Talat Lecture 2301: Design Of Members Example 9.1: Tension Force And Bending Moment

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 9.1: Tension Force And Bending Moment as PDF for free.

More details

  • Words: 1,377
  • Pages: 6
TALAT Lecture 2301

Design of Members Axial force and bending moment Example 9.1 : Tension force and bending moment 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association

TALAT 2301 – Example 9.1

1

Example 9.1. Tension force and bending moment Dimensions and material properties Flange height:

h

200 . mm

Flange depth:

b

140 . mm

Web thickness:

tw

Flange thickness:

tf

Length:

L

12 . mm 6 . mm 2 .m

Width of web plate: bw

2 .t f

h

b w = 188 mm

[1] Table 3.2b Alloy: EN AW-6082 T6 EP/O t > 5 mm 260 .

f 0.2

[1] (5.4), (5.5) f o [1] (5.6)

fv

newton mm

2

f 0.2

310 .

fa

fu

newton mm

2

fo f v = 150 MPa

3 E

fu

70000 . MPa

27000 . MPa

G

γ M11.10

Partial safety factors:

γ M2 1.25

Moment and force 140 . kN

Axial tension force and excentricity

N Ed

Bending moment

M y.Ed

Web-flange corner radius

r

kN 1000 . newton

S.I. units

N Ed . exc

exc

114.286 . mm

M y.Ed = 16 kNm

4 . mm

kNm kN . m

MPa 1000000 . Pa

Classification of the cross section in bending. Effective thickness Web [1] Tab. 5.1 [1] 5.4.5

bw β w 0.40 . tw

β w= 6.267

β 1w 9 . ε class w

Local buckling: ρ cw if

250 . MPa

ε

β 2w 13 . ε

ε = 0.981

fo

β 3w 18 . ε

if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1

β w ε

18 , 1.0 ,

29

198

β w

β w

ε

TALAT 2301 – Example 9.1

ε

2

2

t w.ef

if class w 4 , t w . ρ cw, t w

class w = 1

ρ cw= 1 t w.ef = 12.0 mm

Flanges [1] 5.4.3 [1] Tab. 5.1

β f

b

tw

2.5 . ε

β 1f

tf

β 3f 5 . ε

β =f 21.333

if β >f β 1f , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1

class f

[1] 5.4.5 Local buckling: ρ cf if

β f

18 , 1.0 ,

ε

29

198

β f

β f

ε t f.ef

β 2f 4 . ε

class f = 4

ρ cf= 0.915

2

ε

if class f 4 , t f . ρ cf, t f

t f.ef = 5.49 mm

Classification of the total cross-section: class

if class f > class w , class f , class w

class = 4

Cross weld [1] Tab. 5.2

ρ haz 0.65 t f.haz ρ haz . t f

HAZ softening factor Effective thickness, flange t f.ef

if t f.ef < t f.haz , t f.ef , t f.haz

t f.ef = 3.9 mm

Effective thickness, web t w.ef [1] Fig. 5.6

t w.haz

ρ haz. t f

t w.haz = 3.9 mm

if t w.ef < t w.haz , t w.ef , t w.haz

Extent of HAZ i web (MIG-weld) b haz

t f.haz = 3.9 mm

t w.ef = 3.9 mm 0.5 . t w

t1

t 1 = 9 mm

tf

if t 1 > 6 . mm , if t 1 > 12 . mm , if t 1 > 25 . mm , 40 . mm , 35 . mm , 30 . mm , 20 . mm

b haz = 30 mm

Bending moment resistance [1] 5.6.2

Elastic modulus of gross cross sectionWel: A gr

2 .b .t f

I gr

1. . 3 bh 12

W el

2 .t f .t w

h b

tw . h

A gr = 3.936 . 10 mm 3

2 .t f

I gr = 2.246 . 10 mm

3

7

I gr . 2

4

W el = 2.246 . 10 mm

3

W ple = 2.69 . 10 mm

3

5

h

2

Plastic modulus W ple

1. 4

b .h

2

b

tw . h

2 .t f

2

5

Elastic modulus of the effective cross sectionWeffe: t f = 6 mm

t f.ef = 3.9 mm

t w = 12 mm

t w.ef = 3.9 mm

Allowing for local buckling and HAZ: A effe

A gr

b. t f

TALAT 2301 – Example 9.1

t f.ef

b haz . t w

3

t w.ef

A effe = 3.399 . 10 mm 3

2

Shift of gravity centre: e ef

b. t f

tf

h t f.ef . 2

2

h t w.ef . 2

b haz . t w

tf

b haz 2

1

.

