Método Tarea.docx

  • Uploaded by: Charly Garcia
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Método Tarea.docx as PDF for free.

More details

  • Words: 5,024
  • Pages: 15
Método (informática) Ir a la navegaciónIr a la búsqueda En la programación, un método es una subrutina cuyo código es definido en una clase y puede pertenecer tanto a una clase, como es el caso de los métodos de clase o estáticos, como a un objeto, como es el caso de los métodos de instancia. Análogamente a los procedimientos en lenguajes imperativos, un método consiste generalmente de una serie de sentencias para llevar a cabo una acción, un juego de parámetros de entrada que regularán dicha acción o, posiblemente, un valor de salida (o valor de retorno) de algún tipo. La diferencia entre un procedimiento (generalmente llamado función si devuelve un valor) y un método es que este último, al estar asociado con un objeto o clase en particular, puede acceder y modificar los datos privados del objeto correspondiente de forma tal que sea consistente con el comportamiento deseado para el mismo. Así, es recomendable entender a un método no como una secuencia de instrucciones sino como la forma en que el objeto es útil (el método para hacer su trabajo). Por lo tanto, podemos considerar al método como el pedido a un objeto para que realice una tarea determinada o como la vía para enviar un mensaje al objeto y que éste reaccione acorde a dicho mensaje

Tipos de métodos[editar] Como ya se mencionó, los métodos de instancia están relacionados con un objeto en particular, mientras que los métodos estáticos o de clase (también denominados métodos compartidos), están asociados a una clase en particular. En una implementación de constructores, siendo estos métodos de instancia especiales llamados automáticamente cuando se crea una instancia de alguna clase. En Java y C++ se distinguen por tener el mismo nombre de la clases a la que están asociados. Lenguajes como Smalltalk no requieren constructores ni destructores. Los métodos de acceso son un tipo de método normalmente pequeño y simple que se limita a proveer información acerca del estado de un objeto. Aunque introduce una nueva dependencia, la utilización de métodos es preferida a acceder directamente a la información para proveer de una nueva capa de abstracción (programación orientada a objetos). Por ejemplo, si una clase que modela una cuenta bancaria provee de un método de acceso "obtenerBalance()" en versiones posteriores de la clase se podría cambiar el código de dicho método substancialmente sin que el código dependiente de la clase tuviese que ser modificado (un cambio sería necesario siempre que el tipo de dato devuelto por el método cambie). Los métodos de acceso que pueden cambiar el estado de un objeto son llamados, frecuentemente, métodos de actualización o métodos de mutación; a su vez, los objetos que proveen de dichos métodos son denominados objetos mutables.

En informática, un atributo es una especificación que define una propiedad de un objeto, elemento o archivo. También puede referirse o establecer el valor específico para una instancia determinada de los mismos. Sin embargo, actualmente, el término atributo puede y con frecuencia se considera como si fuera una propiedad dependiendo de la tecnología que se use. Para mayor claridad, los atributos deben ser considerados más correctamente como metadatos. Un atributo es con frecuencia y en general una característica de una propiedad.

Un buen ejemplo es el proceso de asignación de valores XML a las propiedades (elementos). Tenga en cuenta que el valor del elemento se encuentra antes de la etiqueta de cierre (por separado), no en el propio elemento. El mismo elemento puede tener una serie de atributos establecidos (Nombre = "estoesunapropiedad"). Si el elemento en cuestión puede ser considerado una propiedad (Nombre_Cliente) de otra entidad (digamos "cliente"), el elemento puede tener cero o más atributos (propiedades) de su propio (Nombre_Cliente es de Tipo = "tipotexto"). Un atributo de un objeto por lo general consiste de un nombre y un valor; de un elemento, un tipo o nombre de clase; de un archivo, un nombre y extensión. 



Cada atributo nombrado tiene asociado un conjunto de reglas denominadas operaciones: uno no agrega caracteres o manipula y procesa una matriz de enteros como una imagen ni procesa texto como tipo de coma flotante (números decimales). Por tanto, una definición de objeto se puede ampliar mediante la imposición de tipos de datos: un formato de representación, un valor por defecto, y las operaciones legales (normas) y restricciones ("¡División por cero no está permitida!") Son todos los que podrían participar en la definición un atributo, o por el contrario, se puede decir que son atributos de ese tipo de objeto. Un archivo JPEG no es decodificado por las mismas operaciones (por muy similares que sean, estos son todos formatos de datos de gráficos) como un archivo BMP o PNG, ni es un número de coma flotante operado por las normas aplicadas a los enteros largos.

