1,310
  • Pages: 25
CMBUkTI

5

mUldæanRKwHé n Cellular Communications 1

cMnucsMxan; eKalkarN_rbs; Cellular ktþaEdleRbIR)as; Frequency Reuse Co-channel nigkarqøgKñarvag Channel EdlenACitKña   

2



Trunking

nigkMriténesva

eKalkarN_rbs; 

(Grade of Service)

Cellular

enAkñúgRbB½n§

Cellular

cMnYntMbn;esvasrubRtUv)anEbgEckeTACatMbn;tUc² CaeRcIn EdlEpñktUc²nimYy²kMnt;faCa {Cell{. 

BhuekaNesµIGaceRbIsMrab;tMNageGayTMhMrbs;

cell

.

Cells

Edlmanrag 6 RCugRtUv)aneKniymeRbIBIeRBaH ³

> rUbragrbs;vaRsedogeTAnwgrgVg; 3

>

eFVIeGaymankarerobcM

cellular

EdlmanlkçN³jwk

nigEpñkEdll¥\tex©aHéntMbn;esva enAkñúgRbB½n§



cellular

“frequency

re-use”

eFVIeGaymansmtßPaBeRbIR)as;nUv frequency spectrum

EdlxVHxateLIgvij.



Cells

EdleRbIR)as;

frequency

dUcKñaRtUv)aneKehAfa

“co-channel cells” (

]TahrN_

cells

tMNageGayGkSr

A)

.

Frequency

reuse

RtUv)ankMNt;eday co-channel interference

.

eKalkarN_rbs;

Cellular (t)

4

N (

:

cMnYnrbs;

RtUv)aneKsÁal;faCa

EdlmanenARKb;

cells “cluster size”

rW

“frequency re-use factor” )

J:

cMnYnrbs;

channels

EdlmanenARKb;

K:

cMnYnrbs;

channels

EdlmanenAkñúg

(=

cMnYnsrubrbs;

frequency carriers

“cluster”

cell cluster

mYy

pþl;eGayedayRbB½n§

)

 K=JXN M:

cMnYnrbs;

cell clusters

C :

cMnYnrbs;

channels

EdlmanenAkñúgRbB½n§

enAkñúgRbB½n§ (RtUv)aneKsÁal;faCa

“system capacity” )  C=MXK

5



enAeBlEdlktþaén

frequency

kareFVIeLIgvijnUv

reuse

fycuH

(

]TahrN_

EdldUcKñakan;Etjwk)

frequency

enaHRbB½n§smtßPaB

nwgekIneLIg.

eTaHbICay:agNak¾edaytMéltUcbMputrbs; KWGaRs½yeTAelIkMritén

co-channel interference

ktþaEdleRbIR)as; BinitüeTAelI

cells

EdlmanRCug

.

Frequency

eLIgvij

6

RCugmYyEdlmancMgayesµI²KñacMnYn 6 Kt;

 Cell 6 channel

N

“nearest” co-

EdlenACit

6



ExSRbsBVRtg;cMnuckNþalén

cell

NamYy

ehIycMnucEdlCitvanimYy²man KMlatBIKñacMgay 60 dWeRk 

edIm,Irk

co-channel

neighbors

EdlenACitCageKbMputRtUveFVItam 2

CMhanEdlmandUcxageRkam -

rMkilelI i cells tamry³ExSén 6 RCug bgVil

ehIyrMkilelI Edl

:

dWeRktamTisedARsbRTnicnaLikar

60

j cells i

nig

KWCaGBaØatrbs;RbB½n§sMrab;kMnt;nUvTMhMrbs;

j cluster

7

N = i2+ij+j2

ktþaEdleRbIR)as; (t)

Frequency

eLIgvij

8

ktþaEdleRbIR)as; (t)

Frequency

eLIgvij

R:

kaMrbs;

D1:

cMgayrvagcMnuckNþalén cells BIrEdlenACitKña D1

D:

