TALAT Lecture 2301
Design of Members Axial Force Example 5.7 : Axial force resistance of orthotropic double-skin plate 9 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association
TALAT 2301 – Example 5.7
1
Example 5.7. Axial force resistance of orthotropic double-skin plate
Input
N newton (highlighted)
kN 1000 . N
Plate thickness
t
5 . mm
Plate width
b
Plate length "Pitch" (2a or d)
6 MPa 10 . Pa
fo
240 . MPa
300000 . mm
fu
260 . MPa
L
5000 . mm
E
70000 . MPa
w
160 . mm
t1
a
If heat-treated alloy, thenht = 1 else ht = 0
t
w 2 cf
0
γ M1 1.1 ht 1
a) Profiles with groove and tongue
Half bottom flange
a2
40 . mm
Thickness of bottom flange
t2
5 . mm
Profile depth
h
Web thickness
t3
5 . mm
Half width of trapezoidal stiffener at the top
a1
80 . mm
Number of webs
nw
4
Width of web
a3
TALAT 2301 – Example 5.7
70 . mm
a1
a2
2
h
2
2
a 3 = 80.6 mm
Local buckling Internal elements
0
β i 1 β
[1] Tab. 5.1
a1
ε
2 .a 2
β i 2
t1
β
250 . newton fo
β i 3
t2
max β i
mm
a3 t3
16.125
β 1= 9.186 β 2= 13.268
β 3 18 . ε if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1
class i
16
= 16.1
β 1 9 .ε β 2 13 . ε
2
16
β i=
No reduction for local buckling
β 3= 18.371 class i = 3
50
0
50
100
100
50
0
50
100
Overall buckling, uniform compression Cross sectional area
A
2 .t 1 .a
2 .t 2 .a 2
e
Second moment of area
IL
nw
A = 2.812 . 10 mm 3
2
h nw 2 .t 3 .a 3 . . 2 2
2 .t 2 .a 2 .h
Gravity centre
2 .t 3 .a 3 .
e = 30.022 mm
A 2 .t 2 .a 2 .h
2
2 .t 3 .a 3 .
2 h .n w 3 2
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3
2
A .e
2
I L = 2.059 . 10 mm
4
I T = 3.517 . 10 mm
4
6
2
Approx. torsional constant
IT
6
Rigidities of orthotropic plate Table 5.10
Table 5.10
Table 5.10
Bx By H
E .I L 2 .a 0.001 . N . mm
ν
G
E 2 .( 1
G .I T
ν)
B y = 1 . 10
3
8
N . mm mm
N . mm
3
H = 5.918 . 10
2 .a
TALAT 2301 – Example 5.7
B x = 9.007 . 10
0.3
2
mm 8
N . mm mm
2
2
Elastic buckling load (5.77)
2 π . Bx 2 b L
N cr
2 .H
L B y. b
4
2
if
L b
<
Bx By
N cr = 1.067 . 10 kN 5
b 2 .π
(5.78)
2
.
b
B x .B y
H
otherwise
Buckling resistance A ef (5.69)
(5.33)
A
A ef = 2.812 . 10 mm 3
A ef . f o
λ c α
if ( ht > 0 , 0.2 , 0.32 )
φ
0.5 . 1
N cRd
λ 0 if ( ht > 0 , 0.1 , 0 )
α . λ c
2
λ 0
λ c
1
χ c φ
(5.68)
λ c= 0.08
N cr
φ
2
A ef . χ .c γ
TALAT 2301 – Example 5.7
α = 0.2 λ 0= 0.1 φ = 0.501 χ c = 1.004
2
λ c fo
for one stiffener
M1
4
N cRd = 616.164 kN
2
b) Truss cross section
Half bottom flange
a2
a 2 70 . mm
Stiffener depth
h
Thickness of bottom flange
t2
5 . mm
Web thickness
t3
5 . mm
Width of web
a3
a1
Local buckling Internal elements
2
a = 80 mm a 1 = 40 mm a 2 = 40 mm
2
a 3 = 80.623 mm
h
0 2 .a 1
β i 1 β
[1] Tab. 5.1
2
a
a1
ε
β i 2
t1
2 .a 2
β i 3
t2
max β i
β
250 . newton fo
class i
mm
a3
β i=
t3
16 16.125
= 16.1
β 1 9 .ε β 2 13 . ε
2
16
β 1= 9.186 β 2= 13.268
β 3 18 . ε if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1
β 3= 18.371 class i = 3
No reduction for local buckling 50
0
50
100
TALAT 2301 – Example 5.7
5
100
50
0
50
100
Overall buckling, uniform compression 2 .t 1 .a 1
Cross sectional area A
2 .t 2 .a 2
2 .t 2 .a 2 .h Gravity centre Second moment of area
e
2 .t 3 .a 3
2 .t 3 .a 3 .
A = 1.606 . 10 mm 3
h 2
e = 35 mm
A 2 .t 2 .a 2 .h
2
IL
2
2 .t 3 .a 3 .
