TALAT Lecture 2301
Design of Members Shear Force Example 6.8 : Shear force resistance of orthotropic double-skin plate 9 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association TALAT 2301 – Example 6.8
1
Example 6.8. Shear force resistance of orthotropic double-skin plate
Input
N newton (highlighted)
kN 1000 . N
Plate thickness
t
5 . mm
Plate width
b
Plate length "Pitch" (2a or d)
6 MPa 10 . Pa
fo
240 . MPa
300000 . mm
fu
260 . MPa
L
5000 . mm
E
70000 . MPa
w
160 . mm
t1
a
If heat-treated alloy, thenht = 1 else ht = 0
t
w 2 cf
0
γ M1 1.1 ht 1
a) Profiles with groove and tongue
Half bottom flange
a2
40 . mm
Thickness of bottom flange
t2
5 . mm
Profile depth
h
Web thickness
t3
5 . mm
Half width of trapezoidal stiffener at the top
a1
80 . mm
Number of webs
nw
4
Width of web
a3
TALAT 2301 – Example 6.8
70 . mm
a1
a2
2
h
2
2
a 3 = 80.6 mm
Local buckling of top flange Length and width of web panel
(5.97)
L = 5 . 10 mm 3
kτ
(5.96)
λ w
Table 5.12
ρ v
if
L am
am
am
4.00 .
> 1.00 , 5.34
a m = 80 mm
a1 2
L
5.34 .
, 4.00
am L
0.81 . a m . f o t1 E kτ 0.48
λ w
= 62.5
2
k τ = 5.341
λ w= 0.328
η
0.4
Table 5.12
ρ v if ρ v > η , η , ρ v
(5.95), two flanges
V w.Rd
ρ .vb . t 1
L am
t3 .
0.2 .
fu
ρ v= 1.462 η = 0.617
fo
ρ v= 0.617 fo
V w.Rd = 4.036 . 10 kN 5
γ M1
No reduction for local buckling
50
0
50
100
100
50
0
50
100
Overall buckling, shear Cross sectional area
Gravity centre
Second moment of area
A
2 .t 1 .a
2 .t 2 .a 2
nw
A = 2.812 . 10 mm 3
2
h nw 2 .t 3 .a 3 . . 2 2
2 .t 2 .a 2 .h e
IL
2 .t 3 .a 3 .
e = 30.022 mm
A 2 .t 2 .a 2 .h
2
2 .t 3 .a 3 .
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3
2 h .n w 3 2
2
A .e
2
I L = 2.059 . 10 mm
4
I T = 3.517 . 10 mm
4
6
2
Approx. torsional constant
IT
TALAT 2301 – Example 6.8
3
6
Rigidities of orthotropic plate Table 5.10
Table 5.10
Table 5.10
E .I L
Bx
ν
2 .a
0.001 . N . mm
By
B x = 9.007 . 10
0.3
E
G
2 .( 1
B y = 1 . 10
ν)
G .I T
H
mm
N . mm
3
N . mm
8
mm
Elastic buckling load 1
(5.83)
(5.82)
(5.84)
φ
L. B y
4
kτ
3.25
H
η
b Bx 0.567 . φ
1.92 . φ
2
φ = 1.711 . 10
B x .B y 0.1 . φ
1.95
5
η = 6.236 . 10
5
2.75 . φ
2
. ηk
. τ = 1.216 10
6
1
(5.81)
2 k τ .π 4 . B .B 3 x y b
V o.cr
V o.cr = 0.039 kN
Buckling resistance
(5.120)
(5.119)
b .t 1 .f o
λ ow
V o.Rd V Rd
3
0.6
χ o
λ ow
0.8 (5.118)
λ ow= 3.039 . 10
V o.cr
χ o
2
χ .ob . t 1 .
if χ o > 0.6 , 0.6 , χ o χ o= 6.495 . 10
fo
if V w.Rd < V o.Rd , V w.Rd , V o.Rd
TALAT 2301 – Example 6.8
8
V o.Rd = 0.021 kN
γ M1
4
2
mm
H = 5.918 . 10
2 .a
N . mm
8
V Rd = 0.021 kN
2
2
b) Truss cross section
Half bottom flange
a2
a 2 70 . mm
Stiffener depth
h
Thickness of bottom flange
t2
5 . mm
Web thickness
t3
5 . mm
Width of web
a3
a1
a
a1
a = 80 mm
2
a 1 = 40 mm a 2 = 40 mm
2
2
a 3 = 80.623 mm
h
Local buckling of top flange Length and width of web panel
(5.97)
L = 5 . 10 mm 3
kτ
(5.96)
λ w
Table 5.12
ρ v
L
if
am
2 .a 1
am
4.00 .
> 1.00 , 5.34
am
L
a m = 80 mm 2
, 4.00
L
5.34 .
am
am 2
k τ = 5.341
L
0.81 . a m . f o t1 E kτ 0.48
λ w
η
λ w= 0.328 0.2 .
0.4
Table 5.12
ρ v if ρ v > η , η , ρ v
(5.95), three flanges (web)
V w.Rd
ρ .vb . t 1
= 62.5
t2
fu
ρ v= 1.462 η = 0.617
fo
ρ v= 0.617
t3 .
fo
V w.Rd = 6.055 . 10 kN 5
γ M1 50
0
50
100
TALAT 2301 – Example 6.8
5
100
50
0
50
100
Overall buckling, shear Cross sectional area A
2 .t 1 .a 1
2 .t 2 .a 2
2 .t 2 .a 2 .h Gravity centre Second moment of area
e
2 .t 3 .a 3
2 .t 3 .a 3 .
A = 1.606 . 10 mm 3
h 2
e = 35 mm
A 2 .t 2 .a 2 .h
2 .t 3 .a 3 .
