Aplikasi Persamaan Legendre

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Aplikasi Persamaan Legendre as PDF for free.

More details

  • Words: 451
  • Pages: 4
Nama

: 1. Eva Nafrita (060464) 2. Legiawati (060494) 3. Watiyah (060508)

Kelas

: 7B APLIKASI PERSAMAAN LEGENDRE

MATEMATIKA FISIKA Persamaan diferensial

(1 − x ) y′′ − 2 xy ′ + n( n +1) y = 0 2

(25)

di mana n suatu konstanta, disebut persamaan Legendre. Penyelesaian (25) sangat penting dalam banyak cabang matematika terapan. Sebagai contoh, persamaan Legendre muncul dalam kajian persamaan potensial dalam koordinat bola. Jelaslah, persamaan potensial ∂2 v ∂2 v ∂2 v + + =0 ∂x 2 ∂y 2 ∂z 2

dipetakan ke koordinat bola

Menjadi

Jika kita tertarik pada penyelesaian yang bebas dari θ berbentuk V = r pθ, dimana merupakan fungsi dari θ saja, kita dapatkan

Dengan menggunakan penggantian peubah x = cosθ dan mengganti θ dengan y, kita peroleh persamaan Legendre (25). Jika p bilangan bulat taknegatif, salah satu penyelesaian dari Persamaan (25) di sekitar titik biasa x0 = 0 berbentuk polinom. Bila dinormalkan secara tepat (seperti yang akan kita jelaskan di bawah in), penyelesaian berbentuk polinom Legendre.

Para polinomial Legendre pertama kali diperkenalkan pada 1782 oleh AdrienMarie Legendre sebagai koefisien dalam perluasan potensi Newtonian

dimana r dan r 'adalah panjang dari vektor adalah sudut antara kedua vektor.

dan

masing-masing dan γ

Seri menyatu ketika r> r '.

Ekspresi

memberikan potensial gravitasi dihubungkan ke titik massa atau potensial Coulomb terkait ke titik muatan. Perluasan menggunakan polinomial Legendre mungkin berguna, misalnya, ketika mengintegrasikan ekspresi ini lebih dari massa yang kontinu atau distribusi muatan. Polinomial Legendre terjadi dalam pemecahan persamaan Laplace dari potensi, , Di daerah bebas biaya ruang, dengan menggunakan metode pemisahan variabel, di mana kondisi batas mempunyai simetri aksial (tidak ada ketergantungan pada sudut azimuthal). Di mana adalah sudut antara posisi pengamat dan

adalah sumbu simetri dan θ

sumbu (sudut puncak), solusi

potensial akan

dan

harus ditentukan sesuai dengan kondisi batas setiap masalah [2].

Polinomial Legendre dalam perluasan multipole

Gambar 2 Polinomial Legendre juga bermanfaat dalam memperluas fungsi dari bentuk (ini adalah sama seperti sebelumnya, yang ditulis sedikit berbeda):

yang muncul secara alami di multipole ekspansi. Di sisi kiri dari persamaan adalah fungsi pembangkit untuk polinomial Legendre. Sebagai contoh, potensi listrik Φ (r, θ) (dalam koordinat bola) akibat muatan titik yang terletak pada sumbu z pada z = a (Gambar 2) bervariasi seperti

Jika jari-jari r dari titik pengamatan P adalah lebih besar daripada seorang, yang potensial dapat dikembangkan dalam polinomial Legendre

di mana kita telah mendefinisikan η = a / r <1 dan x = cos θ. Perluasan ini digunakan untuk mengembangkan normal multipole ekspansi. Sebaliknya, jika jari-jari r dari titik pengamatan P adalah lebih kecil daripada, potensi masih dapat diperluas dalam polinomial Legendre seperti di atas, tetapi dengan a dan r bertukar. ekspansi.

Perluasan ini adalah dasar dari interior multipole

Related Documents