=

cab;BIcMnuckNþaleTAdl;kMBUl)

cell (

3

2Rcos30 = 2R 2 =

3

R

cMgayrvagcMnuckNþalén

2 “co-channel” cells

EdlenACitKña

D 2 = ( jD1 cos θ ) 2 + (iD1 + jD1 sin θ ) 2

= (i 2 + ij + j 2 ) D1

2

D1 = 3R N = i 2 + ij + j 2

= 3NR 2 ⇒ D = 3 NR

q:

Gnu)atén

frequency reuse

9

def

q=

D = 3N R

ktþaEdleRbIR)as; (t) q

Channels



Frequency

eLIgvij

dUcKñaRtUv)aneRbIR)as;Cajwkjab;

.

smtßPaBrbs;RbB½n§fycuH . 

tMéltUcbMputrbs; kMNt; S/I = S

q

GaRs½yelIkMritén

“signal-to-co-channel interference ratio”

co-channel

interference

.

eday

NI

∑I k =1

k

10



eyIgRtUvkarkMNt;famBlsMrab;RKb;RKgelIkarrMxan interference

. cat;TukfaRKan;EtCa

 d L(d ) = L(d 0 ) d  0

   

scale path-loss effect

−n

d 0 : Reference distance

n : Path loss exponent 

BinitüeTAelI downlink (]TahrN_ forward link) ehIynµtfakMlaMgbBa ¢ÚnBIRKb; BS TaMgGs;KWdUcKña bnÞab;mk S

I k ∝ Dk−n

Dk :

cMgayBI

kth co-channel cell BSS

ktþaEdleRbIR)as; (t)

eTAkan;

MS

Frequency

.

eLIgvij

11



snµtfa

MS

manTItaMgsßitenA

]TahrN_ the worst case scenario)

cell boundary (

ehIyeRbIR)as;nUvPaBRbhak;RbEhl ]TahrN_fa S = I

S

=

NI

∑I k =1

k

Dk >> R

R −n ( D / R) n q n ( 3 N ) = = = NI NI NI N I .D − n

]TahrN_ : snµtfa path-loss model

Dk ≈ D

interference

CamYynwg



1

S n  q = N I .  I  

ekIteLIgBI

path loss exponent n=4

first-tier co-channel cells

. cat;Tukfa

ehIyKNna

frequency reuse factor

edIm,IbMeBjnUvkMritGb,brmaEdlGacTTYlyk)anén

S/I=19dB

.

enAkñúgbBaðaenHeyIgminKitdl;karrMxancab;BIlMdab; TI 2 rhUtdl;lMdab;fñak;Edlx<s;bMput , dUecñH q = (6.100)

1

4

= 4.9492

N1=6

.

N = q 2 3 = 8.165 → 9

12

epÞógpÞat;CMerIsrbs;Gñk

S = I

(

3N NI

ktþaEdleRbIR)as; (t)

)

n

= 20 .84 dB N =9

Frequency

eLIgvij

eyIgsikSareTAelIkarBitmYy val¥CaCagkarEdlsnñidæanTaMgRsugeTAe lI

Dk ≈ D

S R −n ≈ I 2( D − R ) −n + 2 D −n + 2( D + R ) −n

=

2(q −1)

−n

1 + 2q −n + 2(q +1) −n

13

. n = 4, N = 7

q = 3 N = 4.6 ⇒S / I =17 .3dB

. n = 4, N = 9

q = 3 N = 5.2 ⇒S / I =19 .8dB

karqøg 

Channel EdlenACitKña

karqøg

channel

EdlenACitKñaenH

vaCalT§plmkBIsBaØaEdlenACitKñaenAkñúg

frequency

eTACasBaØaEdleyIgcg;)an. edIm,Ikat;bnßynUvplb:HBal;enH eyIgRtUv³ 

eRbIcenøaH

channel

eGay)anCak;lak;edaykMnt;

channels

14

EdlenACitKñakñúg

cell

epSgKña. ]TahrN_

RbsinebIeyIgkMnt; frequency carrier f 1

enAkñúg

cell A

enaH

carrier frequency

bnÞab;EdlTMenr (vasßitenAEk,r KYrEtkMnt;eGayenAepSgeRkABI eRbI

 (

modulation schemes

]TahrN_ begáIt



sidelobes

Edlman

f1 )

cell A

out-of-band radiation

EdltUcCag). ]TahrN_

Receiver front end filter

tUc MSK

KWl¥Cag

QPSK

.

edayRbugRby½tñ.