Por ejemplo, en computación gráfica los objetos de planos pueden tener atributos tales como espesor (con valores reales), color (con valores descriptivos como el marrón o verde o los valores definidos en un cierto modelo de color, como RGB), etc Un objeto círculo se puede definir con atributos similares, como un origen y radio. Lenguajes de marca, como HTML y XML, utilizan los atributos para describir los datos y el formato de los datos, en HTML, algunas etiquetas poseen atributos que proveen detalles como nombres, bordes, tamaño, etc

Programación orientada a objetos Ir a la navegaciónIr a la búsqueda Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Este aviso fue puesto el 14 de febrero de 2015.

La programación orientada a objetos (POO, u OOP según sus siglas en inglés) es un paradigma de programación que viene a innovar la forma de obtener resultados. Los objetos manipulan los datos de entrada para la obtención de datos de salida específicos, donde cada objeto ofrece una funcionalidad especial.

Muchos de los objetos prediseñados de los lenguajes de programación actuales permiten la agrupación en bibliotecas o librerías, sin embargo, muchos de estos lenguajes permiten al usuario la creación de sus propias bibliotecas. Está basada en varias técnicas, incluyendo herencia, cohesión, abstracción, polimorfismo, acoplamiento y encapsulamiento. Su uso se popularizó a principios de la década de 1990. En la actualidad, existe una gran variedad de lenguajes de programación que soportan la orientación a objetos.

Índice          

1Introducción 2Origen 3Conceptos fundamentales 4Características de la POO 5Resumen 6Tipos 7Algunos lenguajes orientados a objetos 8Véase también 9Notas y referencias 10Enlaces externos

Introducción[editar] Los objetos son entidades que tienen un determinado "estado", "comportamiento (método)" e "identidad": 

La identidad es una propiedad de un objeto que lo diferencia del resto; dicho con otras palabras, es su identificador (concepto análogo al de identificador de una variable o una constante).

Un objeto contiene toda la información que permite definirlo e identificarlo frente a otros objetos pertenecientes a otras clases e incluso frente a objetos de una misma clase, al poder tener valores bien diferenciados en sus atributos. A su vez, los objetos disponen de mecanismos de interacción llamados métodos, que favorecen la comunicación entre ellos. Esta comunicación favorece a su vez el cambio de estado en los propios objetos. Esta característica lleva a tratarlos como unidades indivisibles, en las que no se separa el estado y el comportamiento. Los métodos (comportamiento) y atributos (estado) están estrechamente relacionados por la propiedad de conjunto. Esta propiedad destaca que una clase requiere de métodos para poder tratar los atributos con los que cuenta. El programador debe pensar indistintamente en ambos conceptos, sin separar ni darle mayor importancia a alguno de ellos. Hacerlo podría producir el hábito erróneo de crear clases contenedoras de información por un lado y clases con métodos que manejen a las primeras por el otro. De esta manera se estaría realizando una "programación estructurada camuflada" en un lenguaje de POO. La programación orientada a objetos difiere de la programación estructurada tradicional, en la que los datos y los procedimientos están separados y sin relación, ya que lo único que se busca es el procesamiento de unos datos de entrada para obtener otros de salida. La programación estructurada anima al programador a pensar sobre todo en términos de procedimientos o funciones, y en segundo lugar en las estructuras de datos que esos

procedimientos manejan. En la programación estructurada solo se escriben funciones que procesan datos. Los programadores que emplean POO, en cambio, primero definen objetos para luego enviarles mensajes solicitándoles que realicen sus métodos por sí mismos.