2
h
A .e
2
3
I L = 1.309 . 10 mm
4
I T = 1.952 . 10 mm
4
6
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2
Torsion constant
IT
6
Orthotropic plate constant Table 5.10
E .I L
Bx
B x = 5.728 . 10
2 .a E .t 1 .t 2 .h
N . mm
8
mm
2
Table 5.10
Table 5.10
By
t1
G .I T
H
N . mm
B y = 8.575 . 10
8
t2
H = 3.285 . 10
2 .a
8
mm N . mm mm
Elastic buckling load (5.77)
2 π . Bx 2 b L
N cr
L B y. b
2 .H
4
2
if
L b
<
Bx By
N cr = 6.786 . 10 kN 4
b 2 .π
(5.78)
2
.
b
B x .B y
H
otherwise
Buckling resistance A ef (5.69)
A
A ef = 1.606 . 10 mm
A ef . f o
λ c= 0.08
λ c
3
N cr
α
if ( ht > 0 , 0.2 , 0.32 )
φ
0.5 . 1
λ 0 if ( ht > 0 , 0.1 , 0 )
α . λ c
α = 0.2 λ 0= 0.1
2
λ 0
λ c
φ = 0.5 (5.33)
1
χ c φ
(5.68)
N cRd
φ
2
χ c = 1.005
TALAT 2301 – Example 5.7
2
λ c
2 . A ef . χ .c γ
fo
for two pitches
M1
6
2
N cRd = 704.4 kN
2
2
2
c) Frame cross section
Half bottom flange
a
37.5 . mm
a1
a
Stiffener depth
h
70 . mm
a2
a
Thickness of top flange
t1
5 . mm
a 1 = 37.5 mm
Thickness of bottom flange
t2
5 . mm
a 2 = 37.5 mm
Web thickness
t3
5 . mm
Width of web
a3
h
Local buckling Internal elements
0 2 .a 1
β i 1 β
[1] Tab. 5.1
a 3 = 70 mm
ε
β i 2
t1
2 .a 2
β i 3
t2
max β i
β
250 . newton fo
class i
mm
a3
15 β i= 15
t3
14
= 15
β 1 9 .ε β 2 13 . ε
2
β 1= 9.186 β 2= 13.268
β 3 18 . ε if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1
β 3= 18.371 class i = 3
No reduction for local buckling 50
0
50
100
TALAT 2301 – Example 5.7
7
100
50
0
50
100
Overall buckling, uniform compression 2 .t 1 .a
Cross sectional area A
Gravity centre
Second moment of area
2 .t 2 .a 2
2 .t 2 .a 2 .h e
t 3 .a 3
t 3 .a 3 .
A = 1.1 . 10 mm 3
h 2
e = 35 mm
A 2 .t 2 .a 2 .h
t 3 .a 3 .
2
IL
2
2
h
A .e
2
3
I L = 1.062 . 10 mm
4
I T = 1.901 . 10 mm
4
6
4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2
Torsion constant
IT
6
Orthotropic plate constant (5.80d)
E .I L
Bx
B x = 9.909 . 10
2 .a
E .t 1
3
(5.80a
By
12 . 1
. . 10 b . 2 2 ν 32 . a
a .t 3
2
a .t 3
3
3
3.
a .t 2 t 3 t1 3
t2
mm
3
6 .h .t 2
3 2
t . 1 2 3 3 2 3 .h .t 1 .t 2 L a .t 3
3
N . mm
B y = 1.118 . 10
7
(5.80b)
3
2 .E
H
t3
3. 1
t1
. 1
2 .a
t2
6 .t 1 2 .a
1
t3
3
6 .t 2 2 .a
2
3
3
2 .h . t 1
N . mm
8
6
t3
mm N . mm
H = 8.75 . 10
2
2
mm
Elastic buckling load (5.77)
2 π . Bx 2 b L
N cr
L B y. b
2 .H
4
2
if
L b
<
Bx
N cr = 1.174 . 10 kN 5
By
b 2 .π
(5.78)
2
2
.
b Buckling resistance
A ef
(5.69)
λ c
(5.33)
B x .B y
H
otherwise
H = 7.501 kN 3
A ef . f o
α
if ( ht > 0 , 0.2 , 0.32 )
φ
0.5 . 1
λ 0 if ( ht > 0 , 0.1 , 0 )
α . λ c
2
λ 0
λ c
φ
2
TALAT 2301 – Example 5.7
χ c = 1.011
2
λ c
2 . A ef . χ .c γ
α = 0.2 λ 0= 0.1 φ = 0.496
1
χ c
2
λ c= 0.047
N cr
N cRd
B x .B y
A ef = 1.1 . 10 mm
A
φ
(5.68)
2 .π . b
fo
for two pitches
M1
8
N cRd = 485.112 kN
Summary a)
b)
c)
N Rd.a = 616.2 kN
A a = 2.812 . 10 mm
2
N Rd.b = 704.4 kN
A b = 3.212 . 10 mm
2
N Rd.c = 485.1 kN
A c = 2.2 . 10 mm
TALAT 2301 – Example 5.7
3
3
3
9
2
N Rd.a Aa N Rd.b Ab N Rd.c Ac
= 219.1
N mm
= 219.3
N mm
= 220.5
2
2
N mm
2