BAB I PENDAHULUAN
1.1 Latar belakang
Hafnia Alvei merupakan sosok salah satu penyebab penyakit pencernaan. Bahkan sekarang ini di Indonesia sering terjadi penyakit pencernaan yang disebabkan oleh organisme yang satu ini.
Penyakit pencenaan akibat organisme ini telah mendapat perhatian klinis oleh para ahli. Dulu organisme ini tidak mendapat perhatian oleh para ahli dikarenakan penyakit yang ditimbulkan belum menjangkiti banyak orang. Namun sekarang ini masyarakat Indonesia mulai “akrab” dengan penyakit yang ditimbulkan oleh organisme ini, sehingga diperlukan ada penjelasan yang lebih lengkap tentang organisme ini. Ketika era globalisasi menyebabkan informasi semakin mudah diperoleh, negara berkembang dapat segera meniru kebiasaan negara barat yang dianggap cermin pola hidup modern. Masyarakat Indonesia meniru kebiasaan, pola makan, busana, dan berbagai macam hal mengenai orang barat tetapi orang Indonesia sendiri belum meniru mengenai kebersihan lingkungan. Hal ini menyebabkan penyakit yang disebabkan oleh organisme ini semakin merajalela.
1.2 Permasalahan
Permasalahan yang dangkat dalam penulisan makalah ini ialah: 1. Apa itu bakteri Hafnia alvei? 2. Apa ciri- ciri bakteri Hafnia alvei? 3. Apa penyakit yang diakibatkan oleh bakteri Hafnia alvei?
H. Alvei
Page 1
1.3. Tujuan Tujuan pembuatan karya tulis ini ialah : 1. Ingin mengetahui dengan baik mengenai apa itu bakteri Hafnia alvei. 2. Menjelaskan ciri – ciri dari bakteri Hafnia alvei. 3. Mengetahui contoh kasus penyakit yang diakibatkan oleh bakteri Hafnia alvei.
1.4. Manfaat Manfaat yang diperoleh dari pembuatan karya tulis ini ialah : 1. Dapat mengerti dengan baik tentang bakteri Hafnia alvei. 2. Dapat menentukan jenis bakteri Hafnia alvei berdasarkan ciri – ciri yang telah diketahui. 3. Dapat mengetahui contoh kasus penyakit yang disebabkan oleh bakteri Hafnia alvei.
H. Alvei
Page 2
BAB II PEMBAHASAN
2.1. Pengertian
Kingdom: Bacteria Phylum:
Proteobacteria
Class:
Gammaproteobacteria
Order:
Enterobacteriales
Family:
Enterobacteriaceae
Genus:
Hafnia Møller, 1954
Hafnia adalah genus dari Enterobacteriaceae keluarga yang hanya spesies adalah Gram-negatif , fakultatif anaerob , berbentuk batang bakteri Hafnia alvei. H. alvei adalah komensal pada saluran pencernaan manusia dan biasanya tidak patogen , tetapi dapat menyebabkan penyakit pada immunocompromised pasien.
Hal
ini
sering
resisten
terhadap
antibiotik
ganda,
termasuk
aminopenicillins. Cara-Hafnia hanya Hafnia alvei merupakan penghuni berbahaya dari usus dan merupakan bagian dari alam flora usus manusia. Hanya jarang adalah infeksi bakteri di dalam individu dikompromikan, seperti transplantasi organ, atau karena
H. Alvei
Page 3
alasan lain yang terlibat pasien immunocompromised dan dalam darah , nanah , dahak , atau urin untuk menemukan. Terapi seharusnya tidak akut infeksi yang mengancam jiwa dalam antibiogram orientasi inti terisolasi. Selama ini tidak tersedia,
terapi
dengan
fluoroquinolone atau
cephalosporin
dengan antibiotik
generasi
ketiga,
kelompok
II
Pseudomonas-acting beta-laktam,
mungkin mulai dalam kombinasi dengan antibiotik aminoglikosida. Patogen tahan terhadap banyak antibiotik, termasuk terhadap aminopenicillins.
H. alvei juga terdapat di berbagai mamalia, ikan, burung, tanah, air, dan sejumlah makanan. H. alvei memiliki mekanisme virulensi beberapa yang berbeda, yang mirip atau identik dengan gram negatif enteropatogen lainnya. Pada manusia, H. alvei merupakan penyebab sejumlah penyakit, termasuk pneumonia, meningitis, abses, dan septicaemia. Patogenesis: Strain mungkin terisolasi dari kotoran manusia dan hewan lainnya. Mereka juga dapat ditemukan dalam limbah, air tanah, dan produk susu. Ini merupakan
H. Alvei
Page 4
bug lingkungan, sebagian besar.Beberapa strain membawa gen penyandi kemampuan untuk menyebabkan "melampirkan dan merendahkan" lesi sel usus, mirip dengan EPEC (enteropathic E. coli). Ini Gram-negatif bacillus enterik dan orofaringeal biasanya non-patogen. Hal ini assocaited dengan penyakit yang mendasari kronis (dan mungkin terjadi pada isolat pasien 'endotracheally diintubasi), dan dapat menjadi penyebab pneumonia dalam pengaturan masyarakat atau rumah sakit. Isolat biasanya menampilkanresistensi terhadap antibiotik konvensional
termasuk
sefalosporin
dan penisilin. Meskipun
jarang, H.alvei mungkin patogen potensial dalam pasien dengan penyakit yang mendasari kronis.
Kerentanan: Hafnia alvei sering resisten terhadap ampisilin dan sefalosporin generasi 1 dan 2.Organisme ini umumnya menunjukkan kerentanan untuk kuinolon, aminoglikosida,
kloramfenikol,
kotrimoksazol, sefepim,
aztreonam
dan
carbapenems, sedangkan kerentanan terhadap tetrasiklin adalah variabel.
Perlawanan: Hafnia alvei memiliki kelompok Bush 1, Ambler kelas C betalactamase yang kromosomnya dikodekan dan mungkin diinduksi atau tingkat tinggi secara konstitusional dinyatakan. 2.2. Ciri – ciri bakteri Hafnia alvei
Morfologi :
Pewarnaan
: Gram-negatif
Morfologi
: Lurus batang, 1,0 um dan diameter 2,0-5,0 um panjang.
Motilitas
: Motil oleh flagela peritrichous pada 30 `C, namun strain nonmotile mungkin terjadi
H. Alvei
Page 5
Khusus
Tidak dienkapsulasi
Colonial : Permukaan
Tumbuh mudah pada media biasa. Koloni pada agar nutrien
padat
umumnya 2-4 mm, halus, lembab, tembus, dan abu-abu dengan permukaan mengkilap dan tepi seluruh
Fisiologis : Tropisme
Chemoorganotrophic. Mayoritas strain memanfaatkan sitrat, asetat dan malonat sebagai sumber karbon tunggal setelah 3-4 hari inkubasi
Oksigen
Fakultatif anaerob, memiliki keduanya pernapasan dan jenis fermentasi metabolisme
Produk
Nitrat direduksi menjadi nitrit. H2S tidak diproduksi dalam gagang besi agar Kligler .. Alginat tidak dimanfaatkan. Pektat tidak membusuk. Fenilalanin deaminate tidak diproduksi
Enzim
Oksidase-negatif. Katalase-positif gelatinase, lipase, dan deoxyribonuclease tidak diproduksi tes dekarboksilase ornithine Lisin dan positif, namun tes dihydrolase arginin merupakan Glukosa negatif difermentasi dengan produksi asam dan gas. Asam tidak diproduksi dari D-sorbitol, raffinose, melibiose, D-adonitol dan myo-inositol. Tes metil merah biasanya positif pada 35 `C dan negatif pada 22` C. ... Acetylmethylcarbinol biasanya diproduksi dari glukosa pada 2228 `C tetapi tidak dapat diproduksi di 35` C.
Lingkungan : Habitat
Terjadi dalam tinja manusia dan hewan lainnya termasuk burung, juga terjadi pada produk-produk limbah, tanah, air dan susu
Genome : G+ C% Mol
48-49 (Tm)
Apa yang tampak seperti pada agar-agar:
H. Alvei
Colony Seluruh Putaran; punctiform
Page 6
Margin Halus, seluruh
Elevation Convex
Warna Off-putih; mengkilap
Biokimia tes:
Oksidase negatif
Katalase positif
Indole negatif
Simmons Citrate negatif
Metil Merah positif
Positif Voges-Proskauer
Lisin dekarboksilase positif
H 2 S produksi negatif
Urease negatif
Pengurangan Nitrat positif
Fenilalanin deaminase negatif
Fakta Menarik:
Dapat terjadi pada tinja manusia dan hewan lainnya, termasuk burung, dan limbah, air tanah, dan produk susu.
Sebuah patogen oportunistik bagi manusia, biasanya dalam darah, urin, atau infeksi luka.
H. Alvei
Page 7
2.3 Contoh kasus penyakit yang disebabkan oleh bakteri Hafnia alvei Contoh kasus I : Sebuah tinjauan literatur dan faktor-faktor predisposisi mungkin untuk Hafnia peritonitis dibahas. Seorang wanita 73 tahun menderita stadium akhir gagal ginjal karena nefropati diabetes dan dimulai pada PD rawat jalan terus menerus (CAPD) pada tahun 2005. Dia disajikan dengan demam, sakit perut, dan keruh dialisat ke Rumah Sakit Queen Mary. Pasien ini mengalami kekurangan gizi karena makan, mulut yang buruk dan albumin serum nya hanya 25 g / L pada masuk. Jumlah sel efluen adalah sampai dengan 3230 × 10 6 / L pada presentasi dan diagnosis CAPD peritonitis dibuat. Dia mulai intraperitoneal cefazolin dan tobramycin tetapi dengan respon yang tidak memuaskan. The Gram awal noda cairan peritoneal menunjukkan gram negatif batang dan rezim antibiotik beralih ke ceftazidime intraperitoneal dan amikasin 4 hari setelah masuk. Pasien menanggapi secara klinis dan cairan peritoneal selanjutnya tumbuh Hafnia alvei sensitif terhadap cefuroxime dan gentamisin. Sebagai tambahan terhadap antibiotik intraperitoneal, pasien ini juga menerima nutrisi orangtua dalam pandangan makan yang buruk lisan dan status gizi. Setelah 2 minggu ceftazidime intraperitoneal dan amikasin, dia peritonitis diatasi secara tuntas dan dia cocok untuk debit. Tidak ada kambuh peritonitis pada tindak lanjut. Hafnia alvei milik Enterobacteriaceae keluarga dan merupakan bagian dari flora usus manusia. Setelah dianggap sebagai komensal sederhana dari saluran pencernaan, ada peningkatan bukti untuk menyarankan H. alvei adalah bakteri langka tapi signifikan yang dapat menyebabkan infeksi oportunistik pada manusia. Selain deskripsi dari gastroenteritis yang disebabkan oleh spesies ini, ada laporan berbagai kasus keterlibatan ekstraintestinal infeksi Hafnia. Infeksi saluran
pernapasan
dan
bakteremia
adalah
manifestasi
ekstraintestinal
terkemuka H. alvei sebagai patogen. Kasus lain yang dilaporkan termasuk infeksi luka, abses hati, dan endophthalmitis. Meskipun ada laporan kasus pada spontan peritonitis bakteri pada pasien dengan mesothelioma peritoneal, kasus kami adalah laporan pertama dariH. alvei PD-terkait peritonitis. Penting untuk dicatat bahwa Hafnia ekstraintestinal infeksi nosokomial dan biasanya berhubungan
H. Alvei
Page 8
dengan penyakit yang mendasari atau faktor predisposisi. Laporan kasus sebelumnya telah digambarkan infeksi HIV, penyakit hati, transplantasi organ padat, dan keganasan terkait dengan infeksi ekstraintestinal oleh H. Alvei. Dalam pasien kami, faktor risiko kemungkinan adalah diabetes mellitus, gizi buruk, dan gagal ginjal, yang diberikan padanya rentan terhadap infeksi oportunistik. Mobley juga menggambarkan sebuah kasus Hafnia septicemia pada pasien dengan diabetes mellitus. Presentasi klinis pasien kami mirip dengan PD-terkait peritonitis yang disebabkan oleh organisme lain, dengan demam, sakit perut, dan keruh
limbah. Pengobatan
infeksi
ini
tidak
berbeda
dari
peritonitis
biasanya. Hafnia biasanya rentan terhadap carbapenems, monobactams, kuinolon, dan
aminoglikosida. Meskipun
beberapa H.strain alvei memproduksi
kedua
cephalosporinase tingkat rendah inducible (ceftazidime rentan) dan tinggi-tingkat aktivitas cephalosporinase konstitutif yang resisten terhadap ceftazidime, strain diisolasi
dari
pasien
kami
adalah
rentan
terhadap
sefalosporin
dan
aminoglikosida. Pengalaman kami menunjukkan bahwa H. alvei peritonitis dapat berhasil diobati dengan antibiotik yang tepat intraperitoneal dan penghapusan kateter Tenckhoff mungkin tidak diperlukan. Tindakan adjunctive lainnya termasuk perbaikan status gizi dengan makan parenteral. Mengingat asal pencernaan nya, divertikulitis sigmoid telah dilaporkan dikaitkan dengan Hafnia bakteremia. Dengan demikian kami percaya bahwa hal itu juga mungkin layaksaat untuk mencari patologi usus pada pasien dengan Hafnia peritonitis.