e ef = 14.038 mm

A effe

Second moment of area with respect to centre of gross cross section: I effe

b. t f

I gr

h t f.ef . 2

tf

2

3

b haz

. t w 12

2

t w.ef

b haz . t w

h t w.ef . 2

tf

b haz

2

2

I effe = 1.816 . 10 mm

4

I effe = 1.749 . 10 mm

4

7

Second moment of area with respect to centre of effective cross section: I effe W effe

7

I effe h 2

[1] Tab. 5.3

2 e ef . A effe

I effe

W effe = 1.533 . 10 mm 5

e ef

Shape factor α for welded, class 4 cross-section

W effe

α

α = 0.683

W el

Design moment and axial force resistance of the cross sectionM( y,Rd and NRd) [1] (5.14)

M y.Rd

f o . α . W el

N Rd

γ M1

f o . A effe

γ M1

M y.Rd = 36.2 kNm

N Rd = 803.4 kN

Section check [1] (5.42a-c)

[1] (5.40)

η 0 1

Class 4 cross section: N Ed N Rd

η0

M y.Ed M y.Rd

TALAT 2301 – Example 9.1

γ0

= 0.616

4

γ 0

1

ξ 0

1

3

Lateral-torsional buckling [1] 5.9.4.3 Lateral stiffness constant

Iz

3 2 .b .t f

h .t w

12

12

h [1] Figure J.2

Varping constant:

Iw

Torsional constant:

It

3

I z = 2.773 . 10 mm

2 t f .I z

h .t w

3

Moment relation

ψ

[1] H.1.2(6)

C1 - constant

C1

I t = 1.354 . 10 mm 5

3

[1] 5.6.6.3(2)

[1] 5.6.6.3(1)

λ LT

6

4

ψ =1

1 1.4 . ψ

1.88

0.52 . ψ

2

C1=1 G = 2.7 . 10 MPa 4

Shear modulus

[1] 5.6.6.3(3)

mm

L=2 m

[1] H.1.2

M cr

I w = 2.609 . 10 3

Length

[1] H.1.3(3)

4

10

4 2 .b .t f

6

2 C 1 .π .E .I z I w . 2 Iz L

2 L .G .I t

π

2.

Wy

E .I z

W el

α .W y .f o

M cr = 62.517 kN . m

λ LT= 0.799

M cr

α LT if ( class> 2 , 0.2 , 0.1 )

α LT= 0.2

λ 0LT if ( class> 2 , 0.4 , 0.6 )

λ 0LT= 0.4

φ LT 0.5 . 1 χ LT

α LT . λ LT 1

φ LT

φ LT

2

λ 0LT

λ LT

λ LT

2

φ LT= 0.859 χ LT = 0.851

2

Design moment and axial force resistance of the cross section(no HAZ) [1] (5.14)

M c.Rd

f .W . o el χ LT γ M1

TALAT 2301 – Example 9.1

N Rd

f o . A gr

γ M1

5

M c.Rd = 45.2 kNm

N Rd = 930.3 kN

Lateral-torsional buckling check [1] 5.9.3.1

ψ vec 0.8

W com

W el A gr = 3.936 . 10 mm 3

[1] (5.38)

M y.Ed σ com.Ed W com

N Ed ψ vec . A gr

N Ed = 140 kN

σ com.Ed= 42.8 MPa [1] (5.39)

M eff.Ed

2

M y.Ed = 16 kNm

W com . σ com.Ed

M eff.Ed = 9.61 kNm M c.Rd = 45.196 kNm M eff.Ed < M c.Rd

TALAT 2301 – Example 9.1

6

OK!

Related Documents


More Documents from "CORE Materials"