2
IL
2
2
h
A .e
2
3
I L = 1.309 . 10 mm
4
I T = 1.952 . 10 mm
4
6
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2
Torsion constant
IT
6
Orthotropic plate constant Table 5.10
E .I L
Bx
B x = 5.728 . 10
2 .a E .t 1 .t 2 .h
N . mm
8
mm
2
Table 5.10
Table 5.10
By
t1
G .I T
H
N . mm
B y = 8.575 . 10
8
t2
H = 3.285 . 10
2 .a
8
mm N . mm mm
Elastic buckling load 1
(5.83)
(5.82)
(5.81)
(5.84)
φ
L. B y
4
b Bx
kτ
3.25
H
η 0.567 . φ
1.92 . φ
2
0.1 . φ
1.95
1 2 k τ .π 4 3 . B .B x y b
V o.cr
φ = 0.018
B x .B y
η = 0.469 2.75 . φ
2
. ηk
τ = 4.156
V o.cr = 105.983 kN
Buckling resistance
(5.120)
(5.119)
b .t 1 .f o
λ ow
0.6
χ o
λ ow
0.8 (5.118)
V o.Rd V Rd
λ ow= 58.282
V o.cr
χ o
2
χ .ob . t 1 .
if χ o > 0.6 , 0.6 , χ o χ o= 1.766 . 10
fo
if V w.Rd < V o.Rd , V w.Rd , V o.Rd
TALAT 2301 – Example 6.8
4
V o.Rd = 57.795 kN
γ M1
6
2
V Rd = 57.795 kN
2
2
c) Frame cross section
Half bottom flange
a
37.5 . mm
a1
a
Stiffener depth
h
70 . mm
a2
a
Thickness of top flange
t1
5 . mm
a 1 = 37.5 mm
Thickness of bottom flange
t2
5 . mm
a 2 = 37.5 mm
Web thickness
t3
5 . mm
Width of web
a3
h
a 3 = 70 mm
Local buckling of top flange if t 1 < t 2 , t 1 , t 2
Thickness
tm
Length and width of web panel
L = 5 . 10 mm
(5.97)
kτ
3
(5.96)
λ w
Table 5.12
ρ v
L
if
am
t m = 5 mm 2 .a 1
am
> 1.00 , 5.34
4.00 .
am L
L
a m = 75 mm 2
, 4.00
5.34 .
am
am
2
k τ = 5.341
L
0.81 . a m . f o tm E kτ 0.48
λ w
η
λ w= 0.308 0.4
Table 5.12
ρ v if ρ v > η , η , ρ v
(5.95), two flanges
V w.Rd
ρ .vb . t 1
t2 .
= 66.667
0.2 .
fu
ρ v= 1.559 η = 0.617
fo
ρ v= 0.617 fo
V w.Rd = 4.036 . 10 kN 5
γ M1
No reduction for local buckling
50
0
50
100
TALAT 2301 – Example 6.8
7
100
50
0
50
100
Overall buckling, shear Cross sectional area A
Gravity centre
Second moment of area
2 .t 1 .a
2 .t 2 .a 2
2 .t 2 .a 2 .h e
t 3 .a 3
t 3 .a 3 .
A = 1.1 . 10 mm 3
h 2
e = 35 mm
A 2 .t 2 .a 2 .h
t 3 .a 3 .
2
IL
2
2
h
A .e
2
3
I L = 1.062 . 10 mm
4
I T = 1.901 . 10 mm
4
6
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2
Torsion constant
IT
6
Orthotropic plate constant (5.80d)
E .I L
Bx
B x = 9.909 . 10
2 .a
E .t 1
3
(5.80a
By
(5.80b)
12 . 1
. . 10 b . 2 2 ν 32 . a 2
3
2 .a
1
t1
2 .h . t 1
3
t2
6 .t 1 2 .a
a .t 2 t 3
3
6 .h .t 2
mm
2
t . 1 2 3 3 2 3 .h .t 1 .t 2 L a .t 3
3
N . mm
B y = 1.118 . 10
7
3
2 .a
N . mm
H = 8.75 . 10
6
t3
mm
mm
Elastic buckling load 1
(5.83)
(5.82)
(5.81)
(5.84)
φ
L. B y
4
η
b Bx
kτ
3.25
0.567 . φ
1.92 . φ
2
H
φ = 5.432 . 10
B x .B y 1.95
0.1 . φ
3
η = 0.083 2.75 . φ
1 2 k τ .π 4 . B .B 3 x y b
V o.cr
2
. ηk
τ = 3.409
V o.cr = 3.848 kN
Buckling resistance (5.120)
(5.119)
b .t 1 .f o
λ ow
0.6
λ ow
0.8 (5.118)
V o.Rd V Rd
λ ow= 305.887
V o.cr
χ o
χ o
2
χ .ob . t 1 .
if χ o > 0.6 , 0.6 , χ o
fo
if V w.Rd < V o.Rd , V w.Rd , V o.Rd
TALAT 2301 – Example 6.8
χ o= 6.412 . 10
6
V o.Rd = 2.099 kN
γ M1
8
2
3
6 .t 2
1
t3
t2
N . mm
3
3
t1
.
t3
3. 1
a .t 3
3
3
2 .E
H
a .t 3
3.
8
V Rd = 2.099 kN
2
2
Summary a)
b)
c)
V Rd.a = 0 kN
A a = 2.812 . 10 mm
2
V Rd.b = 57.8 kN
A b = 3.212 . 10 mm
2
V Rd.c = 2.1 kN
A c = 2.2 . 10 mm
TALAT 2301 – Example 6.8
3
3
3
9
2
V Rd.a Aa V Rd.b Ab V Rd.c Ac
= 7.6 . 10
3
N mm
= 18
N mm
=1
N mm
2
2
2