TALAT Lecture 2301
Design of Members Shear Force Example 6.7 : Shear force resistance of orthotropic plate. Open or closed stiffeners 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association TALAT 2301 – Example 6.7
1
Example 6.7. Shear force resistance of orthotropicplate. Open or closed stiffeners
Dimensions
(highlighted)
Plate thickness
t
16.5 . mm
Plate width
b
Plate length Stiffener pitch
fo
240 . MPa
N newton
1500 . mm
fu
260 . MPa
kN 1000 . newton
L
2200 . mm
E
70000 . MPa
w
300 . mm
t1
a
If heat-treated alloy, thenht = 1 else ht = 0
t
w
6 MPa 10 . Pa
γ M1 1.1 ht 1
2
If cold formed (trapezoidal), thencf. = 1 else cf. = 0
cf
0
a) Open stiffeners Half stiffener pitch
a = 150 mm
Half bottom flange
a2
50 . mm
Thickness of bottom flange
t2
10 . mm
Stiffener depth
h
Half web thickness
t3
4.4 . mm
Half width of trapezoidal stiffener at the top
a1
0 . mm
Width of web
a3
h
160 . mm
a 3 = 160 mm
Local buckling L = 2.2 . 10 mm 3
Length of web panel (5.97)
if
kτ
(5.96)
λ w
Table 5.12
ρ v
Table 5.12
η
L
a = 150 mm
L > 1.00 , 5.34 2 .a
4.00 .
2 .a L
2
, 4.00
5.34 .
2 .a 2 .a L
= 7.333
2
k τ = 5.414
0.81 . 2 . a . f o t E kτ 0.48
λ w= 0.371
λ w
ρ v = 1.295
0.4
0.2 .
fu
η = 0.617
fo
Table 5.12
ρ v if ρ v > η , η , ρ v
(5.95)
V w.Rd
TALAT 2301 – Example 6.7
ρ .vb . t 1 .
ρ v= 0.617
fo
V w.Rd = 3.33 . 10 kN 3
γ M1
2
Overall buckling, shear force
5.11.6
Cross sectional area A
Gravity centre
2 .t 1 .a
2 .t 2 .a 2
2 .t 2 .a 2 .h e
2 .t 3 .a 3
2 .t 3 .a 3 .
2 .t 1 .a 1
A = 7.358 . 10 mm 3
2
h 2
e = 37.054 mm
A
Second moment of area 2 .t 2 .a 2 .h
s
2 .t 3 .a 3 .
2
IL
if cf 1 , 2 . a
2 .a
2
h
I L = 2.751 . 10 mm
2
3 . 2 a1
3
A .e
a2
7
, 2 .a
4
s = 300 mm
Rigidities of orthotropic plate
Table 5.10
Table 5.10
Table 5.10
Bx
E .I L
ν
2 .a
G
E .t
By
B x = 6.42 . 10
9
E . 2 (1 ν)
3
12 . 1 3 G .t
H
0.3
B y = 2.88 . 10
7
ν
2
H = 2.016 . 10
6
7
N . mm mm N . mm
2
mm N . mm
2
mm
Elastic buckling load 1
(5.83)
(5.84)
(5.82)
φ
L. B y
4
H
η
kτ
3.25
0.567 . φ
1.92 . φ
2
φ = 0.38
B x .B y
b Bx
0.1 . φ
1.95
η = 0.047 2.75 . φ
2
. ηk
τ = 3.423
1
(5.81)
2 k τ .π 4 . B .B 3 x y b
V o.cr
V o.cr = 2.506 . 10 kN 3
Buckling resistance
(5.120)
(5.119)
b .t 1 .f o
λ ow
0.6
χ o
λ ow
0.8 (5.118)
V o.Rd V Rd
λ ow= 1.54
V o.cr
χ o
2
χ .ob . t 1 .