Contoh kasus II : Seorang pasien 9 tahun wanita dengan anemia Fanconi dirawat di Rumah Sakit Santo Spirito, Pescara, Italia, pada tanggal 4 Oktober 2007, dalam rangka untuk menerima transplantasi sel induk haematopoietic (menggunakan sel darah tali pusat yang tidak terkait). Profilaksis dengan kotrimoksazol diberikan 4 sampai 15 Oktober 2007. Juga, standar imunosupresif pra-transplantasi pengobatan dengan siklosporin dan dosis rendah kortikosteroid dimulai pada tanggal 13 Oktober 2007, dan pasien masih menerima pengobatan ini pada 1 Februari 2008. Sampel tinja dikultur dua kali seminggu, dan menunjukkan adanya flora komensal
H. Alvei
Page 9
enterik (sebagian besar diwakili olehEscherichia coli). Pada tanggal 30 Oktober 2007, Hafnia alvei muncul dalam sampel tinja untuk pertama kalinya, saat jumlah bakteri yang tinggi (> 200 cfu per piring) dan sebagai pertumbuhan murni berat. Identifikasi pada kepastian 99% dibuat menggunakan sistem Vitek2 dan dikonfirmasi oleh sistem API mini (kedua instrumen oleh bioMérieux). Isolat yang menunjukkan kerentanan terhadap cefoxitin (MIC ≤ 4 mg ml -1), sefepim (MIC ≤ 1 mg ml -1), imipenem (MIC ≤ 1 mg ml -1), meropenem (MIC ≤ 0,25 mg ml -1), amikasin (MIC ≤ 2 mg ml -1), siprofloksasin (MIC ≤ 0,25 mg ml -1), levofloxacin (MIC ≤ 0,25 mg ml -1) dan tetrasiklin (MIC 4 mg ml -1), namun resistensi terhadap ampisilin (MIC ≥ 32 mg ml -1), piperasilin (MIC ≥ 256 mg ml -1), amoksisilin / klavulanat (MIC ≥ 32 mg ml -1), ampisilin / sulbaktam (MIC ≥ 32 mg ml -1), piperasilin / Tazobactam (MIC ≥ 128 mg ml -1), ceftazidime (MIC ≥ 64 mg ml -1) dan kotrimoksazol (MIC ≥ 320 mg ml -1). MIC ditentukan oleh sistem Vitek2. Pada tanggal 18 November 2007, pasien mengalami diare akut dan kuat kram-jenis sakit perut. Piring budaya dari kotoran tumbuh H. alvei (> 200 cfu per piring) sebagai organisme tunggal lagi. Tidak ada organisme lain (bakteri, jamur, virus atau parasit) dari patogenisitas usus diketahui terdeteksi. Juga, Clostridium difficile tidak ditemukan dalam budaya, dan C. difficile A / B racun tidak diungkapkan oleh tes immunoenzymic kami melakukan (C. difficile panel; Biosite). H. alvei sebagai agen penyebab kemungkinan untuk enteritis itu dianggap tidak pasti, karena ekspresi enteropathogenicity oleh organisme ini masih kontroversial saat ini ( Janda & Abbott, 2006 ). Juga, korupsi akut yang khas dibandingkan penyakit host (GVHD) lesi kulit muncul, sehingga GVHD enterik dianggap sebagai penyebab paling mungkin. Sebagai pasien juga menderita bakteremia Staphylococcus aureus (data tidak ditampilkan) selama periode rawat inap, ceftazidime, amikasin dan teicoplanin yang dimulai pada tanggal 24 November 2007 sebagai terapi kombinasi parenteral (10 hari terapi). Antimikroba menyebabkan resolusi bakteremia, sedangkan nyeri perut dan diare bertahan. Juga, meskipun kerentanan didokumentasikan H. alvei ke amikasin, spesies dikultur sebagai organisme tunggal dari sampel tinja baru (> 200 cfu per piring). Akhirnya, GVHD enterik didokumentasikan oleh endoskopi dan biopsi usus pada tanggal 3 Desember 2007. Dosis rendah kortikosteroid diubah menjadi
H. Alvei
Page 10
kortikosteroid dosis tinggi, dan anti-limfosit mAbs yang dimulai, yang mengarah ke lega bertahap gejala dalam waktu 1 minggu. Pada tanggal 17 Desember 2007, kortikosteroid diubah kembali ke pengobatan dosis rendah, mAbs sementara dihentikan. Menariknya, antimikroba telah berhenti sudah, pada tanggal 4 Desember 2007, sedangkanH. alvei menghilang dari sampel tinja dalam waktu 10 hari dari resolusi klinis (budaya positif terakhir yang diperoleh pada tanggal 20 Desember 2007). H. alvei adalah patogen manusia langka. Beberapa kasus gastroenteritis dilaporkan dalam literatur telah diduga karena organisme ini, namun perannya sebagai agen infeksi enterik masih tak menentu ( Gunthard & Pennekamp, 1996 , Janda & Abbott, 2006 ). Isolasi dari sekresi pernafasan lebih umum, walaupun sebagian besar isolat dari saluran udara tampaknya tidak signifikan secara klinis, laporan sporadis pneumonia, abses paru dan bronkopneumonia yang kemungkinan besar karena H. alvei telah dijelaskan ( Gunthard & Pennekamp, 1996 , Janda & Abbott, 2006 ). Organisme ini kadang-kadang ditemukan di saluran kemih, biasanya sebagai komensal, meskipun dalam beberapa kasus itu dianggap signifikan secara klinis ( Gunthard & Pennekamp, 1996 , Janda & Abbott, 2006 ). Langka aliran darah di mana infeksi H. alveidiisolasi dari kultur darah telah dilaporkan. Bacteraemias kebanyakan masyarakat diperoleh, dan waktu dari kultur darah positif pertama biasanya berkisar antara 1 sampai 41 hari setelah rawat inap. Dalam beberapa kasus, organisme telah diisolasi dari darah dan abses hati, cairan pankreas pseudokista, cairan pleura, dan kateter vena sentral, pada saat yang sama, meskipun sumber bacteraemias sebagian besar tetap tidak diketahui, asal utama dari infeksi aliran darah dianggap menjadi saluran pernapasan atau usus ( Gunthard & Pennekamp, 1996 , Janda & Abbott, 2006 , Liu et al, 2007. ; .Rodriguez-Guardado et al, 2006 ). Neonatal infeksi yang terkait dengan diamH. alvei kereta vagina oleh ibu dan kasus meningitis pada pasien 1-tahun telah dilaporkan juga. Sangat sedikit laporan yang ada dalam literatur mengenai kolonisasi luka oleh organisme ini, dan kami menemukan hanya dua laporan mengenai H. alvei endophthalmitis ( Gunthard & Pennekamp, 1996 ,Janda & Abbott, 2006 ). Beberapa kasus isolasi ini organisme dari abses, dan satu dari pasien dengan septic arthritis, diketahui, namun perannya sebagai patogen tidak
H. Alvei
Page 11
menentu sejak pulih sebagai bagian dari flora bakteri campuran ( Gunthard & Pennekamp, 1996 ; Janda & Abbott, 2006 ). Akhirnya, dua kasus kolesistitis, sebuah laporan dari bakteri spontan peritonitis dan kasus endokarditis telah dijelaskan ( Hazouard et al, 2006. , Janda & Abbott, 2006 ; .Loulergue et al, 2007). Menariknya, wabah sindrom uremik hemolitik kemungkinan telah dikutip oleh Janda dan rekan, di mana H. alvei regangan menghasilkan racun sel Vero cytolytic aktif diisolasi dari faeces ( Crandall et al., 2006 ). H. alvei dikenal menjadi patogen nosokomial biasa, namun sedikit yang telah ditulis mengenai perannya sebagai agen oportunistik infeksi pada pasien immunocompromised. Khususnya, tidak ada data yang ada pada saat ini sekitar GVHD sebagai faktor risiko yang mungkin untuk memperoleh H. alveikolonisasi dan / atau infeksi. GVHD akut biasanya terjadi setelah transplantasi sel induk alogenik, dan merupakan reaksi donor yang diturunkan sel T melawan tuan rumah, hati kulit atau usus. Penyakit enterik dicurigai ketika pasien mengembangkan tanda-tanda atau gejala-gejala seperti kram-jenis sakit perut, diare, mual dan muntah. Namun, karena ini adalah gejala non-spesifik, endoskopi, biopsi dan konfirmasi histologis, seperti dengan budaya, diperlukan, untuk mengecualikan diagnosis bersaing. Kerusakan oleh GVHD diwakili oleh edema, peluruhan mukosa dan pendarahan mungkin, dan histopatologi biasanya mendokumentasikan crypt-sel nekrosis dan putus sekolah dengan abses crypt. Terapi sebagian besar didasarkan pada imunosupresi dan steroid, sehingga risiko infeksi oportunistik harus hati-hati ditimbang, sebagai jumlah kematian akibat komplikasi infeksi telah dilaporkan dalam literatur ( Ferrara et al, 2003. , Jacobsohn & Vogelsang, 2007). Data klinis, epidemiologis dan laboratorium terbatas yang tersedia saat ini mengenai patogenisitas kemungkinan H. alvei. Dalam kasus yang dilaporkan di sini, patogenisitas H. alvei tetap tidak menentu, meskipun temuan dari jumlah bakteri tinggi dan isolasi dari organisme sebagai pertumbuhan murni berat, dan pengobatan terlepas antimikroba dan steroid, perbaikan klinis dan hilangnya organisme dari budaya berjalan pada kecepatan yang sama. Pokoknya, tampaknya menjadi menarik bahwa organisme muncul dalam tinja hanya beberapa minggu
H. Alvei
Page 12
sebelum timbulnya gejala, dan menghilang dari feses dalam waktu 10 hari dari resolusi klinis. Peran amikasin dalam pemberantasan kolonisasi tidak jelas, sejak terapi antimikroba tampaknya tidak menjadi sukses sebelum awal anti-GVHD pengobatan. Apakah penggunaan steroid dan senyawa imunosupresif saja, tanpa antimikroba, akan diikuti oleh H. alveipemberantasan dari usus masih belum diketahui. Mungkin, profilaksis kotri memainkan peran luar biasa dalam menggantikan flora normal dengan H. Alvei (perlu dicatat bahwa organisme menunjukkan
resistensi
terhadap
obat
dikutip),
sedangkan
pengobatan