Origen[editar] Los conceptos de la POO tienen origen en Simula 67, un lenguaje diseñado para hacer simulaciones, creado por Ole-Johan Dahl y Kristen Nygaard, del Centro de Cómputo Noruego en Oslo. En este centro se trabajaba en simulaciones de naves, que fueron confundidas por la explosión combinatoria de cómo las diversas cualidades de diferentes naves podían afectar unas a las otras. La idea surgió al agrupar los diversos tipos de naves en diversas clases de objetos, siendo responsable cada clase de objetos de definir sus "propios" datos y comportamientos. Fueron refinados más tarde en Smalltalk, desarrollado en Simula en Xerox PARC (cuya primera versión fue escrita sobre Basic) pero diseñado para ser un sistema completamente dinámico en el cual los objetos se podrían crear y modificar "sobre la marcha" (en tiempo de ejecución) en lugar de tener un sistema basado en programas estáticos. La POO se fue convirtiendo en el estilo de programación dominante a mediados de los años 1980, en gran parte debido a la influencia de C++, una extensión del lenguaje de programación C. Su dominación fue consolidada gracias al auge de las interfaces gráficas de usuario, para las cuales la POO está particularmente bien adaptada. En este caso, se habla también de programación dirigida por eventos. Las características de orientación a objetos fueron agregadas a muchos lenguajes existentes durante ese tiempo, incluyendo Ada, BASIC, Lisp más Pascal, entre otros. La adición de estas características a los lenguajes que no fueron diseñados inicialmente para ellas condujo a menudo a problemas de compatibilidad y en la capacidad de mantenimiento del código. Los lenguajes orientados a objetos "puros", por su parte, carecían de las características de las cuales muchos programadores habían venido a depender. Para saltar este obstáculo, se hicieron muchas tentativas para crear nuevos lenguajes basados en métodos orientados a objetos, pero permitiendo algunas características imperativas de maneras "seguras". El lenguaje de programación Eiffel de Bertrand Meyer fue un temprano y moderadamente acertado lenguaje con esos objetivos, pero ahora ha sido esencialmente reemplazado por Java, en gran parte debido a la aparición de Internet y a la implementación de la máquina virtual Java en la mayoría de navegadores web. PHP en su versión 5 se ha modificado; soporta una orientación completa a objetos, cumpliendo todas las características propias de la orientación a objetos.

Conceptos fundamentales[editar] La POO es una forma de programar que trata de encontrar una solución a estos problemas. Introduce nuevos conceptos, que superan y amplían conceptos antiguos ya conocidos. Entre ellos destacan los siguientes: Clase Una clase se puede definir de las propiedades y comportamiento de un tipo de objeto concreto. La instanciación es la lectura de estas definiciones y la creación de un objeto a partir de ella. Herencia Por ejemplo, herencia de la clase C a la clase D, es la facilidad mediante la cual la clase D hereda en ella cada uno de los atributos y operaciones de C, como si esos atributos y operaciones hubiesen sido definidos por la misma D. Por lo tanto, puede usar los mismos métodos y variables registrados como "públicos" (public) en C. Los componentes registrados como "privados" (private) también se heredan pero se

mantienen escondidos al programador y sólo pueden ser accedidos a través de otros métodos públicos. Para poder acceder a un atributo u operación de una clase en cualquiera de sus subclases pero mantenerla oculta para otras clases es necesario registrar los componentes como "protegidos" (protected), de esta manera serán visibles en C y en D pero no en otras clases. Objeto Instancia de una clase. Entidad provista de un conjunto de propiedades o atributos (datos) y de comportamiento o funcionalidad (métodos), los mismos que consecuentemente reaccionan a eventos. Se corresponden con los objetos reales del mundo que nos rodea, o con objetos internos del sistema (del programa). Método Algoritmo asociado a un objeto (o a una clase de objetos), cuya ejecución se desencadena tras la recepción de un "mensaje". Desde el punto de vista del comportamiento, es lo que el objeto puede hacer. Un método puede producir un cambio en las propiedades del objeto, o la generación de un "evento" con un nuevo mensaje para otro objeto del sistema. Evento Es un suceso en el sistema (tal como una interacción del usuario con la máquina, o un mensaje enviado por un objeto). El sistema maneja el evento enviando el mensaje adecuado al objeto pertinente. También se puede definir como evento la reacción que puede desencadenar un objeto; es decir, la acción que genera. Atributos Características que tiene la clase. Mensaje Una comunicación dirigida a un objeto, que le ordena que ejecute uno de sus métodos con ciertos parámetros asociados al evento que lo generó. Propiedad o atributo Contenedor de un tipo de datos asociados a un objeto (o a una clase de objetos), que hace los datos visibles desde fuera del objeto y esto se define como sus características predeterminadas, y cuyo valor puede ser alterado por la ejecución de algún método. Estado interno Es una variable que se declara privada, que puede ser únicamente accedida y alterada por un método del objeto, y que se utiliza para indicar distintas situaciones posibles para el objeto (o clase de objetos). No es visible al programador que maneja una instancia de la clase. Componentes de un objeto Atributos, identidad, relaciones y métodos. Identificación de un objeto Un objeto se representa por medio de una tabla o entidad que esté compuesta por sus atributos y funciones correspondientes. En comparación con un lenguaje imperativo, una "variable" no es más que un contenedor interno del atributo del objeto o de un estado interno, así como la "función" es un procedimiento interno del método del objeto.

