Talat Lecture 2301: Design Of Members Example 5.7: Axial Force Resistance Of Orthotropic Double-skin Plate

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 5.7: Axial Force Resistance Of Orthotropic Double-skin Plate as PDF for free.

More details

  • Words: 1,883
  • Pages: 9
TALAT Lecture 2301

Design of Members Axial Force Example 5.7 : Axial force resistance of orthotropic double-skin plate 9 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association

TALAT 2301 – Example 5.7

1

Example 5.7. Axial force resistance of orthotropic double-skin plate

Input

N newton (highlighted)

kN 1000 . N

Plate thickness

t

5 . mm

Plate width

b

Plate length "Pitch" (2a or d)

6 MPa 10 . Pa

fo

240 . MPa

300000 . mm

fu

260 . MPa

L

5000 . mm

E

70000 . MPa

w

160 . mm

t1

a

If heat-treated alloy, thenht = 1 else ht = 0

t

w 2 cf

0

γ M1 1.1 ht 1

a) Profiles with groove and tongue

Half bottom flange

a2

40 . mm

Thickness of bottom flange

t2

5 . mm

Profile depth

h

Web thickness

t3

5 . mm

Half width of trapezoidal stiffener at the top

a1

80 . mm

Number of webs

nw

4

Width of web

a3

TALAT 2301 – Example 5.7

70 . mm

a1

a2

2

h

2

2

a 3 = 80.6 mm

Local buckling Internal elements

0

β i 1 β

[1] Tab. 5.1

a1

ε

2 .a 2

β i 2

t1

β

250 . newton fo

β i 3

t2

max β i

mm

a3 t3

16.125

β 1= 9.186 β 2= 13.268

β 3 18 . ε if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1

class i

16

= 16.1

β 1 9 .ε β 2 13 . ε

2

16

β i=

No reduction for local buckling

β 3= 18.371 class i = 3

50

0

50

100

100

50

0

50

100

Overall buckling, uniform compression Cross sectional area

A

2 .t 1 .a

2 .t 2 .a 2

e

Second moment of area

IL

nw

A = 2.812 . 10 mm 3

2

h nw 2 .t 3 .a 3 . . 2 2

2 .t 2 .a 2 .h

Gravity centre

2 .t 3 .a 3 .

e = 30.022 mm

A 2 .t 2 .a 2 .h

2

2 .t 3 .a 3 .

2 h .n w 3 2

4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3

2

A .e

2

I L = 2.059 . 10 mm

4

I T = 3.517 . 10 mm

4

6

2

Approx. torsional constant

IT

6

Rigidities of orthotropic plate Table 5.10

Table 5.10

Table 5.10

Bx By H

E .I L 2 .a 0.001 . N . mm

ν

G

E 2 .( 1

G .I T

ν)

B y = 1 . 10

3

8

N . mm mm

N . mm

3

H = 5.918 . 10

2 .a

TALAT 2301 – Example 5.7

B x = 9.007 . 10

0.3

2

mm 8

N . mm mm

2

2

Elastic buckling load (5.77)

2 π . Bx 2 b L

N cr

2 .H

L B y. b

4

2

if

L b

<

Bx By

N cr = 1.067 . 10 kN 5

b 2 .π

(5.78)

2

.

b

B x .B y

H

otherwise

Buckling resistance A ef (5.69)

(5.33)

A

A ef = 2.812 . 10 mm 3

A ef . f o

λ c α

if ( ht > 0 , 0.2 , 0.32 )

φ

0.5 . 1

N cRd

λ 0 if ( ht > 0 , 0.1 , 0 )

α . λ c

2

λ 0

λ c

1

χ c φ

(5.68)

λ c= 0.08

N cr

φ

2

A ef . χ .c γ

TALAT 2301 – Example 5.7

α = 0.2 λ 0= 0.1 φ = 0.501 χ c = 1.004

2

λ c fo

for one stiffener

M1

4

N cRd = 616.164 kN

2

b) Truss cross section

Half bottom flange

a2

a 2 70 . mm

Stiffener depth

h

Thickness of bottom flange

t2

5 . mm

Web thickness

t3

5 . mm

Width of web

a3

a1

Local buckling Internal elements

2

a = 80 mm a 1 = 40 mm a 2 = 40 mm

2

a 3 = 80.623 mm

h

0 2 .a 1

β i 1 β

[1] Tab. 5.1

2

a

a1

ε

β i 2

t1

2 .a 2

β i 3

t2

max β i

β

250 . newton fo

class i

mm

a3

β i=

t3

16 16.125

= 16.1

β 1 9 .ε β 2 13 . ε

2

16

β 1= 9.186 β 2= 13.268

β 3 18 . ε if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1

β 3= 18.371 class i = 3

No reduction for local buckling 50

0

50

100

TALAT 2301 – Example 5.7

5

100

50

0

50

100

Overall buckling, uniform compression 2 .t 1 .a 1

Cross sectional area A

2 .t 2 .a 2

2 .t 2 .a 2 .h Gravity centre Second moment of area

e

2 .t 3 .a 3

2 .t 3 .a 3 .

A = 1.606 . 10 mm 3

h 2

e = 35 mm

A 2 .t 2 .a 2 .h

2

IL

2

2 .t 3 .a 3 .