imunosupresif mungkin telah mengubah pertahanan kekebalan mukosa, dengan demikian menyebabkan pertumbuhan berlebih dari organisme. Akhirnya, kerusakan enterik oleh GVHD mungkin telah meningkatkan kepatuhan dari patogen ke epitel, dan pembentukan biofilm, mungkin mengakibatkan kegagalan amikasin untuk memberantas penjajahan sebelum resolusi GVHD. Pada gilirannya, peran H. alvei dalam meningkatkan kerusakan mukosa tidak dapat dikesampingkan. Bahkan, timbulnya infeksi peradangan terkait perubahan mukosa sebagai faktor risiko untuk pengembangan GVHD dapat diduga, seperti crossreaksi
akhirnya
antara
mekanisme
pertahanan
tuan
rumah
(leukosit,
imunoglobulin) dan usus-dinding antigen di satu sisi, dan host respon imun dan H. alvei antigen di sisi lain. Kasus ini semakin menegaskan bahwa perilaku ini sebagai organisme komensal enterik atau patogen yang kontroversial, dan masih banyak pertanyaan yang belum terjawab. Contoh kasus III : Teshima et al. (1992) menemukan penyakit ginjal yang diakibatkan oleh infeksi alami bakteri Hafnia alvei pada juvenil umur setahun ikan cherry salmon Oncorhynchus masou yang dipelihara di kolam ikan lokal di Jepang. Dari luar, ikan yang sakit menunjukkan permukaan tubuh yang gelap dan perut membengkak, dan mereka berenang perlahan-lahan. Dari dalam tubuh, kerusakan jaringan dengan berbagai ukuran, yang tampak seperti benjolan putih keabuan, timbul pada sisi ventral ginjal; secara histopatologis gejala-gejala ini mirip dengan gejala “bacterial kidney disease” (penyakit ginjal bakterial) yang diakibatkat oleh bakteriRenibacterium salmoninarum. Patologi ginjal secara eksperimental bisa
H. Alvei
Page 13
ditimbulkan kembali dengan isolat murni Hafnia alvei yang diambil dari luka-luka pada ginjal ikan yang terinfeksi alami. Periode inkubasi penyakit ini pada ikan cherry salmon muda adalah sekitar 3 bulan setelah penyuntikan intraperitoneal tunggal. Penyakit ini, bagaimanapun, bisa muncul lebih cepat sejalan dengan peningkatan frekuensi penyuntikan isolat bakteri.
H. Alvei
Page 14
BAB III PENUTUP
3.1.Kesimpulan Berdasarkan pemaparan Hafnia adalah genus dari Enterobacteriaceae keluarga yang hanya spesies adalah Gram-negatif , fakultatif anaerob , berbentuk batang bakteri Hafnia alvei. Sedangkan Hafnia alvei itu sendiri adalah komensal pada saluran pencernaan manusia dan biasanya tidak patogen , tetapi dapat menyebabkan penyakit pada immunocompromised pasien. Hal ini sering resisten terhadap antibiotik ganda, termasuk aminopenicillins. H. alvei terdapat di berbagai mamalia, ikan, burung, tanah, air, dan sejumlah makanan. H. alvei memiliki mekanisme virulensi beberapa yang berbeda, yang mirip atau identik dengan gram negatif enteropatogen lainnya. Pada manusia, H. alvei merupakan penyebab sejumlah penyakit, termasuk pneumonia, meningitis, abses, dan septicaemia.
3.2. Saran
Hasil yang dikemukakan pada karya tulis ini penulis anggap kurang akurat dikarenakan dalam proses pembuatannya hanya menggunakan referensi dari bacaan dan tidak melalui tahap penelitian. Untuk kedepannya penulis sarankan agar menggunakan metode penelitian. Hal ini akan menambah keakuratan data.
H. Alvei
Page 15
Daftar Pustaka jcm.asm.org/content/37/12/4186.full http://microblog.me.uk/31 http://googel22.blogspot.com/2012/08/cara-membuat-makalah.html http://www.vumicro.com/vumie/help/VUMICRO/Hafnia_alvei.htm http://web2.uwindsor.ca/courses/biology/fackrell/Microbes/5298.htm http://jherrera.sites.truman.edu/hafnia-alvei/ http://menjaga-bumi.blogspot.com/2012/03/makalah-kesehatan.html http://www.retroscope.eu/wordpress/hafnia-alvei/ http://www.uniprot.org/uniprot/P52869
H. Alvei
Page 16
LAMPIRAN
H. Alvei
Page 17
H. Alvei
Page 18
H. Alvei
Page 19
Berikut contoh jurnal yang membahas tentang bakteri Hafnia alvei :
H. Alvei
Page 20
J Lipid Res. 2010 March; 51(3): 564–574. doi: 10.1194/jlr.M001362
PMCID: PMC2817586
Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides[S] Jolanta Lukasiewicz,1,* Wojciech Jachymek,* Tomasz Niedziela,* Lennart Kenne,† and Czeslaw Lugowski*§ Author information ► Article notes ► Copyright and License information ►
O-14:0) at O-3′, was identified by
Abstract
ESI-MSn and MALDI-time-of-flight Hafnia
alvei,
bacterium,
a
is
Gram-negative
an
opportunistic
pathogen associated hospital
with
infections,
mixed
bacteremia,
septicemia, and respiratory diseases. The majority of clinical symptoms of diseases caused by this bacterium have a lipopolysaccharide (LPS, endotoxin)-related origin. The lipid A structure affects the biological activity
of
endotoxins
predominantly. Thus, the structure of H. alvei lipid A was analyzed for the first
time.
The
major
form,
asymmetrically hexa-acylated lipid A built of β-d-GlcpN4P-(1→6)-α-dGlcpN1P
substituted
with
(TOF) MS. Comparative analysis performed by MS suggested that LPSs of H. alvei 32, PCM 1192, PCM 1206, and PCM 1207 share the identified structure of lipid A. LPSs of H. alvei are yet another example of enterobacterial endotoxins having the Escherichia coli-type structure of lipid A. The presence of heptaacylated forms of H. alvei lipid A resulted
from
the
addition
of
palmitate (16:0) substituting 14:0(3OH) at N-2 of the α-GlcpN residue. All the studied strains of H. alvei have an ability to modify their lipid A structure by palmitoylation.
(R)-
14:0(3-OH) at N-2 and O-3, 14:0(3(R)-O-12:0) at N-2′, and 14:0(3-(R)-
H. Alvei
Page 21
Keywords: Polish Collection of
at O-2 and O-3 of α-d-GlcpN and
Microorganisms, endotoxin, mass
14:0[3-(R)-O-12:0] or 14:0[3-(R)-O-
spectrometry, palmitoylation
14:0] at O-2′ and O-3′ of β-d-GlcpN (2, 3). Such hexa-acylated lipid A
Lipopolysaccharide (LPS, endotoxin) is the main surface antigen (Oantigen) and important virulence factor of most of the Gram-negative bacteria pathogenic for humans and animals (1). LPS contributes greatly to the structural integrity of the bacterial cell wall and constitutes a “pathogen-associated
molecular
pattern” for host infection (1).
are smooth-type molecules built of polysaccharide,
core
oligosaccharide, and lipid A. Among all
these
defined
regions,
the
glycolipid part of LPS called lipid A constitutes a center of biological activity
of
the
endotoxin
that
stimulates different cells of the immune
system
(2).
The
most
common type of lipid A that is also one of the highly endotoxic forms consists of the bisphosphorylated carbohydrate backbone disaccharide β-d-GlcpN4P-(1→6)-α-d-GlcpN1P, substituted by six asymmetrically distributed fatty acids linked via ester and amide linkages: 14:0[3-(R)-OH]
H. Alvei
the
immunostimulatory
highest or
endotoxic
activity in the mammalian host (1, 2) and it was identified for the first time in Escherichia coli LPS (2, 3). Interaction
of
such
asymmetric,
hexa-acylated lipid A region of LPS with mCD14/TLR4/MD-2 receptor complex
on
the
surface
of
monocytes/macrophages constitutes
Most of the known structures of LPS
O-specific
displays
a major mechanism responsible for innate immune response to Gramnegative infection (1, 2). High levels of inflammatory mediators [tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, INFγ, INFα, nitric oxide, platelet-activating factor, and endorphins], as a response of the immune system to large amount of LPS released into a bloodstream, have
profound
cardiovascular
effects system,
on
the
kidneys,
lungs, liver, and central nervous system and trigger the coagulation cascade.
Excessive
inflammatory
response of the innate immune system finally leads to sepsis and septic shock (1).
Page 22
Hafnia
alvei
lipopolysaccharides
cows were reported as a consequence
have been studied for many years
of such infections (4). The clinical
because of frequent reports about
symptoms of H. alvei septicaemia of
opportunistic infections caused by
pullets are similar to those caused by
this bacterium but also several
Salmonella spp. in different host
interesting structural features of their
species (6).
core oligosaccharides and O-specific polysaccharides. As an opportunistic pathogen,
H.
alvei
has
been
associated with respiratory diseases and mixed hospital infections in humans (4). Most cases of H. alveirelated bacteremia usually originate from gastrointestinal and respiratory infections. The bacteremia (mostly monomicrobic infection) and sepsis seem to be the most common syndromes
reported
for
this
bacterium (4). These Gram-negative bacteria were isolated from blood, hepatic
abscesses,
pancreatic
pseudocyst fluid, sputum, feces, and central venous catheter. H. alvei has also been isolated from a variety of foods, e.g., cow milk, honey, corned beef, hard goat cheese, and fish (5). H. alvei infections can cause serious diseases and also substantial loss in farm
animal
production.
Hemorrhagic septicemia in rainbow trout and in laying hens, pneumonic diseases in goats, and mastitis in
Lipopolysaccharides of H. alvei are unusual examples of enterobacterial endotoxins,
among
the
few
elucidated so far, having various Kdo-containing motifs in the outer core
regions
oligosaccharides feature
of
the
core
(7).