if χ o > 0.6 , 0.6 , χ o χ o= 0.189
fo
V o.Rd = 1.022 . 10 kN 3
γ M1
if V w.Rd < V o.Rd , V w.Rd , V o.Rd
TALAT 2301 – Example 6.7
3
2
V Rd = 1.022 . 10 kN 3
b) Closed stiffeners Half stiffener pitch
a = 150 mm
Plate thickness
t 1 = 16.5 mm
Half bottom flange
a 2 = 50 mm
Thickness of bottom flange
t 2 = 10 mm
Stiffener depth
h = 160 mm
Web thickness
t3
9 . mm
Half width of trapezoidal stiffener at the top
a1
80 . mm
width of web
a3
a1
a4
a
a2
2
2
a 3 = 162.8 mm
h
a 4 = 70 mm
a1
Local buckling L = 2.2 . 10 mm 3
Length of web panel
(5.97)
kτ
if
(5.96)
λ w
Table 5.12
ρ v
Table 5.12
η
L am
> 1.00 , 5.34
am 4.00 .
am L
2 .a
2 .a 1
2
, 4.00
5.34 .
a m = 140 mm am L
L am
= 15.714
2
k τ = 5.356
0.81 . a m . f o t E kτ 0.48
λ w= 0.174
λ w
ρ v = 2.76
0.4
0.2 .
fu
η = 0.617
fo
Table 5.12
ρ v if ρ v > η , η , ρ v
(5.95)
V w.Rd
ρ .vb . t 1 .
TALAT 2301 – Example 6.7
ρ v= 0.617
fo
V w.Rd = 3.33 . 10 kN 3
γ M1
4
Overall buckling, shear force
5.11.6
Cross sectional area A
Gravity centre
Second moment of area
2 .t 1 .a
2 .t 2 .a 2
2 .t 2 .a 2 .h
2 .t 3 .a 3 .
e
IL
2 .t 3 .a 3
A = 8.88 . 10 mm 3
h 2
e = 44.415 mm
A 2 .t 2 .a 2 .h
2
2
2 .t 3 .a 3 .
2
h
A .e
2
3
I L = 3.309 . 10 mm
4
I T = 3.097 . 10 mm
4
7
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2
Torsion constant
IT
(5.79c)
C1
B
(5.79d)
4. 1
2 ν . a2
E .t
2 2 2 a 3 .a 1 .a 4 .h .
t2
C 1 = 3.076 . 10 mm 9
3 .a .t 1
3
3
12 . 1
4
B = 2.88 . 10 N . mm 7
ν
4. a 1 (5.79e)
7
2
2 a 2 .a 1 .a 4 . 1
C2
3 a 2 . 3 .a 3
a1
a2
a2
a1
2
a 3 a 1 .a 3 t 2 . t1
4 .a 2
C 2 = 4.851
Rigidities of orthotropic plate Table 5.10
(5.79a)
E .I L
Bx
ν
2 .a
0.3
E
G
2 .( 1
9
ν )
3 3 2 .a 1 .a 3 .t 1 . 4 .a 2 .t 3
2 .a 4
mm
3 3 a 3 .t 1 . 4 .a 2 .t 3
a 3 .t 2
a 3 .t 2
3
3 3 a 1 . t 3 . 12 . a 2 . t 3
3
G .I T H
1.6 . G . I T . a 4
4 .a 3 .t 2
3
B y = 3.929 . 10
7
6 .a
2 .B
2
1
2 L .a .B
1
. 1 4 π .
C1 L
H = 7.305 . 10 C2
4
8
N . mm mm N . mm mm
Elastic buckling load 1
(5.83) (5.82)
(5.81)
(5.84)
φ
kτ
2
2 . B. a
By
(5.79b)
N . mm
B x = 7.72 . 10
L. B y
4
η
b Bx 3.25
V o.cr
0.567 . φ
1.92 . φ
2
1 2 k τ .π 4 . B .B 3 x y b
TALAT 2301 – Example 6.7
H
φ = 0.392
B x .B y 1.95
0.1 . φ
η = 1.326 2.75 . φ
2
. ηk
τ = 6.52
V o.cr = 6.311 . 10 kN 3
5
2
2
TALAT 2301 – Example 6.7
6
Buckling resistance
(5.120)
(5.119)
b .t 1 .f o
λ ow
0.6
χ o
λ ow
0.8 (5.118)
λ ow= 0.97
V o.cr
V o.Rd
χ .ob . t 1 .
TALAT 2301 – Example 6.7
χ o
2
fo
if χ o > 0.6 , 0.6 , χ o
χ o= 0.345 V o.Rd = 1.861 . 10 kN 3
γ M1
7