Características de la POO[editar] Existe un acuerdo acerca de qué características contempla la "orientación a objetos". Las

características siguientes son las más importantes:1 Abstracción Denota las características esenciales de un objeto, donde se capturan sus comportamientos. Cada objeto en el sistema sirve como modelo de un "agente" abstracto que puede realizar trabajo, informar y cambiar su estado, y "comunicarse" con otros objetos en el sistema sin revelar "cómo" se implementan estas características. Los procesos, las funciones o los métodos pueden también ser abstraídos, y, cuando lo están, una variedad de técnicas son requeridas para ampliar una abstracción. El proceso de abstracción permite seleccionar las características relevantes dentro de un conjunto e identificar comportamientos comunes para definir nuevos tipos de entidades en el mundo real. La abstracción es clave en el proceso de análisis y diseño orientado a objetos, ya que mediante ella podemos llegar a armar un conjunto de clases que permitan modelar la realidad o el problema que se quiere atacar. Encapsulamiento Significa reunir todos los elementos que pueden considerarse pertenecientes a una misma entidad, al mismo nivel de abstracción. Esto permite aumentar la cohesión (diseño estructurado) de los componentes del sistema. Algunos autores confunden este concepto con el principio de ocultación, principalmente porque se suelen emplear conjuntamente. Polimorfismo Comportamientos diferentes, asociados a objetos distintos, pueden compartir el mismo nombre; al llamarlos por ese nombre se utilizará el comportamiento correspondiente al objeto que se esté usando. O, dicho de otro modo, las referencias y las colecciones de objetos pueden contener objetos de diferentes tipos, y la invocación de un comportamiento en una referencia producirá el comportamiento correcto para el tipo real del objeto referenciado. Cuando esto ocurre en "tiempo de ejecución", esta última característica se llama asignación tardía o asignación dinámica. Algunos lenguajes proporcionan medios más estáticos (en "tiempo de compilación") de polimorfismo, tales como las plantillas y la sobrecarga de operadores de C++. Herencia Las clases no se encuentran aisladas, sino que se relacionan entre sí, formando una jerarquía de clasificación. Los objetos heredan las propiedades y el comportamiento de todas las clases a las que pertenecen. La herencia organiza y facilita el polimorfismo y el encapsulamiento, permitiendo a los objetos ser definidos y creados como tipos especializados de objetos preexistentes. Estos pueden compartir (y extender) su comportamiento sin tener que volver a implementarlo. Esto suele hacerse habitualmente agrupando los objetos en clases y estas en árboles o enrejados que reflejan un comportamiento común. Cuando un objeto hereda de más de una clase se dice que hay herencia múltiple; siendo de alta complejidad técnica por lo cual suele recurrirse a la herencia virtual para evitar la duplicación de datos. Modularidad Se denomina "modularidad" a la propiedad que permite subdividir una aplicación en partes más pequeñas (llamadas módulos), cada una de las cuales debe ser tan independiente como sea posible de la aplicación en sí y de las restantes partes. Estos módulos se pueden compilar por separado, pero tienen conexiones con otros módulos. Al igual que la encapsulación, los lenguajes soportan la modularidad de diversas formas. Principio de ocultación Cada objeto está aislado del exterior, es un módulo natural, y cada tipo de objeto expone una "interfaz" a otros objetos que especifica cómo pueden interactuar con los