Thus,
this
distinguishes
them
from
classical enterobacterial endotoxins. Even
though
many
polysaccharide
O-specific
and
core
oligosaccharide structures have been elucidated for H. alvei LPSs (8–17), the structure of the H. alvei lipid A, the
center
of
toxicity
of
the
endotoxin, has not been analyzed so far. Because the majority of clinical symptoms of diseases caused by this bacterium have LPS-related origin and
the
lipid
A
structure
predominantly affects the biological activity of endotoxins, it seems to be a gap in our knowledge of H. alvei LPSs. Moreover, recent studies on the
invasion
and
intracellular
survival of different H. alvei strains
H. Alvei
Page 23
in a HeLa cell line revealed that
published data (7) connect the lipid
these bacteria were able to enter and
A and core oligosaccharide of H.
persist in human epithelial cells (18).
alvei 32 LPS. Elucidation of the H.
For Gram-negative bacteria that
alvei
employ
survival
precondition for future examination
mechanism during invasion, e.g.,
of a possible relationship between
Salmonella typhimurium (19, 20),
atypical core oligosaccharide (outer
various lipid A modifications are
core Kdo-containing motifs), lipid A
needed.
structure, and biological activity of
intracellular
To
survive
within
mammalian cells, an addition of 4-
lipid
A
structure
is
a
H. alvei LPSs.
amino-4-deoxy-l-arabinose (Ara4N) and phosphoethanolamine (PEtn) and palmitate residues is often required.
MATERIALS AND METHODS Bacteria
Thus, it was interesting to investigate H.
alvei
lipids
A,
the
last
uncharacterized region of their LPS.
H. alvei strains 32, PCM 1192, PCM 1206, and PCM 1207 were obtained from
The
studies
presented
herein
the
Polish
Microorganisms
Collection
(PCM)
at
of the
describe, for the first time, lipid A of
Institute
H. alvei LPS. Recently we have
Experimental
determined the structure of the
Poland). The bacteria were grown in
carbohydrate backbone of H. alvei
Davis medium, killed with 0.5%
32 lipid A as a part of N,O-
phenol, centrifuged using a CEPA
deacylated LPS, which is built of the
flow
bisphosphorylated
suspended in water, and freeze-dried
disaccharide,
GlcpN4P-(1→6)-GlcpN1P (7). We
of
Immunology Therapy
laboratory
and
(Wroclaw,
centrifuge,
(16).
now report on the structural studies of H. alvei 32 and 1192 lipid A
LPS and lipid A isolation and
regions, with emphasis on fatty acid
purification
analysis
and
their
distribution
performed by ESI-MSn and MALDItime-of-flight presented
H. Alvei
(TOF)
results
and
MS.
The
recently
LPS was extracted from bacterial cells by the hot phenol/water method (21). Briefly, freeze-dried bacteria
Page 24
were suspended in 45% phenol
mg/ml) and incubated with stirring at
solution (2g/50 ml) and incubated at
50° C for 5 h followed by drying
65° C with intermittent stirring for
with a stream of nitrogen. The
15 min. The suspension was cooled
partially
down to the temperature below 10° C
samples were further analyzed by
and centrifuged (3,000 g, 30 min).
ESI-MS.
O-deacylated
lipid
A
Water phase was collected. Water was added to compensate for the collected volume of water phase and the cycle was repeated. The water phases were combined and dialyzed against deionized water to remove residual phenol, filtered, and freezedried. The obtained crude LPS was dissolved in water and purified by ultracentrifugation (105,000 g, 6 h) as previously reported (16). Lipid A was isolated from the LPS (200 mg) as a water-insoluble fraction by treatment with 1.5% acetic acid (45 min
at
100°C)
followed
by
centrifugation (40,000 g, 20 min). The
sediment
(lipid
A)
was
resuspended in water and freezedried.
Analytical procedures Prior to analyses, LPS and lipid A were
additionally
extraction
purified
with
by 2:1:3
chloroform/methanol/water mixture (v/v/v)
to
remove
membrane
The
absolute
phospholipids.
configuration of monosaccharides was determined on dephosphorylated and O,N-deacylated lipid A as described by Gerwig et al. (23, 24), using (R)-2-butanol for the formation of
2-butyl
glycosides.
N,O-
deacylation and dephosphorylation of lipid A were performed by hydrolysis with 4 M hydrochloric acid followed by 48% HF treatment as previously described (25). The trimethylsilylated butyl glycosides
Partial O-deacylation of lipid A
were then identified by comparison The partial liberation of the ester-
with
linked fatty acids from lipid A was
carbohydrate standards (Sigma, St.
done by mild alkali treatment (22).
Louis, MO) and (R/S)-2-butanol
Lipid A (0.5 mg) was suspended in
(Fluka, Buchs, Switzerland) on GC-
25%
MS. GC-MS analysis was carried out
H. Alvei
ammonium
hydroxide
(1
samples
produced
from
Page 25
with
a
Hewlett-Packard
5971A
for the analysis of lipid A samples in
system using an HP-1 fused-silica
negative and positive ion modes,
capillary column (0.2 mm × 12 m)
respectively.
and a temperature program from 100
electrospray mass spectra of lipid A
to 270°C at 8°C/min. Qualitative
were recorded using ESQUIRE-LC
analysis of lipid A was done
ion trap mass spectrometer (Bruker
separately for amide- and ester-
Daltonics, Bremen, Germany) for
bound fatty acids using chemical
ESI-MSn analyses of native lipid A
analysis followed by GC-MS (26).
and
Ester-bound fatty acids were released
(Bruker
Daltonics,
Bremen,
from intact LPS by treatment with
Germany)
for
of
sodium CH3ONa in methanol and the
partially deO-acylated lipid A. The
amide-linked
were
lipid A samples were desalted and
released from deO-acylated LPS by
dissolved in a methanol/chloroform
aqueous 4 M KOH at 120°C for 16 h.
mixture (1:1, v/v, 1 mg/ml). In ESI-
The absolute configuration of 3-
IT MSn analyses, the samples were
hydroxy fatty acids was determined
continuously infused through the
by GC-MS (HP-5 column, 0.25 mm
capillary head at 4 kV into the ion
× 30 m; temperature program from
source using a linear syringe pump at
150 to 270°C at 8°C/min) using 3-
a rate of 2 μl/min. Spectra were
methoxy-(S)-phenylethylamide
scanned in the m/z 200–2200 range.
derivatives (27).
The mass isolation window for the
fatty
acids
Negative-ion
micrOTOF-Q
spectrometer
analysis
the
precursor ion selection was set to 4 Mass spectrometry MALDI-TOF MS was carried out on a Kratos Kompact-SEQ instrument as described previously (25). 9HPyrido[3,4-b]indole [10 mg/ml in a 1:1 acetonitrile/water mixture (v/v)] and
2,4,6-trihydroxyacetophenone
[25 mg/ml in a 1:1 acetonitrile/water mixture (v/v)] were used as matrices
H. Alvei
Da in all the MSn analyses. In analyses performed on micrOTOF-Q spectrometer,
the
samples
dissolved
in
a
were 1:1
methanol/chloroform mixture (v/v, 1 mg/ml) and analyzed by direct infusion at a rate of 3 μl/min with an electrospray capillary high voltage of 4,5 kV. Spectra were scanned in the
Page 26
ranges of m/z 100–2250 (MS) and
dried.
The
yield
of
lipid
A
m/z 250–2000 (MS2 of an ion at m/z
preparations were between 11% and
1291.9). The ion source temperature
16% of LPS.
was 200°C, the N2 flow rate was set at 4 l/min, and the pressure of nitrogen was
0.4 bar. External
calibration in the negative-ion mode was
applied
Tunemix™(neg)
using mixture
the (Bruker
Daltonics, Germany) in quadratic regression mode and m/z range of 113–2234 Da. The isolation width for MS experiments was Δm/z = 10,
Compositional analysis Chemical analyses of lipid A from H. alvei 32 and PCM 1192 indicated the presence of GlcN, phosphate group (P group), dodecanoic acid (12:0), tetradecanoic acid (14:0), 3-hydroxytetradecanoic acid [14:0(3-OH)] and hexadecanoic acid (16:0) in the
2
and the collision energy of the quadrupole was −45 eV.
relative
proportions
2.0:1.6:0.9:1.0:3.7:0.1.
GC-MS
analysis of the trimethylsilylated (R)2-butyl
RESULTS
glycosides
of
sugar
constituents of lipid A showed the Isolation of lipopolysaccharide and
presence of the d-GlcN isomer.
lipid A
Qualitative analysis of fatty acids
LPS of H. alvei 32, PCM 1192, PCM 1206, and PCM 1207 were extracted from bacterial cells by the hot phenol/water
method
(21)
and
purified as previously described (16). The yields of LPS preparations were 2%–3.5%. Lipid A was liberated by acidic hydrolysis of LPS (1.5% acetic acid, 45 min, at 100°C). The reaction mixture was cooled and centrifuged.
The
sediment
was
resuspended in water and freeze-
H. Alvei
was also done separately for amideand ester-linked fatty acids. GC-MS data revealed the presence of (R)14:0(3-OH), 14:0, 12:0, and 16:0 as ester-bound fatty acids and (R)14:0(3-OH) as the only amide-linked fatty acid. Identification of the methoxy derivative, the methyl ester of
3-methoxytetradecanoic
acid,
among fatty acid methyl esters obtained
by transestrification
of
acyloxyacyl residues in lipid A with sodium methanolate, indicated that
Page 27
some of 14:0(3-OH) fatty acids were
seventh acyl residue. The lipid A
substituted with the “secondary”
variant represented by ions at m/z
fatty acid in the native lipid A.
1768.3 explained
ESI-MS/MSn
analyses of lipid A
ESI mass spectra obtained for lipid A isolated from H. alvei 32, 1192, 1206,
and
1207
showed
their
heterogeneity and identical pattern of ions (Fig. 1), thus suggesting a common structure of the lipid A. On the basis of compositional analyses and taking into account previously published structure of the N,Odeacylated H. alvei 32 LPS (7), the most abundant ions at m/z 1796.4 and m/z 1716.5 could be attributed to bis- and mono-phosphorylated hexaacylated forms of lipid A carrying four (R)-14:0(3-OH), one 14:0 and one 12:0 fatty acids (Fig. 1A). Additional forms of lipid A were also identified but observed ions were of much lower intensity. Ions at m/z 1954.6 and 2034.6 could be attributed
to
mono-
and
bis-
phosphorylated hepta-acylated forms of lipid A, respectively (Fig. 1, inset
and by
1688.4 bis-
phosphorylated
could and
be
mono-
hexa-acylated
molecules that are substituted by one shorter fatty acid in comparison with the major form described above (mass difference of 28 Da observed between ions at m/z 1796.4 and 1768.3 and at m/z 1716.5 and 1688.4). The peaks at lower m/zvalues and intensities could represent different bisphosphorylated lipid A species devoid of 14:0 (m/z 1586.1), 14:0 and 14:0(3-OH) (m/z 1360.1) or monophosphorylated species devoid of 14:0 (m/z 1506.3), 14:0(3-OH) (m/z 1490.2), and 14:0 and 14:0(3OH) (m/z 1279.9) (Fig. 1). The presence of ions with lower m/z values
and
those
related
to
monophosphorylated forms can be explained by partial degradation of lipid A during work-up and lability of some acyl side chains and the P group at O-1 during the acid hydrolysis (28).
structure). The mass difference 238 Da between m/z 1954.6 and m/z 1716.5 indicates the presence of hexadecanoic acid (16:0) as the
H. Alvei
Page 28
of studied lipid A, ESI-MSn spectra were compared with data published previously for lipid A of E. coli (29– 31)
.Fig. 2.
