Z
Z
dx =
Z
xa dx =
Z
dx = ln |x| + c, x
Z
f 0 (x) dx = ln |f (x)| + c, f (x)
Z
eax e dx = + c, a
Z
ax a dx = + c, ln a
Z
cos ax sin ax dx = − + c, a
Z
sin ax + c, cos ax dx = a
Z
dx tg ax = + c, 2 cos ax a
Z
cotg ax dx + c, =− 2 a sin ax
1 dx = x + c,
for x ∈ R.
xa+1 + c, a+1
for a ∈ R, a 6= −1, x ∈ R − {0}. for x ∈ R − {0}.
ax
x
for f (x) 6= 0, x ∈ D(f ). Z
for a ∈ R, a 6= 0, x ∈ R, Z
for a > 0, a 6= 1, x ∈ R,
ex dx =
for a ∈ R, a 6= 0, x ∈ R,
Z
for a ∈ R, a 6= 0, x ∈ R − {kπ ; k ∈ Z},
cos x dx = sin x + c. Z
o π for a ∈ R, a 6= 0, x ∈ R − (2k + 1) ; k ∈ Z , 2 n
Z
ex + c = ex + c. ln e
sin x dx = − cos x + c. Z
for a ∈ R, a 6= 0, x ∈ R,
ex dx = ex + c.
dx = tg x + c. cos2 x
dx = − cotg x + c. sin2 x
dx x x for a ∈ R, a 6= 0, x ∈ (− |a| ; |a|). + c1 = − arccos + c2 , = arcsin 2 |a| |a| −x Z √ dx √ = ln x + x2 − a2 + c, for a ∈ R, a 6= 0, x ∈ (−∞ ; − |a|) ∪ (|a| ; ∞). 2 2 x −a Z √ dx √ = ln x + x2 + a2 + c, for a ∈ R, a 6= 0, x ∈ R. x2 + a2 Z x 1 x dx 1 = arctg + c1 = − arccotg + c2 , for a ∈ R, a 6= 0, x ∈ R. 2 2 x +a a a a a Z Z x − a 1 1 dx 1 1 + c, = − ln dx = for a ∈ R, a 6= 0, x ∈ R − {±a}. x2 − a2 2a x − a x + a 2a x + a Z Z cosh ax + c, sinh ax dx = for a ∈ R, a 6= 0, x ∈ R, sinh x dx = cosh x + c. a Z Z sinh ax cosh ax dx = for a ∈ R, a 6= 0, x ∈ R, cosh x dx = sinh x + c. + c, a Z Z dx tgh ax dx + c, = for a ∈ R, a 6= 0, x ∈ R, = tgh x + c. 2 a cosh ax cosh2 x Z Z cotgh ax dx dx + c, =− = − cotgh x + c. for a ∈ R, a 6= 0, x ∈ R − {0}, 2 a sinh ax sinh2 x Z
√
a2