objetos de la clase. El aislamiento protege a las propiedades de un objeto contra su modificación por quien no tenga derecho a acceder a ellas; solamente los propios métodos internos del objeto pueden acceder a su estado. Esto asegura que otros objetos no puedan cambiar el estado interno de un objeto de manera inesperada, eliminando efectos secundarios e interacciones inesperadas. Algunos lenguajes relajan esto, permitiendo un acceso directo a los datos internos del objeto de una manera controlada y limitando el grado de abstracción. La aplicación entera se reduce a un agregado o rompecabezas de objetos. Recolección de basura La recolección de basura (garbage collection) es la técnica por la cual el entorno de objetos se encarga de destruir automáticamente, y por tanto desvincular la memoria asociada, los objetos que hayan quedado sin ninguna referencia a ellos. Esto significa que el programador no debe preocuparse por la asignación o liberación de memoria, ya que el entorno la asignará al crear un nuevo objeto y la liberará cuando nadie lo esté usando. En la mayoría de los lenguajes híbridos que se extendieron para soportar el Paradigma de Programación Orientada a Objetos como C++ u Object Pascal, esta característica no existe y la memoria debe desasignarse expresamente.

Resumen[editar] La POO es un paradigma surgido en los años 1970, que utiliza objetos como elementos fundamentales en la construcción de la solución. Un objeto es una abstracción de algún hecho o ente del mundo real, con atributos que representan sus características o propiedades, y métodos que emulan su comportamiento o actividad. Todas las propiedades y métodos comunes a los objetos se encapsulan o agrupan en clases. Una clase es una plantilla, un prototipo para crear objetos; en general, se dice que cada objeto es una instancia o ejemplar de una clase.

Tipos[editar] Para realizar programación orientada a objetos existen dos corrientes principales:23 

Basarse en clases.- Es la más ampliamente usada por los lenguajes de programación orientada a objetos. Por ejemplo es usada por Java, C++ y C#. Se basa en crear una estructura molde llamada clase donde se



especifican los campos y métodos que tendrán nuestros objetos. Cada vez que necesitamos un objeto creamos una instancia (o copia del objeto) usando la clase como molde. Basarse en prototipos.- Es soportado en Javascript, Python y Ruby. No hay clases, solo hay objetos. El mecanismo para la reutilización está dado por la clonación de objetos. Se crean directamentos objetos y cuando se quiere generar otro con la misma estructura se usa clonación. Una vez clonado si queremos podemos agregar los campos y métodos necesarios. Un objeto prototípico es un objeto que se utiliza como una plantilla a partir de la cual se obtiene el conjunto inicial de propiedades

de un objeto. Cualquier objeto puede ser utilizado como el prototipo de otro objeto, permitiendo al segundo objeto compartir las propiedades del primero.

Algunos lenguajes orientados a objetos[editar] Simula (1967) es aceptado como el primer lenguaje que posee las características principales de un lenguaje orientado a objetos. Fue creado para hacer programas de simulación, en donde los "objetos" son la representación de la información más importante. Smalltalk (1972 a 1980) es posiblemente el ejemplo canónico, y con el que gran parte de la teoría de la programación orientada a objetos se ha desarrollado. Entre los lenguajes orientados a objetos se destacan los siguientes:   

ABAP4 ABL5 ActionScript

     

                                

ActionScript 3 C Sharp (C#) Clarion Clipper6 D Object Pascal (Embarc adero Delphi) Gambas GObject Genie Harbour Eiffel Fortran 90/95 Java JavaScript7 Lexico8 Objective-C Ocaml Oz R Pauscal (en español) Perl910 PHP11 PowerScript Processing.12 Python Ruby Self Smalltalk13 Swift Magik Vala VB.NET Visual FoxPro14 Visual Basic 6.0 Visual DataFlex Visual Objects XBase++ DRP Scala1516

Muchos de estos lenguajes de programación no son puramente orientados a objetos, sino que

son híbridos que combinan la POO con otros paradigmas. Al igual que C++, otros lenguajes, como OOCOBOL, OOLisp, OOProlog y Object REXX, han sido creados añadiendo extensiones orientadas a objetos a un lenguaje de programación clásico. Un nuevo paso en la abstracción de paradigmas de programación es la Programación Orientada a Aspectos (POA). Aunque es todavía una metodología en estado de maduración, cada vez atrae a más investigadores e incluso proyectos comerciales en todo el mundo.