Fig. 1. Negative ion mode ESI mass spectra obtained for lipid A (inset structures) isolated from LPSs of H. alvei 1192 (A), 32 (B), 1206 (C), and 1207 (D). The ions denoted with an asterisk correspond to a mass difference of 28 due to the decrease in carbon
Negative ion mode ESI-MS2 of lipid A from H. alvei 32 (A) and 1192 (B) represented by the ion at m/z 1716.5 (outlined Interpretation
inset of
structure). the
observed
fragment ions is presented in the inset structures. The representation
chain ...
0,4
A2 is according ...
The distribution of fatty acids was determined for the lipid A isolated from H. alvei 32 and PCM 1192 by multiple-stage ESI-MSn (n = 2 and 3). Detected ions were interpreted according to the rules described previously in ESI-MSn studies of lipid A (25, 29). ESI-MS2 was performed on the selected ions at m/z 1716.5 (Fig. 2), m/z 1506.3 (Fig. 3A) and m/z 1279.9 (supplementary Fig. I).
Because
the
obtained
data
Fig. 3. Negative ion mode ESI-MSn of lipid A from H. alvei 32 represented by an
suggested the E. coli-type structure
H. Alvei
Page 29
the ion at m/z 1506.3 (outlined inset
14:0) as a ketene derivative], m/z
structure). A: MS2 of the ion at m/z
1261.8 [elimination of 14:0(3-O-
1506.3. B: MS3 of the ion at m/z
14:0) as fatty acid]. The most
1261.8 (form I and II). Interpretation
abundant daughter ion at m/z 1243.8,
of
corresponded to the elimination of
observed
fragment
ions
is
presented ...
two ester-linked fatty acids, 14:0(3OH) at O-3 and secondary-bound
To determine the structure of the most
abundant
component
corresponding to the most abundant ion (m/z 1716.5) in lipid A from both H. alvei 32 and PCM 1192, this ion
14:0 at O-3′ (Fig. 2, outlined inset structure). Two double bonds were formed
as
a
result
of
the
eliminations. The mass of the ion at m/z 1243.8 was in agreement with
1
was isolated in MS and fragmented in MS2 (Fig. 2, outlined inset structure). The spectra of lipid A from both strains showed almost identical pattern of daughter ions. Chemical
analysis
of
lipid
A
constituents suggested that this ion could
be
attributed
to
the
monophosphorylated, hexa-acylated lipid A form containing two GlcN, one P group, four 14:0(3-OH), one 14:0, and one 12:0 (Fig. 2, outlined inset structure). Ions at m/z 1516.1, m/z
1488.0,
and
m/z
1472.0,
correspond to elimination of 12:0, 14:0 and 14:0(3-OH), respectively, from the parent ion. Product ions from elimination of two acyl groups were also detected: m/z 1287.8 (elimination of 12:0 and 14:0), m/z
the calculated mass of two GlcN (one unsaturated), one P group, two 14:0(3-OH) fatty acids, one 12:0 fatty acid, and one 14:1 Δ2 fatty acid derivative. Subsequent loss of a 14:1 Δ2 from O-3′ as a ketene derivative and
free
fatty
acid
yielded
a
characteristic pair of ions at m/z 1035.8 and m/z 1017.7, respectively (Fig. 2). The observed elimination of 14:1 Δ2 by both charge-driven (loss of a ketene derivative) and chargeremote processes (loss of a free fatty acid) suggested its location at O-3′ and also its previous substitution by 14:0 (ion at m/z 1243.8). The ions at m/z 708.4 and 690.4 represented 0,4
A2 fragments [according to the
nomenclature
of
Domon
and
Costello (32)] and could be formed
1279.9 [elimination of 14:0(3-O-
H. Alvei
Page 30
from the ions at m/z 1035.8 and
outlined inset structure). Almost
1017.7, respectively. These ions
identical spectra were obtained for
corresponded to the in-source intra-
the lipid A of H. alvei 1192 (data not
ring fragmentation and confirmed the
shown). Peaks with lower intensity at
distribution of the identified fatty
m/z
acids. Interpretation of these types of
correspond to elimination of water
ions makes it possible to define fatty
and 12:0 fatty acid, respectively. The
acid distribution on each GlcN
most abundant ion at m/z 1261.8
residue. In the case of MS2 of the ion
could be the result of elimination of
at m/z 1716.5, such fragments were
14:0(3-OH) at O-3 or O-3′ as a free
identified only for daughter ions and
fatty acid. Because elimination of the
not for the isolated parent ion. Thus,
acyloxyacyl group at O-3′ of the
an
distal GlcN could occur by both
interpretation
of
intra-ring
1488.3
and
m/z
1305.9
fragmentation ions was described
charge-driven
(elimination
as
a
below for MSn analyses of ions with
ketene derivative) and charge-remote
lower m/z ratio (MS2 of the ions at
processes (elimination as free fatty
m/z 1506.3 and 1279.9, and MS3 of
acid), the pair of ions at m/z 1279.8
the ion at m/z 1261.8).
and m/z 1261.8 corresponds to such elimination of 14:0(3-OH) at O-3′.
Further investigation of fatty acid distribution was performed by MS2 and MS3 of the ion at m/z 1506.3 observed in MS analysis of lipid A preparations from both H. alvei 32 and PCM 1192 (Fig. 3A). On the basis of chemical analysis and types of
the
observed
fragment
ions
(described below), the ion at m/z 1506.3 could represent pentaacylated lipid A that is monophosphorylated
Elimination of both 14:0(3-OH) from O-3 as a free fatty acid and from O3′ as a free fatty acid and a ketene derivative
corresponds
to
the
characteristic pair of ions at m/z 1035.8 and 1017.7. The presence of 0,2
A2 (m/z 1221.0) and
2,5
A2 (m/z
1202.6) fragments of the parent ion confirmed the substitution of GlcN by 14:0(3-OH) fatty acid at N-2 (Fig. 3A, inset structures).
at O-4′, consisting of two GlcN, one P group, four 14:0(3-OH) fatty acids,
The most abundant ion at m/z 1261.8
and one 12:0 fatty acid (Fig. 3A,
derived from the MS2 fragmentation
H. Alvei
Page 31
was selected for MS3 in order to
m/z
determine the distribution of the
elimination of 14:0(3-OH) as free
remaining fatty acids (Fig. 3B). The
fatty acid at O-3 (form II), which
m/z value of this isolated ion was in
explains its higher abundance in
agreement with the calculated mass
comparison with the ion at m/z
of two GlcN, one P group, three
1035.8. Ions of lower intensity
14:0(3-OH), and one 12:0 fatty acid.
correspond to molecules that have
Considering the high stability of acyl
lost 14:0(3-OH), have a double bond
amides, the ion at m/z 1261.8 was
at O-3, and a hydroxyl group or
attributed to two forms of the
double bond at O-3′. Several types of
following
diagnostic fragment ions, e.g.
structure:
monophosphorylated
I) lipid
a A,
1017.7
(m/z 976.9),
could
0,4
arise
from
A2 (m/z 690.4),
0,2
A2
2,5
A2
substituted with 14:0(3-OH) at N-2
(m/z 958.8), C1 (m/z 648.0), and Y1
and O-3′ and 14:0(3-O-12:0) at N-2′
(m/z 630.0), were detected from the
and II) a monophosphorylated lipid
parent ion (Fig. 3B, outlined inset
A, substituted with 14:0(3-OH) at N-
structures). These ions confirmed the
2 and O-3 and 14:0(3-O-12:0) at N-
location of the 14:0(3-OH) at N-2,
2′ (Fig. 3B, outlined inset structures).
O-3 or O-3′ and 14:0(3-O-12:0) at N-
These two possible variants differ by
2′.
the presence or lack of 14:0(3-OH) at
elimination of 12:0 from amide-
O-3 or O-3′. Obtained MS3 spectrum
bound 14:0(3-O-12:0) were also
contained ions originating from both
detected (m/z 835.5 from the ion at
forms. The peak at m/z 1243.8 is
m/z 1035.8 and m/z 817.5 from the
consistent with elimination of water
ion at m/z 1017.7), but due to the
(−18 Da). Subsequent elimination of
higher stability of acyl amides, the
14:0(3-OH) at O-3′ (form I) yielded
peaks from these ions exhibited very
a characteristic pair of ions at m/z
low intensities. Two structural forms
1035.8 and 1017.7, corresponding to
for the parent ion (m/z 1261.8) and
the loss of a 14:0(3-OH) as a ketene
interpretation of ions corresponding
derivative (−180 Da) or the loss of a
to the in-source intra- and inter-ring
free
Da),
fragmentation are presented in Fig.
respectively. Alternatively, the ion at
3B. The observed pattern of ions
H. Alvei
fatty
acid
(−198
Ions
corresponding
to
the
Page 32
confirmed that lipid A, represented
of
by the fragment ion at m/z 1506.3, is
presented ...
a
monophosphorylated
disaccharide,
observed
fragment
ions
is
GlcN
substituted
with
14:0(3-OH) at N-2, O-3 and O-3′ and
To determine the structure of the most
abundant
component
corresponding to the most abundant
14:0(3-O-12:0) at N-2′.
ion (m/z 1716.5) in lipid A from both ESI-MSn analysis (supplemental Fig.
H. alvei 32 and PCM 1192, this ion
I) of the fatty acid distribution in
was isolated in MS1 and fragmented
lipid A from both strains was also
in MS2 (Fig. 2, outlined inset
performed for the most abundant ion,
structure). The spectra of lipid A
m/z 1279.9, in the low mass region of
from both strains showed almost
the ESI mass spectrum (Fig. 1).
identical pattern of daughter ions.
Observed fragment ions indicate that
Chemical
this
constituents suggested that this ion
ion
could
tetraacylated
lipid
represent A.
a
ESI-MS2
could
analysis
be
of
attributed
lipid
to
A
the
analysis indicated that this lipid A
monophosphorylated, hexa-acylated
form of H. alvei, represented by the
lipid A form containing two GlcN,
ion
the
one P group, four 14:0(3-OH), one
structure,
14:0, and one 12:0 (Fig. 2, outlined
and
inset structure). Ions at m/z 1516.1,
at
m/z
glucosamine
1279.9, backbone
phosphorylated
at
has
O-4′
substituted with 14:0(3-OH) at N-2
m/z
1488.0,
and
m/z
1472.0,
and O-3, and 14:0(3-O-12:0) at N-2′
correspond to elimination of 12:0,
(supplementary Fig. I, outlined inset
14:0 and 14:0(3-OH), respectively,
structure).
from the parent ion. Product ions from elimination of two acyl groups
Fig. 3.
