Talat Lecture 2301: Design Of Members Example 6.8: Shear Force Resistance Of Orthotropic Double-skin Plate

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 6.8: Shear Force Resistance Of Orthotropic Double-skin Plate as PDF for free.

More details

  • Words: 1,968
  • Pages: 9
TALAT Lecture 2301

Design of Members Shear Force Example 6.8 : Shear force resistance of orthotropic double-skin plate 9 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 6.8

1

Example 6.8. Shear force resistance of orthotropic double-skin plate

Input

N newton (highlighted)

kN 1000 . N

Plate thickness

t

5 . mm

Plate width

b

Plate length "Pitch" (2a or d)

6 MPa 10 . Pa

fo

240 . MPa

300000 . mm

fu

260 . MPa

L

5000 . mm

E

70000 . MPa

w

160 . mm

t1

a

If heat-treated alloy, thenht = 1 else ht = 0

t

w 2 cf

0

γ M1 1.1 ht 1

a) Profiles with groove and tongue

Half bottom flange

a2

40 . mm

Thickness of bottom flange

t2

5 . mm

Profile depth

h

Web thickness

t3

5 . mm

Half width of trapezoidal stiffener at the top

a1

80 . mm

Number of webs

nw

4

Width of web

a3

TALAT 2301 – Example 6.8

70 . mm

a1

a2

2

h

2

2

a 3 = 80.6 mm

Local buckling of top flange Length and width of web panel

(5.97)

L = 5 . 10 mm 3



(5.96)

λ w

Table 5.12

ρ v

if

L am

am

am

4.00 .

> 1.00 , 5.34

a m = 80 mm

a1 2

L

5.34 .

, 4.00

am L

0.81 . a m . f o t1 E kτ 0.48

λ w

= 62.5

2

k τ = 5.341

λ w= 0.328

η

0.4

Table 5.12

ρ v if ρ v > η , η , ρ v

(5.95), two flanges

V w.Rd

ρ .vb . t 1

L am

t3 .

0.2 .

fu

ρ v= 1.462 η = 0.617

fo

ρ v= 0.617 fo

V w.Rd = 4.036 . 10 kN 5

γ M1

No reduction for local buckling

50

0

50

100

100

50

0

50

100

Overall buckling, shear Cross sectional area

Gravity centre

Second moment of area

A

2 .t 1 .a

2 .t 2 .a 2

nw

A = 2.812 . 10 mm 3

2

h nw 2 .t 3 .a 3 . . 2 2

2 .t 2 .a 2 .h e

IL

2 .t 3 .a 3 .

e = 30.022 mm

A 2 .t 2 .a 2 .h

2

2 .t 3 .a 3 .

4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3

2 h .n w 3 2

2

A .e

2

I L = 2.059 . 10 mm

4

I T = 3.517 . 10 mm

4

6

2

Approx. torsional constant

IT

TALAT 2301 – Example 6.8

3

6

Rigidities of orthotropic plate Table 5.10

Table 5.10

Table 5.10

E .I L

Bx

ν

2 .a

0.001 . N . mm

By

B x = 9.007 . 10

0.3

E

G

2 .( 1

B y = 1 . 10

ν)

G .I T

H

mm

N . mm

3

N . mm

8

mm

Elastic buckling load 1

(5.83)

(5.82)

(5.84)

φ

L. B y

4



3.25

H

η

b Bx 0.567 . φ

1.92 . φ

2

φ = 1.711 . 10

B x .B y 0.1 . φ

1.95

5

η = 6.236 . 10

5

2.75 . φ

2

. ηk

. τ = 1.216 10

6

1

(5.81)

2 k τ .π 4 . B .B 3 x y b

V o.cr

V o.cr = 0.039 kN

Buckling resistance

(5.120)

(5.119)

b .t 1 .f o

λ ow

V o.Rd V Rd

3

0.6

χ o

λ ow

0.8 (5.118)

λ ow= 3.039 . 10

V o.cr

χ o

2

χ .ob . t 1 .