2

h

A .e

2

3

I L = 1.309 . 10 mm

4

I T = 1.952 . 10 mm

4

6

4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2

Torsion constant

IT

6

Orthotropic plate constant Table 5.10

E .I L

Bx

B x = 5.728 . 10

2 .a E .t 1 .t 2 .h

N . mm

8

mm

2

Table 5.10

Table 5.10

By

t1

G .I T

H

N . mm

B y = 8.575 . 10

8

t2

H = 3.285 . 10

2 .a

8

mm N . mm mm

Elastic buckling load (5.77)

2 π . Bx 2 b L

N cr

L B y. b

2 .H

4

2

if

L b

<

Bx By

N cr = 6.786 . 10 kN 4

b 2 .π

(5.78)

2

.

b

B x .B y

H

otherwise

Buckling resistance A ef (5.69)

A

A ef = 1.606 . 10 mm

A ef . f o

λ c= 0.08

λ c

3

N cr

α

if ( ht > 0 , 0.2 , 0.32 )

φ

0.5 . 1

λ 0 if ( ht > 0 , 0.1 , 0 )

α . λ c

α = 0.2 λ 0= 0.1

2

λ 0

λ c

φ = 0.5 (5.33)

1

χ c φ

(5.68)

N cRd

φ

2

χ c = 1.005

TALAT 2301 – Example 5.7

2

λ c

2 . A ef . χ .c γ

fo

for two pitches

M1

6

2

N cRd = 704.4 kN

2

2

2

c) Frame cross section

Half bottom flange

a

37.5 . mm

a1

a

Stiffener depth

h

70 . mm

a2

a

Thickness of top flange

t1

5 . mm

a 1 = 37.5 mm

Thickness of bottom flange

t2

5 . mm

a 2 = 37.5 mm

Web thickness

t3

5 . mm

Width of web

a3

h

Local buckling Internal elements

0 2 .a 1

β i 1 β

[1] Tab. 5.1

a 3 = 70 mm

ε

β i 2

t1

2 .a 2

β i 3

t2

max β i

β

250 . newton fo

class i

mm

a3

15 β i= 15

t3

14

= 15

β 1 9 .ε β 2 13 . ε

2

β 1= 9.186 β 2= 13.268

β 3 18 . ε if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1

β 3= 18.371 class i = 3

No reduction for local buckling 50

0

50

100

TALAT 2301 – Example 5.7

7

100

50

0

50

100

Overall buckling, uniform compression 2 .t 1 .a

Cross sectional area A

Gravity centre

Second moment of area

2 .t 2 .a 2

2 .t 2 .a 2 .h e

t 3 .a 3

t 3 .a 3 .

A = 1.1 . 10 mm 3

h 2

e = 35 mm

A 2 .t 2 .a 2 .h

t 3 .a 3 .

2

IL

2

2

h

A .e

2

3

I L = 1.062 . 10 mm

4

I T = 1.901 . 10 mm

4

6

4. h. a 1 a 2 2 .a 1 2 .a 2 a3 2. t1 t2 t3 2

Torsion constant

IT

6

Orthotropic plate constant (5.80d)

E .I L

Bx

B x = 9.909 . 10

2 .a

E .t 1

3

(5.80a

By

12 . 1

. . 10 b . 2 2 ν 32 . a

a .t 3

2

a .t 3

3

3

3.

a .t 2 t 3 t1 3

t2

mm

3

6 .h .t 2

3 2

t . 1 2 3 3 2 3 .h .t 1 .t 2 L a .t 3

3

N . mm

B y = 1.118 . 10

7

(5.80b)

3

2 .E

H

t3

3. 1

t1

. 1

2 .a

t2

6 .t 1 2 .a

1

t3

3

6 .t 2 2 .a

2

3

3

2 .h . t 1

N . mm

8

6

t3

mm N . mm

H = 8.75 . 10

2

2

mm

Elastic buckling load (5.77)

2 π . Bx 2 b L

N cr

L B y. b

2 .H

4

2

if

L b

<

Bx

N cr = 1.174 . 10 kN 5

By

b 2 .π

(5.78)

2

2

.

b Buckling resistance

A ef

(5.69)

λ c

(5.33)

B x .B y

H

otherwise

H = 7.501 kN 3

A ef . f o

α

if ( ht > 0 , 0.2 , 0.32 )

φ

0.5 . 1

λ 0 if ( ht > 0 , 0.1 , 0 )

α . λ c

2

λ 0

λ c

φ

2

TALAT 2301 – Example 5.7

χ c = 1.011

2

λ c

2 . A ef . χ .c γ

α = 0.2 λ 0= 0.1 φ = 0.496

1

χ c

2

λ c= 0.047

N cr

N cRd

B x .B y

A ef = 1.1 . 10 mm

A

φ

(5.68)

2 .π . b

fo

for two pitches

M1

8

N cRd = 485.112 kN

Summary a)

b)

c)

N Rd.a = 616.2 kN

A a = 2.812 . 10 mm

2

N Rd.b = 704.4 kN

A b = 3.212 . 10 mm

2

N Rd.c = 485.1 kN

A c = 2.2 . 10 mm

TALAT 2301 – Example 5.7

3

3

3

9

2

N Rd.a Aa N Rd.b Ab N Rd.c Ac

= 219.1

N mm

= 219.3

N mm

= 220.5

2

2

N mm

2

Related Documents


More Documents from "CORE Materials"