Trunking 

enAkñúg

cellular system

cMnYnmYyén

radio channels

EdlTak;TgKña 15

RtUv)aneRbIsMrab;bMerIeGayGñkeRbIR)as;d¾eRcIn mYy EdlRtUv)an begáIteLIgedaykar frequency reuse)

nig

trunking

]TahrN_

design cellular (

. eyIg)ansikSarYcmkehIyGMBI

frequency

. \LÚvenH eyIgnwgsegçbBIKMnitmUldæanrbs;

reuse

 Trunking

GaceGay

mobile users

eRbIrYmKñanUv

radio channels

cell

nimYy²eTAtamtMrUvkarCaeKal



GaRs½ynwgbNþúMén

cell

nimYy²KYrEtRtUv)ankMnt;tammeFüa)ay³ > RKb; >

channels

traffic

cMnYnén

radio channels

trunking

³

enAkñúg

enAkñúg

TaMgGs;RtUv)aneRbIR)as;RKb;RKan;

Call blocking rate

KWTabCagkarkMnt;cMnuccab;epþImdMbUg

16



rgVas;én

traffic efficiency

³

1 Erlang

RtUv)ankMnt;edayGaMgtg;sIuetén ¢Úneday channel

channel

traffic

EdldwkCBa

mYy²EdleRbIR)as;eBjEtmþg. ]TahrN_

mYyEdlRtUv)aneRbIGs;ry³eBl

kñúgkMLúgeBlbBa¢Ún

0.5 Erlang

én

radio

30 minutes

traffic

kñúgeBl 1 em:ag.

Grade of Service (GoS)  Grade of Service (GoS)

KWCargVas;lT§PaBrbs;

EdlGacdMeNIrkareTAkan;

trunked system

kMLúgeBlEdlCab;rvl;bMput.

user

mYy

GoS

CaFmµtaRtUv)anpþl;Ca³

17

> »kasEdlkar

call

> »kasEdlkar

call

mYyRtUv)an

block (

sMrab;RbB½n§

Erlang B)

mYyRtUv)anBnüaeBlyUrCaRbB½n§rgcaM (

sMrab;RbB½n§

Erlang C)

niymn½yTUeTA  Blocked call (lost call)

³ KWCakar

call

ecjEdlmin)ansMercenAeBlEdlmankarCab;rvl;eRcIn  Average holding time (H)  Traffic intensity (A)

³ KWCary³eBlmFüménkar

³ rgVas;eBlEdl

CamFümEdlvas;KitCa

channel

call

mYy

eRbI EdlkareRbI

channel

Erlang

18

 Load

³ Ca

traffic intensity

Edlqøgkat;

trunked radio system

Edlvas;enAkñúg

1

Erlang  Request rate ( λ )

³ CacMnYnmFüménkar

call

kñúgeBlmYyrbs;

user

mñak;

Grade of Service (GoS)  Traffic intensity

Edlpþl;eday

user

mñak;² (KitCa

Erlang)

KW³

Au = λ.H



sMrab;RbB½n§mYyCamYy

load)

u users enaH offered traffic intensity (traffic

KW³

A = u. Au = u.λ.H

19



enAkñúgRbB½n§

C-channel trucked

mYy snñidæanfa

RtUv)anEckcayesµIKñakñúgcMeNam enaHnaMeGay

traffic intensity

kñúg

1 channel

channels

traffic

TaMgGs;

KW³

Ac = u. Au C = u.λ.H C



PaBxusKñarvag }offered }

RbePTén 

RbsinebIKµan

channels

traffic

nig }carried }

traffic

Trunked System

EdlTMenr enaH³

20

> karesñIrbs; ehIykar call

call

user

RtUv)an

block

edayKµandMeNIrkar

RtUv)anlubecj RBmTaMgeGay

user

TMenrkñúgkar

mþgeTot → Blocked Calls Cleared

> kar

call

RtUv)anBnüaeBlrhUtdl;

channel

mYyTMenr

→ Blocked

Calls Delayed

snñidæanfakar P ( X = i ) = e −λ

λi i!

call

mkdl;

, i = 0,1,2...