if χ o > 0.6 , 0.6 , χ o χ o= 6.495 . 10

fo

if V w.Rd < V o.Rd , V w.Rd , V o.Rd

TALAT 2301 – Example 6.8

8

V o.Rd = 0.021 kN

γ M1

4

2

mm

H = 5.918 . 10

2 .a

N . mm

8

V Rd = 0.021 kN

2

2

b) Truss cross section

Half bottom flange

a2

a 2 70 . mm

Stiffener depth

h

Thickness of bottom flange

t2

5 . mm

Web thickness

t3

5 . mm

Width of web

a3

a1

a

a1

a = 80 mm

2

a 1 = 40 mm a 2 = 40 mm

2

2

a 3 = 80.623 mm

h

Local buckling of top flange Length and width of web panel

(5.97)

L = 5 . 10 mm 3



(5.96)

λ w

Table 5.12

ρ v

L

if

am

2 .a 1

am

4.00 .

> 1.00 , 5.34

am

L

a m = 80 mm 2

, 4.00

L

5.34 .

am

am 2

k τ = 5.341

L

0.81 . a m . f o t1 E kτ 0.48

λ w

η

λ w= 0.328 0.2 .

0.4

Table 5.12

ρ v if ρ v > η , η , ρ v

(5.95), three flanges (web)

V w.Rd

ρ .vb . t 1

= 62.5

t2

fu

ρ v= 1.462 η = 0.617

fo

ρ v= 0.617

t3 .

fo

V w.Rd = 6.055 . 10 kN 5

γ M1 50

0

50

100

TALAT 2301 – Example 6.8

5

100

50

0

50

100

Overall buckling, shear Cross sectional area A

2 .t 1 .a 1

2 .t 2 .a 2

2 .t 2 .a 2 .h Gravity centre Second moment of area

e

2 .t 3 .a 3

2 .t 3 .a 3 .

A = 1.606 . 10 mm 3

h 2

e = 35 mm

A 2 .t 2 .a 2 .h

2 .t 3 .a 3 .

2

IL

2

2

h

A .e

2

3

I L = 1.309 . 10 mm

4

I T = 1.952 . 10 mm

4

6

4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2

Torsion constant

IT

6

Orthotropic plate constant Table 5.10

E .I L

Bx

B x = 5.728 . 10

2 .a E .t 1 .t 2 .h

N . mm

8

mm

2

Table 5.10

Table 5.10

By

t1

G .I T

H

N . mm

B y = 8.575 . 10

8

t2

H = 3.285 . 10

2 .a

8

mm N . mm mm

Elastic buckling load 1

(5.83)

(5.82)

(5.81)

(5.84)

φ

L. B y

4

b Bx



3.25

H

η 0.567 . φ

1.92 . φ

2

0.1 . φ

1.95

1 2 k τ .π 4 3 . B .B x y b

V o.cr

φ = 0.018

B x .B y

η = 0.469 2.75 . φ

2

. ηk

τ = 4.156

V o.cr = 105.983 kN

Buckling resistance

(5.120)

(5.119)

b .t 1 .f o

λ ow

0.6

χ o

λ ow

0.8 (5.118)

V o.Rd V Rd

λ ow= 58.282

V o.cr

χ o

2

χ .ob . t 1 .

if χ o > 0.6 , 0.6 , χ o χ o= 1.766 . 10

fo

if V w.Rd < V o.Rd , V w.Rd , V o.Rd

TALAT 2301 – Example 6.8

4

V o.Rd = 57.795 kN

γ M1

6

2

V Rd = 57.795 kN

2

2

c) Frame cross section

Half bottom flange

a

37.5 . mm

a1

a

Stiffener depth

h

70 . mm

a2

a

Thickness of top flange

t1

5 . mm

a 1 = 37.5 mm

Thickness of bottom flange

t2

5 . mm

a 2 = 37.5 mm

Web thickness

t3

5 . mm

Width of web

a3

h

a 3 = 70 mm

Local buckling of top flange if t 1 < t 2 , t 1 , t 2

Thickness

tm

Length and width of web panel

L = 5 . 10 mm

(5.97)