were also detected: m/z 1287.8 n
Negative ion mode ESI-MS of lipid A from H. alvei 32 represented by an the ion at m/z 1506.3 (outlined inset structure). A: MS2 of the ion at m/z
(elimination of 12:0 and 14:0), m/z 1279.9 [elimination of 14:0(3-O14:0) as a ketene derivative], m/z 1261.8 [elimination of 14:0(3-O-
3
1506.3. B: MS of the ion at m/z 1261.8 (form I and II). Interpretation
H. Alvei
14:0) as fatty acid]. The most abundant daughter ion at m/z 1243.8,
Page 33
corresponded to the elimination of
distribution of the identified fatty
two ester-linked fatty acids, 14:0(3-
acids. Interpretation of these types of
OH) at O-3 and secondary-bound
ions makes it possible to define fatty
14:0 at O-3′ (Fig. 2, outlined inset
acid distribution on each GlcN
structure). Two double bonds were
residue. In the case of MS2 of the ion
formed
the
at m/z 1716.5, such fragments were
eliminations. The mass of the ion at
identified only for daughter ions and
m/z 1243.8 was in agreement with
not for the isolated parent ion. Thus,
the calculated mass of two GlcN
an
(one unsaturated), one P group, two
fragmentation ions was described
14:0(3-OH) fatty acids, one 12:0
below for MSn analyses of ions with
fatty acid, and one 14:1 Δ2 fatty acid
lower m/z ratio (MS2 of the ions at
derivative. Subsequent loss of a 14:1
m/z 1506.3 and 1279.9, and MS3 of
Δ2 from O-3′ as a ketene derivative
the ion at m/z 1261.8).
and
free
as
a
result
fatty
acid
of
yielded
1035.8 and m/z 1017.7, respectively (Fig. 2). The observed elimination of 14:1 Δ2 by both charge-driven (loss of a ketene derivative) and chargeremote processes (loss of a free fatty acid) suggested its location at O-3′ and also its previous substitution by 14:0 (ion at m/z 1243.8). The ions at m/z 708.4 and 690.4 represented A2 fragments [according to the
nomenclature
of
Domon
of
intra-ring
a
characteristic pair of ions at m/z
0,4
interpretation
and
Costello (32)] and could be formed from the ions at m/z 1035.8 and 1017.7, respectively. These ions corresponded to the in-source intraring fragmentation and confirmed the
Further investigation of fatty acid distribution was performed by MS2 and MS3 of the ion at m/z 1506.3 observed in MS analysis of lipid A preparations from both H. alvei 32 and PCM 1192 (Fig. 3A). On the basis of chemical analysis and types of
the
observed
fragment
ions
(described below), the ion at m/z 1506.3 could represent pentaacylated lipid A that is monophosphorylated at O-4′, consisting of two GlcN, one P group, four 14:0(3-OH) fatty acids, and one 12:0 fatty acid (Fig. 3A, outlined inset structure). Almost identical spectra were obtained for the lipid A of H. alvei 1192 (data not shown). Peaks with lower intensity at
H. Alvei
Page 34
m/z
1488.3
and
m/z
1305.9
agreement with the calculated mass
correspond to elimination of water
of two GlcN, one P group, three
and 12:0 fatty acid, respectively. The
14:0(3-OH), and one 12:0 fatty acid.
most abundant ion at m/z 1261.8
Considering the high stability of acyl
could be the result of elimination of
amides, the ion at m/z 1261.8 was
14:0(3-OH) at O-3 or O-3′ as a free
attributed to two forms of the
fatty acid. Because elimination of the
following
acyloxyacyl group at O-3′ of the
monophosphorylated
distal GlcN could occur by both
substituted with 14:0(3-OH) at N-2
charge-driven
a
and O-3′ and 14:0(3-O-12:0) at N-2′
ketene derivative) and charge-remote
and II) a monophosphorylated lipid
processes (elimination as free fatty
A, substituted with 14:0(3-OH) at N-
acid), the pair of ions at m/z 1279.8
2 and O-3 and 14:0(3-O-12:0) at N-
and m/z 1261.8 corresponds to such
2′ (Fig. 3B, outlined inset structures).
elimination of 14:0(3-OH) at O-3′.
These two possible variants differ by
Elimination of both 14:0(3-OH) from
the presence or lack of 14:0(3-OH) at
O-3 as a free fatty acid and from O-
O-3 or O-3′. Obtained MS3 spectrum
3′ as a free fatty acid and a ketene
contained ions originating from both
derivative
the
forms. The peak at m/z 1243.8 is
characteristic pair of ions at m/z
consistent with elimination of water
1035.8 and 1017.7. The presence of
(−18 Da). Subsequent elimination of
0,2
A2 (m/z
14:0(3-OH) at O-3′ (form I) yielded
1202.6) fragments of the parent ion
a characteristic pair of ions at m/z
confirmed the substitution of GlcN
1035.8 and 1017.7, corresponding to
by 14:0(3-OH) fatty acid at N-2 (Fig.
the loss of a 14:0(3-OH) as a ketene
3A, inset structures).
derivative (−180 Da) or the loss of a
(elimination
corresponds
A2 (m/z 1221.0) and
as
to
2,5
free The most abundant ion at m/z 1261.8
fatty
structure:
acid
I) lipid
(−198
a A,
Da),
respectively. Alternatively, the ion at
2
derived from the MS fragmentation
m/z
1017.7
could
arise
from
3
was selected for MS in order to determine the distribution of the remaining fatty acids (Fig. 3B). The
elimination of 14:0(3-OH) as free fatty acid at O-3 (form II), which explains its higher abundance in
m/z value of this isolated ion was in
H. Alvei
Page 35
comparison with the ion at m/z
14:0(3-OH) at N-2, O-3 and O-3′ and
1035.8. Ions of lower intensity
14:0(3-O-12:0) at N-2′.
correspond to molecules that have lost 14:0(3-OH), have a double bond at O-3, and a hydroxyl group or double bond at O-3′. Several types of diagnostic fragment ions, e.g. 0,4
(m/z 976.9),
A2 (m/z 690.4),
0,2
A2
2,5
A2
(m/z 958.8), C1 (m/z 648.0), and Y1 (m/z 630.0), were detected from the parent ion (Fig. 3B, outlined inset structures). These ions confirmed the location of the 14:0(3-OH) at N-2,
ESI-MSn analysis (supplemental Fig. I) of the fatty acid distribution in lipid A from both strains was also performed for the most abundant ion, m/z 1279.9, in the low mass region of the ESI mass spectrum (Fig. 1). Observed fragment ions indicate that this
ion
could
tetraacylated
lipid
represent A.
a
ESI-MS2
analysis indicated that this lipid A
O-3 or O-3′ and 14:0(3-O-12:0) at N-
form of H. alvei, represented by the
2′.
ion
Ions
corresponding
to
the
elimination of 12:0 from amidebound 14:0(3-O-12:0) were also detected (m/z 835.5 from the ion at m/z 1035.8 and m/z 817.5 from the ion at m/z 1017.7), but due to the higher stability of acyl amides, the peaks from these ions exhibited very low intensities. Two structural forms for the parent ion (m/z 1261.8) and interpretation of ions corresponding to the in-source intra- and inter-ring fragmentation are presented in Fig. 3B. The observed pattern of ions confirmed that lipid A, represented by the fragment ion at m/z 1506.3, is a
monophosphorylated
disaccharide,
H. Alvei
substituted
GlcN with
at
m/z
glucosamine
1279.9,
has
backbone
phosphorylated
at
the
structure, O-4′
and
substituted with 14:0(3-OH) at N-2 and O-3, and 14:0(3-O-12:0) at N-2′ (supplementary Fig. I, outlined inset structure). To confirm that the identified fatty acid
distribution
in
monophosphorylated form of H. alvei lipid A follows the same pattern as bisphosphorylated and hexa-acylated molecule, the ion at m/z 1797.3 was isolated and ESIMS2 analysis was carried out for H. alvei 32 (Fig. 4B) and H. alvei PCM 1192 (supplementary Fig. II). Thus, the
results
confirmed
identical
Page 36
distribution of fatty acids in the bisphosphorylated forms of lipid A isolated
from
both
strains
(supplementary Fig. II). Product ions were formed mainly by the loss of phosphoric acid at O-1 (m/z 1698.3) with subsequent elimination of esterbound acyl and acyloxyacyl groups [14:0 (m/z 1470.1), 14:0(3-OH) (m/z 1454.1),
14:0(3-O-14:0)
(m/z
1243.9)] (Fig. 4B). The frequency of the loss of phosphoric acid from the
Fig. 4.
position O-1 was significantly higher
Negative ion mode ESI-MS2 of lipid
than from O-4′ during ESI-MS2
A isolated from H. alvei 32 LPS. A:
analysis due to the lability of
The MS2 of the ion at m/z 2034.6
glycosidically linked P group (28,
(bisphosphorylated
31). Interpretation of the observed
acylated lipid A, outlined inset
fragment ions is presented in Fig. 4
structure). B: The MS2 spectrum of
(inset structures). Ion at m/z 1498.1
the
attributed to the elimination of
(bisphosphorylated
secondary-bound 12:0 fatty acid at
acylated ...
N-2′
exhibited
low
ion
at
and
m/z and
hepta-
1797.3 hexa-
intensity.
Elimination of acyl residues with
The results of compositional analysis
preservation of the P group at O-1
of H. alvei 32 lipid A and the mass
was also observed (m/z 1568.0,
difference (238 Da) between the ion
1552.1, 1323.8).
at m/z 1797.3 (bisphosphorylated and hexa-acylated lipid A) and an ion at m/z 2034.6 (bisphosphorylated and hepta- acylated lipid A) suggested the presence of a 16:0 fatty acid in hepta-acylated lipid A. To confirm that 16:0 is a secondary-linked fatty
H. Alvei
Page 37
acid
substituting
amide-linked
14:0(3-OH) at N-2, MS2 analysis of
ESI-MS analysis of partially deOacylated lipid A
the ion at m/z 2034.6 was performed (Fig. 4A). Observed fragmentation was similar to that observed for the ion
at
m/z
1797.3
(Fig.
4B).
Fragment ions were formed mainly by the loss of the glycosidically linked P group and elimination of primary and secondary, ester-bound acyl and acyloxyacyl groups at O-3 and O-3′ [14:0 (m/z 1708.5), 14:0(3OH) (m/z 1692.4), 14:0(3-O-14:0) (m/z 1500.1/1482.2)]. Elimination of acyl residues with the preservation of P group at O-1 was also observed (m/z 1806.5, 1790.4, 1580.3, 1562.2, 1336.2). Several ions resulting from elimination of 16:0 fatty acid were identified (e.g., m/z 1778.4, 1680.4, 1436.2, 1208.0), further supported the presence of 16:0 in the analyzed structure. The mass difference (200 Da) between pairs of related ions m/z 999.7/981.7 and m/z 799.6/781.7 indicated that 12:0 is a substituent of amide-linked 14:0(3-OH) at N-2′ of the
bisphosphorylated,
acylated lipid A.
hepta-
ESI-MS and ESI-MS2 analyses of partially
deO-acylated
lipid
A
samples allowed the determination of type and location of the seventh fatty acid in the hepta-acylated forms of H. alvei lipid A. The NH4OH treatment leads to partial liberation of ester-linked acyl and acyloxyacyl residues (22, 33). Negative-ion mass spectra of the partially deO-acylated lipid A (Fig. 5A) followed by MS2 analysis (Fig. 5B) gave further information
concerning
hepta-
acylated forms of lipid A from H. alvei 32 and 1192. Several molecular ion peaks were observed at m/z 1371.9, m/z 1291.9, m/z 1133.7, m/z 1053.7, and m/z 951.5 together with their doubly charged variants (Fig. 5A, inset structures). Two of them could
be
explained
by
the
bisphosphorylated (m/z 1371.9) and monophosphorylated (m/z 1291.9) tetra-acylated lipid A that were formed by hydrolysis of 14:0(3-OH) and 14:0(3-O-14:0) at O-3 and O-3′, respectively, from the hepta-acylated lipid A. The ion at m/z 1263.9, contributing
to
an
additional
microheterogeneity of the lipid A
H. Alvei
Page 38
(mass difference of 28 Da). The MS
mono-
and
bis-phosphorylated
analysis also revealed the presence of
molecules. Arrows ...
ion at m/z 453.4 that corresponded to the
deprotonated
14:0(3-O-14:0)
released upon NH4OH hydrolysis.