X

 a − eα y , y ≥ 0 fY ( y ) =   0, y < 0

holding time Y

Poisson distribution

mYy³

λ : Request rate E[ X ] = λ

snñídæanfa

tamrUbmnþ Var [ X ] = λ

tamrUbmnþ

exponential distribution

mYy³

α : exponent parameter

21

1 α Var[Y]= α 2

E[Y]=H= 1

karlub

Blocked Calls (

rUbmnþ

Erlang-B)

xageRkamkarsnñídæan³ > mancMnYn user d¾c,as;las;mYy > man }memoryless} énkar call vaGacniyay)anfaRKb; users rYmTaMg blocked user Gacnwgcg;eRbI channel EtmYyenAeBlNamYy > mancMnYn channel c,as;las;EdlTMenrenAkñúg trunked channels’ 

pool 

kMritlT§PaB

call blocking

RtUv)anpþl;eGayedayrUbmnþ

Erlang-

B PB =

AC C! C

∑A

K

K!

A:

cMnYnGaMgtg;sIuetsrubén

offered traffic

k =0

C:

cMnYn

channels

srubenAkñúg

system

22



karsnñidæanfamancMnYn

user

c,as;las;enAkñúg

CalT§plviC¢manénkar)a:n;sµanelI kMritlT§PaBénkar

block

GoS

system

.

CamYynwgcMnYnBitR)akdrbs;

KWticCagkarEdlGaceFVI)anedayrUbmnþ

karBnüarrbs;

Erlang-B

users

.

Blocked Calls ( rUbmnþ

Erlangl-C) 

kñúgkarsnñidæandUcKñaenAkñúgKMrUBImun

eyIgeRbIrUbmnþ call

Erlang-C

edIm,IEsVgrkkMritlT§PaBénkar

mYyEdlminmandMeNIrkarPøam²eTAkan;

channel

mYy

23

P ( Delay > 0) =



AC A C −1  AC + C!1 − ∑ AK K ! C k = 0 

(

RbsinebIKµan

)

channel

NaTMenrPøam²enaHeT enaHkar

nwgRtUvBnüar ehIykMritlT§PaBEdlBnüarkar nwgRtUvCMrujeGayrgcaMeRcIn Cag P ( Delay

>t ) =P (delay

>0) P ( Delay

>t Delay

t seconds

call

call

.

>0)

= P ( Delay > 0) exp[ −(C − A)t H ]

]TahrN_³ sikSaelI cMnYn

21

én

channels

cellular system

mYyEdlman

416 radio channels

TaMgenHRtUv)ankMnt;eRbICa

eGaykareRbIR)as;eBlén

channels

CamFüménkar

call

. ]bmafa

control channels

mYy KW

. 3 minutes

24

naMeGaykMriténkar

block

kMnt;BIcMnYnénkar

calls

KW

2%

enAkñúg

cMnYnén

voice channels

KW

cMnYnén

voice channels

kñúgmYy

395 N

ehIyktþaén cell

frequency reuse

esµInwg 9.

mYykñúgry³eBl 1 em:ag.

416 – 21 = 395 cell

KW

≈ 44 N =9

CamYynwg

44 channels

man

esµInwg

Erlang-B

traffic intensity

enAkñúg

34 .683 ≈12 calls 3

EdlTMenr nig 34.683 Erlangs

PB = 0.02 ,

. emIltarag

.

Appendix F

kñúg

34 .683 × 60 ≈ 693 calls 3

1 cell

kñúg

ry³eBl 1 cell

1 minute

ry³eBl

1 minute

25

Related Documents

Cellular
June 2020 28
Cellular
May 2020 20
Cellular
May 2020 16
Cellular Respiration
November 2019 39
Cellular Telephony
July 2020 20
Cellular Adaptations
July 2020 14