TALAT Lecture 2301
Design of Members Axial force and bending moment Example 9.1 : Tension force and bending moment 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association
TALAT 2301 – Example 9.1
1
Example 9.1. Tension force and bending moment Dimensions and material properties Flange height:
h
200 . mm
Flange depth:
b
140 . mm
Web thickness:
tw
Flange thickness:
tf
Length:
L
12 . mm 6 . mm 2 .m
Width of web plate: bw
2 .t f
h
b w = 188 mm
[1] Table 3.2b Alloy: EN AW-6082 T6 EP/O t > 5 mm 260 .
f 0.2
[1] (5.4), (5.5) f o [1] (5.6)
fv
newton mm
2
f 0.2
310 .
fa
fu
newton mm
2
fo f v = 150 MPa
3 E
fu
70000 . MPa
27000 . MPa
G
γ M11.10
Partial safety factors:
γ M2 1.25
Moment and force 140 . kN
Axial tension force and excentricity
N Ed
Bending moment
M y.Ed
Web-flange corner radius
r
kN 1000 . newton
S.I. units
N Ed . exc
exc
114.286 . mm
M y.Ed = 16 kNm
4 . mm
kNm kN . m
MPa 1000000 . Pa
Classification of the cross section in bending. Effective thickness Web [1] Tab. 5.1 [1] 5.4.5
bw β w 0.40 . tw
β w= 6.267
β 1w 9 . ε class w
Local buckling: ρ cw if
250 . MPa
ε
β 2w 13 . ε
ε = 0.981
fo
β 3w 18 . ε
if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1
β w ε
18 , 1.0 ,
29
198
β w
β w
ε
TALAT 2301 – Example 9.1
ε
2
2
t w.ef
if class w 4 , t w . ρ cw, t w
class w = 1
ρ cw= 1 t w.ef = 12.0 mm
Flanges [1] 5.4.3 [1] Tab. 5.1
β f
b
tw
2.5 . ε
β 1f
tf
β 3f 5 . ε
β =f 21.333
if β >f β 1f , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1
class f
[1] 5.4.5 Local buckling: ρ cf if
β f
18 , 1.0 ,
ε
29
198
β f
β f
ε t f.ef
β 2f 4 . ε
class f = 4
ρ cf= 0.915
2
ε
if class f 4 , t f . ρ cf, t f
t f.ef = 5.49 mm
Classification of the total cross-section: class
if class f > class w , class f , class w
class = 4
Cross weld [1] Tab. 5.2
ρ haz 0.65 t f.haz ρ haz . t f
HAZ softening factor Effective thickness, flange t f.ef
if t f.ef < t f.haz , t f.ef , t f.haz
t f.ef = 3.9 mm
Effective thickness, web t w.ef [1] Fig. 5.6
t w.haz
ρ haz. t f
t w.haz = 3.9 mm
if t w.ef < t w.haz , t w.ef , t w.haz
Extent of HAZ i web (MIG-weld) b haz
t f.haz = 3.9 mm
t w.ef = 3.9 mm 0.5 . t w
t1
t 1 = 9 mm
tf
if t 1 > 6 . mm , if t 1 > 12 . mm , if t 1 > 25 . mm , 40 . mm , 35 . mm , 30 . mm , 20 . mm
b haz = 30 mm
Bending moment resistance [1] 5.6.2
Elastic modulus of gross cross sectionWel: A gr
2 .b .t f
I gr
1. . 3 bh 12
W el
2 .t f .t w
h b
tw . h
A gr = 3.936 . 10 mm 3
2 .t f
I gr = 2.246 . 10 mm
3
7
I gr . 2
4
W el = 2.246 . 10 mm
3
W ple = 2.69 . 10 mm
3
5
h
2
Plastic modulus W ple
1. 4
b .h
2
b
tw . h
2 .t f
2
5
Elastic modulus of the effective cross sectionWeffe: t f = 6 mm
t f.ef = 3.9 mm
t w = 12 mm
t w.ef = 3.9 mm
Allowing for local buckling and HAZ: A effe
A gr
b. t f
TALAT 2301 – Example 9.1
t f.ef
b haz . t w
3
t w.ef
A effe = 3.399 . 10 mm 3
2
Shift of gravity centre: e ef
b. t f
tf
h t f.ef . 2
2
h t w.ef . 2
b haz . t w
tf
b haz 2
1
.