3

(5.96)

λ w

Table 5.12

ρ v

L

if

am

t m = 5 mm 2 .a 1

am

> 1.00 , 5.34

4.00 .

am L

L

a m = 75 mm 2

, 4.00

5.34 .

am

am

2

k τ = 5.341

L

0.81 . a m . f o tm E kτ 0.48

λ w

η

λ w= 0.308 0.4

Table 5.12

ρ v if ρ v > η , η , ρ v

(5.95), two flanges

V w.Rd

ρ .vb . t 1

t2 .

= 66.667

0.2 .

fu

ρ v= 1.559 η = 0.617

fo

ρ v= 0.617 fo

V w.Rd = 4.036 . 10 kN 5

γ M1

No reduction for local buckling

50

0

50

100

TALAT 2301 – Example 6.8

7

100

50

0

50

100

Overall buckling, shear Cross sectional area A

Gravity centre

Second moment of area

2 .t 1 .a

2 .t 2 .a 2

2 .t 2 .a 2 .h e

t 3 .a 3

t 3 .a 3 .

A = 1.1 . 10 mm 3

h 2

e = 35 mm

A 2 .t 2 .a 2 .h

t 3 .a 3 .

2

IL

2

2

h

A .e

2

3

I L = 1.062 . 10 mm

4

I T = 1.901 . 10 mm

4

6

4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2

Torsion constant

IT

6

Orthotropic plate constant (5.80d)

E .I L

Bx

B x = 9.909 . 10

2 .a

E .t 1

3

(5.80a

By

(5.80b)

12 . 1

. . 10 b . 2 2 ν 32 . a 2

3

2 .a

1

t1

2 .h . t 1

3

t2

6 .t 1 2 .a

a .t 2 t 3

3

6 .h .t 2

mm

2

t . 1 2 3 3 2 3 .h .t 1 .t 2 L a .t 3

3

N . mm

B y = 1.118 . 10

7

3

2 .a

N . mm

H = 8.75 . 10

6

t3

mm

mm

Elastic buckling load 1

(5.83)

(5.82)

(5.81)

(5.84)

φ

L. B y

4

η

b Bx



3.25

0.567 . φ

1.92 . φ

2

H

φ = 5.432 . 10

B x .B y 1.95

0.1 . φ

3

η = 0.083 2.75 . φ

1 2 k τ .π 4 . B .B 3 x y b

V o.cr

2

. ηk

τ = 3.409

V o.cr = 3.848 kN

Buckling resistance (5.120)

(5.119)

b .t 1 .f o

λ ow

0.6

λ ow

0.8 (5.118)

V o.Rd V Rd

λ ow= 305.887

V o.cr

χ o

χ o

2

χ .ob . t 1 .

if χ o > 0.6 , 0.6 , χ o

fo

if V w.Rd < V o.Rd , V w.Rd , V o.Rd

TALAT 2301 – Example 6.8

χ o= 6.412 . 10

6

V o.Rd = 2.099 kN

γ M1

8

2

3

6 .t 2

1

t3

t2

N . mm

3

3

t1

.

t3

3. 1

a .t 3

3

3

2 .E

H

a .t 3

3.

8

V Rd = 2.099 kN

2

2

Summary a)

b)

c)

V Rd.a = 0 kN

A a = 2.812 . 10 mm

2

V Rd.b = 57.8 kN

A b = 3.212 . 10 mm

2

V Rd.c = 2.1 kN

A c = 2.2 . 10 mm

TALAT 2301 – Example 6.8

3

3

3

9

2

V Rd.a Aa V Rd.b Ab V Rd.c Ac

= 7.6 . 10

3

N mm

= 18

N mm

=1

N mm

2

2

2

Related Documents


More Documents from "CORE Materials"