To confirm the presence of 16:0 as a secondary fatty acid at N-2 of the proximal GlcN, MS2 analysis of an ion at m/z 1291.9 was performed with the use of an ESI-(Q)-TOF mass spectrometer (Fig. 5B). The fragmentation pattern observed for the singly charged ion at m/z 1291.9 revealed the structure showed in Fig. 5B (inset structure), corresponding to the
GlcN
disaccharide
monophosphorylated at O-4′ and substituted with 14:0(3-O-16:0) and 14:0(3-O-12:0) at N-2 and N-2′, respectively. Two ions at m/z 1035.7 and m/z 1091.7 could correspond to elimination
of
16:0
and
12:0,
respectively. Subsequent loss of both fatty acids yielded the ion at m/z 835.5 (Fig. 5B, inset structure). The diagnostic fragment ions, e.g., Fig. 5. A: Negative ion mode ESI-MS mass spectrum obtained for partially deOacylated lipid A (inset structures) isolated from LPS of H. alvei 32. The difference of 80 Da corresponds to the difference in mass between
(m/z 768.4),
0,4
A2 (m/z 708.4),
0,2
A2
2,5
A2
(m/z 750.4), C1 (m/z 666.4), and B1 (m/z 648.4) supported the presence of amide-bound 14:0(3-O-12:0) at N2′ and the free hydroxyl group at position O-3. Most of these ions had analogs resulting from elimination of 12:0
(m/z
568.3,
508.2,
466.2,
448.2). Several ions corresponded to
H. Alvei
Page 39
molecules devoid of one or two
abundant
ions
represented
secondary 12:0 and/or 16:0 fatty
sodium [M+Na]+ (m/z 1741) and
acids (m/z 1053.7, 871.5, 853.4) and
potassium
this could be a result of dissociation
adducts of the monophosphorylated
of solvated deprotonated species at
form of hexa-acylated lipid A and
the skimmer of electrospray source
the B1+ ions (m/z 1087 and 887),
(31). The presence of described ions
arising from the cleavage of the
combined with the ESI-MSn analysis
glycosidic linkage between the two
of native lipid A allowed the
GlcN residues at high laser power
determination of the seventh fatty
settings. The ion at m/z 1087
acid as a constituent of the acyl
corresponds to the average mass of
substituent 14:0(3-O-16:0) at N-2.
the
[M+K]+
phosphorylated
(m/z
the
1757)
tetraacylated
GlcN, substituted with 14:0(3-OMALDI-TOF analysis
12:0) at N-2′ and 14:0(3-O-14:0) at
The structural information provided by the negative ESI-MS analysis was compared with MALDI-TOF MS data
to
confirm
the
proposed
structure of lipid A and above all, the substitution positions of 14:0(3-OH)
O-3′. The B1+ ion devoid of the secondary-bound 12:0 fatty acid at N-2′ was also detected (m/z 887). Elimination of the secondary fatty acid at N-2′ is preferred in positiveion mode MS in comparison to
at O-3 and 14:0 at O-3′ as the
negative-ion mode experiments (34).
“secondary” ester-linked fatty acids.
The presence of such ions provided
These fatty acids were eliminated first
during
experiments.
the
ESI-MS2
MALDI-TOF
mass
spectra of H. alvei 32 lipid A obtained at high laser power in the positive-ion
mode
showed
additional evidence that the N-2′ amide-bound 14:0(3-OH) fatty acid is substituted by a 12:0 and not by a 14:0 fatty acid. DISCUSSION
the
presence of the oxonium ion B1+,
The lipopolysaccharide constitutes
which identified the fatty acids that
the “pathogen-associated molecular
substitute the β-d-GlcN4P residue
pattern” for host infection by Gram-
(supplementary Fig. III). The most
negative bacteria and is among the
H. Alvei
Page 40
most powerful natural activators of
atoms (Fig. 1), conforming to a
the innate immune system (1). Lipid
classical form of enterobacterial-type
A, the center of biological activity of
lipid A. The analyzed lipids A of H.
the
last
alvei are identical with those of E.
uncharacterized region of endotoxins
coli (2, 3), S. typhimurium (35, 36),
isolated from H. alvei.
Serratia
LPS,
has
been
the
marcescens
(37),
Providencia rettgeri (37), Klebsiella To complete the recently published structure of the N,O-deacylated LPS of H. alvei 32 (7), the lipid A isolated
from
LPS
32
was
investigated by qualitative analysis of fatty acids and their location in the lipid A disaccharide backbone was established. Comparative analysis performed by MS suggested that LPS of H. alvei 32, PCM 1192, PCM 1206, and PCM 1207 have the same
oxytoca (33), and Shigella flexneri Sc576 (msbB mutant) (29). The carbohydrate backbone and primarylinked fatty acids of H. alvei lipid A are also similar to those of Klebsiella pneumoniae,
Proteus
Aeromonas
sp.,
mirabilis, Haemophilus
influenzae, Campylobacter jejuni, Shigella
sonnei,
Yersinia
pestis,
Enterobacter agglomerans, Ervinia corotovora, and Rhizobium etli (36).
lipid A structure (Fig. 1, inset structure).
The described form of lipid A warrants
We have now demonstrated that lipid A of H. alvei LPS consists of hexaand
hepta-acylated
molecules.
Detailed mass spectrometric analysis carried out on lipid A isolated from LPS of H. alvei 32 and PCM 1192 showed that their major form was built
of
β-GlcpN4P-(1→6)-α-
maximal
immunostimulatory
activities
of
LPSs (2). Because most of H. alvei LPSs studied to date are smooth-type molecules and have E. coli-type lipid A structure, they would most likely induce high inflammatory response of the innate immunity system during sepsis as well.
GlcpN1P substituted with saturated “primary” (R)-3-hydroxylated and
The
“secondary” nonhydroxylated acyl
forms of H. alvei lipid A resulted
residues of 12 and mostly 14 carbon
from the addition of a palmitate
H. Alvei
presence
of
hepta-acylated
Page 41
(16:0) to 14:0(3-OH) at N-2 of
Salmonella, E. coli, L. pneumophila,
GlcpN. This type of a single
B. bronchiseptica, Y. enterocolitica,
modification of lipid A, called
and Y. pseudotuberculosis (41). The
palmitoylation,
palmitoylation, together with the
observed
was
only
previously
in
a
few
regulated addition of Ara4N and
enterobacterial lipids A of S. enterica
PEtn,
serovar Typhimurium (38), E. coli
environmental conditions and can
(39), and K. pneumoniae (40).
directly protect the bacterium from
Similar modification of an acyl
certain host immune defenses (41).
moiety of lipid A was also observed
Such a modification attenuates the
in
ability of lipid A to activate defense
Legionella
pneumophila,
is
dependent
mechanisms
bronchiseptica,
Yersinia
signal transduction pathway (41) and
Yersinia
provides
and
the
the
Pseudomonas aeruginosa, Bordetella
enterocolitica,
through
on
resistance
TLR4
to
certain
pseudotuberculosis LPS, but in most
cationic antimicrobial peptides (38).
of the cases the palmitoylation
The
position was different (41). It is
presumably
known that palmitoylated lipid A
hydrophobic and van der Waals
usually
interactions in the outer membrane of
coexists
as
a
addition
palmitate
increases
the
other lipid A variants. A palmitate
translocation
chain
a
antimicrobial peptides across the
phospholipid is incorporated into
bilayer. The palmitoylation helps
lipid A by an outer membrane
bacteria to maintain and monitor the
enzyme (PagP). The PagP enzyme
outer membrane permeability and
transfers palimitate chain from the
lipid
sn-1 position of a phospholipid to the
Salmonella, as an enteropathogen,
hydroxyl group of the 14:0(3-OH) at
utilizes lipid A modifications to
N-2 of proximal GlcpN of lipid A
survive within macrophages (41).
(41).
Studies of the immune signaling in
The
gene
pagP
from
and
its
wall, of
asymmetry
functional homologs were identified
human
among several bacteria, for example
chemically
H. Alvei
thus,
the
substoichiometric component with
originating
cell
of
cell
lines
preventing
the
as
cationic
well
showed
synthesized
(41).
that hepta-
Page 42
acylated lipid A has 10- to 100-fold
(18). Thus, H. alvei lipid A structure
lower activity in comparison with its
elucidation and the identification of
hexa-acylated analogs (42).
hepta-acylated variant among other forms of H. alvei lipid A are
Some LPSs of H. alvei and K. pneumoniae
share
their
general
important for the understanding of the pathogenicity of this bacterium.
structure, having structural Kdocontaining motifs in the outer core
Acknowledgments
region (7) and a basic lipid A structure. LPS isolated from the polymyxin-resistant K. pneumoniae O3 mutant contained approximately five times more of the 4-amino-4deoxy-L-arabinopyranose
and
an
The
authors
thank
Marek
Jon,
Faculty of Chemistry, University of Wroclaw, for his help and assistance with the ESI-Q-TOF measurements. Footnotes
increased ratio of hepta-acylated lipid A (the addition of 16:0 fatty
Abbreviations:
acid) compared with that of a
LPS
polymyxin-sensitive
parent
strain
lipopolysaccharide
P group
phosphate group
(40). PCM Polish Collection Inasmuch as many of the already known bacteria
cases
of
of
Microorganisms
Gram-negative
employing
the
TOF
time-of-flight
palmitoylation of lipid A regulate
This work was supported by grants
this process through the PhoP/PhoQ-
No. 6 PO 04A 069 19 from the State
activated pagP gene or its homologs
Committee of Scientific Research
(41), it is possible that H. alvei could
(KBN), Poland, and the Swedish
regulate this process in a similar
Research Council. The collaboration
way. Recent studies showed that
between Polish and Swedish groups
some H. alvei strains were able to
was supported by funds from The
enter and persist in human epithelial
Royal Swedish Academy of Sciences
cells, but little is known about factors
and
contributing to this invasion strategy
Sciences. Part of this work was
H. Alvei
The
Polish
Academy
of
Page 43
presented at the 3rd German-Polish-
4. Janda J. M., Abbott S. L. 2006.
Russian
Bacterial
The genus Hafnia: from soup to nuts.
Poland,
Clin. Microbiol. Rev. 19: 12–18.
Meeting
Carbohydrates,
on
Wroclaw,
October 6–9, 2004.
[PMC free article] [PubMed] 5. Casagrande Proietti P., Passamonti
[S]
The online version of this article
(available
at
http://www.jlr.org)
contains supplementary data in the form of three figures.
F., Pia Franciosini M., Asdrubali G. 2004. Hafnia alvei infection in pullets in Italy. Avian Pathol. 33: 200–204. [PubMed] 6. Kelly W. R. 1993. Patterns of
REFERENCES
hepatic necrosis. In Pathology of 1. Ulmer A. J., Rietschel E. T.,
Domestic Animals, 4th ed.Jubb K. V.
Zähringer
2002.
F., Kennedy P. C., Palmer N.,
structure,
editors. , Academic Press, San
U.,
Heine
Lipopolysaccharide:
H.
bioactivity, receptors, and signal
Diego, CA: 337–346.
transduction. Trends Glycosci. Glyc.