Herencia (informática) Ir a la navegaciónIr a la búsqueda Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Este aviso fue puesto el 1 de junio de 2015.

Para otros usos de este término, véase Herencia. En programación orientada a objetos, la herencia es, después de la agregación o composición, el mecanismo más utilizado para alcanzar algunos de los objetivos más preciados en el desarrollo de software como lo son la reutilización y la extensibilidad. A través de ella, los diseñadores pueden crear nuevas clases partiendo de una clase o de una jerarquía de clases preexistente (ya comprobadas y verificadas) evitando con ello el rediseño, la modificación y verificación de la parte ya implementada. La herencia facilita la creación de objetos a partir de otros ya existentes e implica que una subclase obtiene todo el comportamiento (métodos) y eventualmente los atributos (variables) de su superclase.

Es la relación entre una clase general y otra clase más específica. Por ejemplo: Si declaramos una clase párrafo derivada de una clase texto, todos los métodos y variables asociadas con la clase texto, son automáticamente heredados por la subclase párrafo. La herencia es uno de los mecanismos de los lenguajes de programación orientada a objetos basados en clases, por medio del cual una clase se deriva de otra de manera que extiende su funcionalidad. La clase de la que se hereda se suele denominar clase base, clase padre, superclase, clase ancestro (el vocabulario que se utiliza suele depender en gran medida del lenguaje de programación). En los lenguajes que cuentan con un sistema de tipos fuerte y estrictamente restrictivo con el tipo de datos de las variables, la herencia suele ser un requisito fundamental para poder emplear el Polimorfismo, al igual que un mecanismo que permita decidir en tiempo de ejecución qué método debe invocarse en respuesta a la recepción de un mensaje, conocido como enlace tardío (late binding) o enlace dinámico (dynamic binding).

Índice       

1Ejemplo en Java 2Clase Abstracta 3Herencia y ocultación de información 4Redefinición de métodos 5Ventajas 6Desventajas 7Estereotipos de herencia

Ejemplo en Java[editar] import javax.*; import javax.swing.JOptionPane; public class Mamifero{ private int patas; private String nombre; public void imprimirPatas(){ JOptionPane.showMessageDialog(null," Tiene " + patas + " patas\n", "Mamifero", JOptionPane.INFORMATION_MESSAGE); } public Mamifero(String nombre, int patas){ this.nombre = nombre; this.patas = patas; } }

public class Perro extends Mamifero { public Perro(String nombre){ super(nombre, 4); } } public class Gato extends Mamifero { public Gato(String nombre){ super(nombre, 4); } } public class CrearPerro { public static void main(String[] args) { Perro perrito = new Perro("Pantaleon"); perrito.imprimirPatas();

/*Está en la clase mamífero*/

} }

Se declaran las clases mamíferos, gato y perro, haciendo que gato y perro sean unos mamíferos (derivados de esta clase), y se ve cómo a través de ellos se nombra al animal pero así también se accede a patas dándole el valor por defecto para esa especie. Es importante destacar tres cosas. La primera, es que la herencia no es un mecanismo esencial en el paradigma de programación orientada a objetos; en la mayoría de los lenguajes orientados a objetos basados en prototipos las clases no existen, en consecuencia tampoco existe la herencia y el polimorfismo se logra por otros medios. La segunda, es que el medio preferido para lograr los objetivos de extensibilidad y reutilización es la agregación o composición. La tercera, es que en lenguajes con un sistema de tipos débiles, el polimorfismo se puede lograr sin utilizar la herencia. Por otra parte y aunque la herencia no es un concepto indispensable en el paradigma de programación orientada a objetos, es mucho más que un mecanismo de los lenguajes basados en clases, porque implica una forma de razonar sobre cómo diseñar ciertas partes de un programa. Es decir, no sólo es un mecanismo que permite implementar un diseño, sino que establece un marco conceptual que permite razonar sobre cómo crear ese diseño.