e ef = 14.038 mm
A effe
Second moment of area with respect to centre of gross cross section: I effe
b. t f
I gr
h t f.ef . 2
tf
2
3
b haz
. t w 12
2
t w.ef
b haz . t w
h t w.ef . 2
tf
b haz
2
2
I effe = 1.816 . 10 mm
4
I effe = 1.749 . 10 mm
4
7
Second moment of area with respect to centre of effective cross section: I effe W effe
7
I effe h 2
[1] Tab. 5.3
2 e ef . A effe
I effe
W effe = 1.533 . 10 mm 5
e ef
Shape factor α for welded, class 4 cross-section
W effe
α
α = 0.683
W el
Design moment and axial force resistance of the cross sectionM( y,Rd and NRd) [1] (5.14)
M y.Rd
f o . α . W el
N Rd
γ M1
f o . A effe
γ M1
M y.Rd = 36.2 kNm
N Rd = 803.4 kN
Section check [1] (5.42a-c)
[1] (5.40)
η 0 1
Class 4 cross section: N Ed N Rd
η0
M y.Ed M y.Rd
TALAT 2301 – Example 9.1
γ0
= 0.616
4
γ 0
1
ξ 0
1
3
Lateral-torsional buckling [1] 5.9.4.3 Lateral stiffness constant
Iz
3 2 .b .t f
h .t w
12
12
h [1] Figure J.2
Varping constant:
Iw
Torsional constant:
It
3
I z = 2.773 . 10 mm
2 t f .I z
h .t w
3
Moment relation
ψ
[1] H.1.2(6)
C1 - constant
C1
I t = 1.354 . 10 mm 5
3
[1] 5.6.6.3(2)
[1] 5.6.6.3(1)
λ LT
6
4
ψ =1
1 1.4 . ψ
1.88
0.52 . ψ
2
C1=1 G = 2.7 . 10 MPa 4
Shear modulus
[1] 5.6.6.3(3)
mm
L=2 m
[1] H.1.2
M cr
I w = 2.609 . 10 3
Length
[1] H.1.3(3)
4
10
4 2 .b .t f
6
2 C 1 .π .E .I z I w . 2 Iz L
2 L .G .I t
π
2.
Wy
E .I z
W el
α .W y .f o
M cr = 62.517 kN . m
λ LT= 0.799
M cr
α LT if ( class> 2 , 0.2 , 0.1 )
α LT= 0.2
λ 0LT if ( class> 2 , 0.4 , 0.6 )
λ 0LT= 0.4
φ LT 0.5 . 1 χ LT
α LT . λ LT 1
φ LT
φ LT
2
λ 0LT
λ LT
λ LT
2
φ LT= 0.859 χ LT = 0.851
2
Design moment and axial force resistance of the cross section(no HAZ) [1] (5.14)
M c.Rd
f .W . o el χ LT γ M1
TALAT 2301 – Example 9.1
N Rd
f o . A gr
γ M1
5
M c.Rd = 45.2 kNm
N Rd = 930.3 kN
Lateral-torsional buckling check [1] 5.9.3.1
ψ vec 0.8
W com
W el A gr = 3.936 . 10 mm 3
[1] (5.38)
M y.Ed σ com.Ed W com
N Ed ψ vec . A gr
N Ed = 140 kN
σ com.Ed= 42.8 MPa [1] (5.39)
M eff.Ed
2
M y.Ed = 16 kNm
W com . σ com.Ed
M eff.Ed = 9.61 kNm M c.Rd = 45.196 kNm M eff.Ed < M c.Rd
TALAT 2301 – Example 9.1
6
OK!