7. Lukasiewicz J., Niedziela T.,
14: 53–68.
Jachymek W., Kenne L., Lugowski
2. Alexander C., Zähringer U. 2002.
C. 2009. Two Kdo-heptose regions
Chemical structure of lipid A - the
identified
primary immunomodulatory center
lipopolysaccharide:
of
core
bacterial
lipopolysaccharides.
Zähringer
U.,
Lindner
structure
Hafnia the and
alvei
32
complete serological
screening of different Hafnia O
Trends Glycosci. Glyc. 14: 69–86. 3.
in
B.,
serotypes. J. Bacteriol. 191: 533–
Rietschel E. T. 1999. Chemical
544. [PMC free article] [PubMed]
structure of lipid A: recent advances
8. Jachymek W., Petersson C.,
in structural analysis of biologically
Helander A., Kenne L., Lugowski C.,
active molecules. In Endotoxin in
Niedziela T. 1995. Structural studies
Health and Disease Brade H., Opal
of the O-specific chain and a core
S. M., Vogel S. N., Morrison D. C.,
hexasaccharide of Hafnia alvei strain
editors. , Marcel Dekker, New York:
1192 lipopolysaccharide. Carbohydr.
93–114.
Res. 269: 125–138. [PubMed]
H. Alvei
Page 44
9. Jachymek W., Petersson C.,
studies
Helander A., Kenne L., Niedziela T.,
polysaccharide of Hafnia alvei strain
Lugowski C. 1996. Structural studies
1209 lipopolysaccharide. Eur. J.
of the O-specific chain of Hafnia
Biochem. 237: 635–641. [PubMed]
alvei strain 32 lipopolysaccharide.
14. Petersson C., Jachymek W.,
Carbohydr.
Klonowska
Res.
292:
117–128.
of
the
A.,
Lugowski
Niedziela
10. Jachymek W., Czaja J., Niedziela
Structural studies of the O-specific
T., Lugowski C., Kenne L. 1999.
chains of Hafnia alvei strains 744,
Structural studies of the O-specific
PCM
polysaccharide of Hafnia alvei strain
lipopolysaccharides.
PCM 1207 lipopolysaccharide. Eur.
Biochem. 245: 668–675. [PubMed]
J. Biochem. 266: 53–61. [PubMed]
15. Petersson C., Jachymek W.,
11. Lugowski C., Jachymek W.,
Kenne L., Niedziela T., Lugowski C.
Niedziela
A.,
1997. Structural studies of the O-
Witkowska D., Romanowska E.
specific chain of Hafnia alvei strain
1995.
PCM
Romanowska
Lipopolysaccharide
core
1194
Kenne
and
1190
L.
C.,
[PubMed]
T.,
T.,
O-specific
1997.
PCM
1210
Eur.
J.
lipopolysaccharide.
region of Hafnia alvei: serological
Carbohydr.
characterization. FEMS Immunol.
[PubMed]
Med.
16. Petersson C., Niedziela T.,
Microbiol.
10:
119–124.
Res.
298:
219–227.
[PubMed]
Jachymek W., Kenne L., Zarzecki P.,
12. Lugowski C., Niedziela T.,
Lugowski C. 1997. Structural studies
Jachymek
of the O-specific polysaccharide of
W.,
Klonowska
A.,
Czarny A., Rowinski S., Petersson
Hafnia
C., Kenne L. 1995. Structural and
lipopolysaccharide
serological
allothreonine. Eur. J. Biochem. 244:
characterization
of
alvei
strain PCM containing
1206 d-
Hafnia alvei lipopolysaccharide core
580–586. [PubMed]
region. Acta Biochim. Pol. 42: 51–
17.
54. [PubMed]
Katzenellenbogen E., Jachymek W.,
13. Niedziela T., Petersson C.,
Niedziela
Helander A., Jachymek W., Kenne
Lugowski
L., Lugowski C. 1996. Structural
lipopolysaccharide core regions of
H. Alvei
Romanowska
T., C.
E.,
Bogulska 1999.
M.,
Non-typical
Page 45
some Hafnia alvei strains: structural
the structural characterization of
and
FEMS
lipid A applied to Citrobacter and
Immunol. Med. Microbiol. 24: 63–
Bordetella strains: discovery of a
71. [PubMed]
new structural element. J. Lipid Res.
18. Padilla D., Acosta F., Bravo J.,
48: 2419–2427. [PubMed]
Grasso V., Real F., Vivas J. 2008.
23. Gerwig G. J., Kamerling J. P.,
Invasion and intracellular survival of
Vliegenthart
Hafnia
Determination of the
serological
alvei
studies.
strains
in
human
J.
F.
G.
1978.
d
and l
epithelial cells. J. Appl. Microbiol.
configuration
105: 1614–1622. [PubMed]
monosaccharides by high-resolution
19. Guo L., Lim K. B., Gunn J. S.,
capillary G.L.C. Carbohydr. Res. 62:
Bainbridge
349–357.
B.,
Darveau
R.
P.,
of
neutral
Hackett M., Miller S. I. 1997.
24. Gerwig G. J., Kamerling J. P.,
Regulation of lipid A modifications
Vliegenthart
by
Determination
Salmonella
typhimurium
J.
F. of
G. the
1979. absolute
virulence genes phoP-phoQ. Science.
configuration of monosaccharides in
276: 250–253. [PubMed]
complex carbohydrates by capillary
20. Gibbons H. S., Kalb S. R., Cotter
G.L.C. Carbohydr. Res. 77: 1–7.
R. J., Raetz C. R. 2005. Role of Mg2+
25. Lukasiewicz J., Dzieciatkowska
and pH in the modification of
M., Niedziela T., Jachymek W.,
Salmonella lipid A after endocytosis
Augustyniuk
by macrophage tumour cells. Mol.
Lugowski
Microbiol. 55: 425–440. [PubMed]
lipopolysaccharide of Plesiomonas
21. Westphal O., Jann K. 1965.
shigelloides O74:H5 (Strain CNCTC
Bacterial
lipopolysacharides:
144/92). 2. Lipid A, its structural
extraction with phenol-water and
variability, the linkage to the core
further applications of the procedure.
oligosaccharide, and the biological
Methods Carbohydr. Chem. 5: 83–
activity of the lipopolysaccharide.
89.
Biochemistry.
22. Tirsoaga A., El Hamidi A., Perry
[PubMed]
M. B., Caroff M., Novikov A. 2007.
26. Wollenweber H. W., Rietschel E.
A rapid, small-scale procedure for
T.
H. Alvei
A., C.
1990.
Kenne
2006.
45:
L.,
Complete
10434–10447.
Analysis
of
Page 46
lipopolysaccharide (lipid A) fatty
analysis by negative electrospray ion
acids. J. Microbiol. Methods. 11:
trap mass spectrometry: stepwise
195–211.
dissociations of deprotonated species
27. Gradowska W., Larsson L. 1994.
under low energy CID conditions.
Determination
Int. J. Mass Spectrom. 249–250: 77–
of
absolute
configurations of 2- and 3-hydroxy
92.
fatty acids in organic dust by gas
32. Domon B., Costello C. E. 1988.
chromatography-mass spectrometry.
A
J. Microbiol. Methods. 20: 55–67.
carbohydrate fragmentations in FAB-
28. Wang Y., Cole R. B. 1996. Acid
MS/MS spectra of glycoconjugates.
and base hydrolysis of lipid A from
Glycoconj. J. 5: 397–409.
Enterobacter
33.
agglomerans
as
systematic
Silipo
nomenclature
A.,
Lanzetta
for
R.,
monitored by electrospray ionization
Amoresano A., Parrilli M., Molinaro
mass spectrometry: pertinence to
A. 2002. Ammonium hydroxide
detoxification mechanisms. J. Mass
hydrolysis: a valuable support in the
Spectrom. 31: 138–149. [PubMed]
MALDI-TOF
29. Kussak A., Weintraub A. 2002.
analysis of lipid A fatty acid
Quadrupole
distribution. J. Lipid Res. 43: 2188–
ion-trap
mass
mass
spectrometry
spectrometry to locate fatty acids on
2195. [PubMed]
lipid A from Gram-negative bacteria.
34. Sforza S., Silipo A., Molinaro A.,
Anal.
Marchelli R., Parrilli M., Lanzetta R.
Biochem.
307:
131–137.
[PubMed]
2004. Determination of fatty acid
30. Lee C. S., Kim Y. G., Joo H. S.,
positions in native lipid A by
Kim B. G. 2004. Structural analysis
positive and negative electrospray
of lipid A from Escherichia coli
ionization mass spectrometry. J.
O157:H7:K-
Mass
using
thin-layer
Spectrom.
39:
378–383.
chromatography and ion-trap mass
[PubMed]
spectrometry. J. Mass Spectrom. 39:
35. Takayama
K.,
514–525. [PubMed]
Mascagni
1983.
31. Madalinski G., Fournier F., Wind
structure of lipid A obtained from the
F. L., Afonso C., Tabet J. C. 2006.
lipopolysaccharides
Gram-negative
heptoseless mutant of Salmonella
H. Alvei
bacterial
lipid
A
P.
Qureshi
N.,
Complete
of
the
Page 47
typhimurium. J. Biol. Chem. 258:
T.,
12801–12803. [PubMed]
Characterization
36. Munford R. S., Varley A. W.
lipopolysaccharides of polymyxin-
2006.
resistant
Shield
as
lipopolysaccharides
signal: and
the
Yokochi
and
T.
1996. of
polymyxin-sensitive
Klebsiella pneumoniae O3. Eur. J.
evolution of immunity to gram-
Biochem. 237: 272–278. [PubMed]
negative bacteria. PLoS Pathog. 2:
41. Bishop R. E. 2005. The lipid A
e67. [PMC free article] [PubMed]
palmitoyltransferase PagP: molecular
37. Takayama K., Qereshi N. 1992.
mechanisms and role in bacterial
Chemical structure of lipid A. In
pathogenesis. Mol. Microbiol. 57:
Bacterial
900–912. [PubMed]
Endotoxic
Lipopolysaccharides Morrison D. C.,
42. Loppnow H., Brade L., Brade H.,
Ryan J. L., editors. , CRC Press,
Rietschel E. T., Kusumoto S., Shiba
Boca Raton, FL: 43–66.
T., Flad H. D. 1986. Induction of
38. Guo L., Lim K. B., Poduje C. M.,
human interleukin 1 by bacterial and
Daniel M., Gunn J. S., Hackett M.,
synthetic lipid A. Eur. J. Immunol.
Miller S. I. 1998. Lipid A acylation
16:
and
bacterial
vertebrate
resistance
antimicrobial
1263–1267.
[PubMed
against peptides.
Cell. 95: 189–198. [PubMed] 39. Lamarche M. G., Kim S. H., Crepin S., Mourez M., Bertrand N., Bishop R. E., Dubreuil J. D., Harel J. 2008.
Modulation
of
hexa-acyl
pyrophosphate lipid A population under Escherichia coli phosphate (Pho) regulon activation. J. Bacteriol. 190: 5256–5264. [PMC free article] [PubMed] 40. Helander Kilpelainen
I. M., I.,
Kato
Y.,
Kostiainen
R.,
Lindner B., Nummila K., Sugiyama
H. Alvei
Page 48
Hafnia alvei
Page 49