Clase Abstracta[editar] La herencia permite que existan clases que nunca serán instanciadas directamente. En el ejemplo anterior, una clase "perro" heredaría los atributos y métodos de la clase "mamífero", así como también "gato", "delfín" o cualquier otra subclase; pero, en ejecución, no habrá ningún objeto "mamífero" que no pertenezca a alguna de las subclases. En ese caso, a una clase así se la conocería como Clase Abstracta. La ausencia de instancias específicas es su única particularidad, para todo lo demás es como cualquier otra clase.

Herencia y ocultación de información[editar]

En ciertos lenguajes, el diseñador puede definir qué variables de instancia y métodos de los objetos de una clase son visibles. En C++ y java esto se consigue con las especificaciones private, protected y public. Sólo las variables y métodos definidos como públicos en un objeto serán visibles por todos los objetos. En otros lenguajes como Smalltalk, todas las variables de instancia son privadas y todos los métodos son públicos. Dependiendo del lenguaje que se utilice, el diseñador también puede controlar qué miembros de las superclases son visibles en las subclases. En el caso de java y C++ los especificadores de acceso (private, protected, public) de los miembros de la superclase afectan también a la herencia: Private Ningún miembro privado de la superclase es visible en la subclase. Protected Los miembros protegidos de la superclase son visibles en la subclase, pero no visibles para el exterior. Public Los miembros públicos de la superclase siguen siendo públicos en la subclase.

Redefinición de métodos[editar] En la clase derivada se puede redefinir algún método existente en la clase base, con el objeto de proveer una implementación diferente. Para redefinir un método en la subclase, basta con declararlo nuevamente con la misma signatura (nombre y parámetros). Si se invoca un cierto método de un objeto que no está definido en su propia clase, se dispara la búsqueda hacia arriba en la jerarquía a la que dicha clase pertenece. Sin embargo, si existieran dos métodos con la misma signatura, uno en la clase y otro en una superclase, se ejecutaría el de la clase, no el de la superclase. Cuando se redefine un método en una clase es posible acceder explícitamente al método original de su superclase, mediante una sintaxis específica que depende del lenguaje de programación empleado (en muchos lenguajes se trata de la palabra clave super).

Ventajas[editar] 

Ayuda a los programadores a ahorrar código y tiempo, ya que la clase padre ha sido implementada y verificada con anterioridad, restando solo referenciar desde la clase derivada a la clase base (que suele ser extends, inherits, subclass u otras palabras clave similares, dependiendo del lenguaje).



Los objetos pueden ser construidos a partir de otros similares. Para ello es necesario que exista una clase base (que incluso puede formar parte de una jerarquía de clases más amplia).



La clase derivada hereda el comportamiento y los atributos de la clase base, y es común que se le añada su propio comportamiento o que modifique lo heredado.



Toda clase pueden servir como clase base para crear otras.

Desventajas[editar] Si la jerarquía de clases es demasiado compleja, el programador puede tener problemas para comprender el funcionamiento de un programa. Además puede volverse más complejo detectar y resolver errores de programación, por ejemplo al modificar una clase padre que afecta el funcionamiento de las subclases. Otro problema es que las subclases se deben definir en código, por lo que los usuarios del programa no puede definir subclases nuevas. Otros patrones de diseño permiten que los usuarios puedan definir variantes de una entidad en tiempo de ejecución.

Estereotipos de herencia[editar] Herencia simple Una clase sólo puede heredar de una clase base y de ninguna otra. Herencia múltiple Una clase puede heredar las características de varias clases base, es decir, puede tener varios padres. En este aspecto hay discrepancias entre los diseñadores de lenguajes. Algunos de ellos han preferido no admitir la herencia múltiple debido a que los potenciales conflictos entre métodos y variables con igual nombre, y eventualmente con comportamientos diferentes crea un desajuste cognitivo que va en contra de los principio de la programación orientada a objetos. Por ello, la mayoría de los lenguajes orientados a objetos admite herencia simple. En contraste, algunos pocos lenguajes admiten herencia múltiple, entre ellos: C++, Python, Eiffel, mientras que Smalltalk, Java, Ada y C# sólo permiten herencia simple. Categoría: 

}

Programación orientada a objetos

Related Documents

Mtodo De Mallas
June 2020 33
Mtodo De Nodos
June 2020 32

More Documents from ""