FOREIGN SCIENTIST Alessandro Giuseppe Antonio Anastasio Volta Alessandro Guiseppe Antonio Anastasio Volta (b. Como, Italy, 18th Feb.1745, d. Como, Italy, 5th March 1827) was a pioneer in the field of electricity. The SI unit of electric potential was named after him as the Volt. The portrait (above) was featured on the Italian 10,000 Lire banknote. He came from a Lombard family ennobled by the municipality of Como and almost extinguished, in his time, through its service to the church. One of his paternal uncles was a Dominican, another a Canon and the third an Archdeacon. His father, Filipo (1862-1752), after eleven years as a Jesuit, withdrew to propagate the line. Filipo married Maddelena de' conti Inzaghi in 1773. They had seven children; three girls, two of whom became nuns; three boys who followed the careers of their uncles; and Alessandro, the youngest. Alessandro was about seven when his father died. His uncle the Canon took charge of his education. Alessandro joined the local Jesuit College in 1757. His quickness soon attracted the attention of his teachers. In 1761 the philosophy professor, Girolamo Bonensi, tried to recruit him. This made his uncle want to take him from school. Volta continued his education at Seminario Benzi. His uncle wanted him to be an attorney. But, Volta chose the study of electricity. Alessandro was a large, vigorous man. He actively practised the Catholic faith. He, in the words of his friend Lichtenberg, "understood a lot about the electricity of women." For many years he enjoyed the favours of a singer, Marianna Paris, whom he might have married but for his theological and family opinion. Volta developed the concept of 'state of saturation of bodies' to explain attractions and repulsions of electrified bodies. The electrophore he invented was severely criticized by Beccaria, one of the chief authorities in electricity. In 1774, he became the principal of the state Gymnasium in Como. In 1775, he was granted the professorship of experimental physics. Cavendish's memoir of 1771 made Volta transform his notion of 'natural saturation' into the concept of potential. His last memoir was on galvanic and common electricity. Seeing Volta's demonstrations, Napoleon raised him to Count and Senator of the kingdom of Italy. During the last 20 years of his life he had the income of a wealthy man.
James Prescott Joule
James Prescott Joule (b. Salford, England, 24th Dec. 1818, d. Salford, England, 11th October 1889) was the second son of a prosperous brewer. The SI Unit of energy or work was named after him as the Joule. James was not a strong child. He had a spinal injury which left a slight deformity. Because of this, his education was limited. To a large extent he was self taught. He even read relatively little and had no pretence of being a great scientist. When he was 16, he and his brother, Benjamin, studied under Dalton for about two years. His chief contact with the world was with the members of the Manchester Literary and Philosophical Society. He began his quantitative electrical work when he was 19, using a standard resistance of copper wire.
He was a simple, earnest and modest man. He was the first to give an expression for the heat generated in a resistor by current flow, in 1840, and to observe magnetostriction. He spent a major part of his life working on the mechanical equivalence of heat. In 1845, he investigated the relationship between the temperature and the internal energy of gas. In April 1847, he gave a popular lecture in Manchester in which he stated the concept of the conservation of energy. But, it went unnoticed. At a meeting at Oxford in June 1847, he was advised by the chairman to restrict himself to a brief oral report on his experiments, rather than a paper, and not to invite discussion. Fortunately, his idea was grasped by William Thomson, Faraday and Stokes. Recognition to Joule came from Faraday who introduced Joule's 1849 paper to the Society. This paper won for him the 1852 Royal Medal. His last remarkable contribution was work in 1860 which resulted in a significant improvement of steam-engine efficiency. In the same year, he made one of the first accurate galvanometers and calibrated it by use of a voltmeter. He received many awards and medals including the 1870 Copley Medal and a pension from the queen in 1878.
His mother died in 1836. His father retired in 1883 due to illness. James and Benjamin took over the family brewing. James married in 1847 and had a daughter and a son. After the death of his wife in 1854, the brewery was sold. Joule's health became worse as time passed. He suffered from frequent nose-bleeding, presumably haemophilia. But, he kept on working as much as he could until his death.
Georg Simon Ohm Georg Simon Ohm (b. Erlangen, Germany, 16th March 1789, d. Munich, Germany, 6th July 1854) was a mathematician and a physicist. The SI unit of electrical resistance was named after him as the Ohm. His father, Johan Wolfgang Ohm, was a master locksmith. Johan Wolfgang married Maria Elizabeth Beck, daughter of a master tailor. They were a protestant couple. Of their seven children only three survived childhood: Georg Simon the eldest, Martin the mathematician, and Elizabeth Barbara. Johan Wolfgang gave his sons a solid education in mathematics, physics, chemistry and the philosophies of Kant and Fichte. Their mathematical talents were soon recognised by the Erlangen professor Karl Christian Von Langsdorf. Georg Simon matriculated on the 3rd of May 1805 at the University of Erlangen. He studied 3 semesters there until his father's displeasure at his supposed overindulgence in dancing, billiards, and ice skating forced him to withdraw to rural Switzerland. He began to teach mathematics in September 1806 in Gottstadt. He received his PhD on the 25th of October 1811. Lack of money forced him to seek employment from the German government. But, the best he could obtain was a post as a teacher of mathematics and physics at a poorly attended 'Realschule' in Bamberg. He worked there with great dissatisfaction. In 1817, Ohm was offered the position of 'Oberlehrer' of mathematics and physics at the Jesuit Gymnasium at Cologne. He began his experiments on electricity and magnetism after 1820. His first scientific paper was published in 1825 in which he sought a relationship between the decrease in the force exerted by current-carrying wires and the length of the wires. In April 1826, he published two important papers on galvanicm electricity. He published his book on Ohm's law, Die Galvanische Kette Mathematische Bearbeit, in 1827. Sir John Leslie had already provided both theoretical discussion and experimental confirmation of Ohm's law in a paper written in 1791 and published in 1824, which was not accepted. Ohm's law was so coldly received that Ohm resigned his post at Cologne. Ohm obtained the professorship of physics at the Polytechninische Schedule in Nuremberg in 1833. Finally, his work began to be recognised. In 1841, he was awarded the Copley Medal of the Royal Society of London and was made a foreign member a year later.
Charles-Augustin Coulomb Charles-Augustin Coulomb (b. Angouleme, France, 14th June 1736, d. Paris, France, 23rd August, 1806) was a pioneer in the field of electricity, magnetism and applied mechanics. The SI unit of quantity of electric charge was named after him as the Coulomb. In his electrical studies Coulomb determined the quantitative force law, gave the notion of electric mass, and studied charge leakage and the surface distribution of charge on conducting bodies. In magnetism he determined the quantitative force law, created a theory of magnetism based on molecular polarisation, and introduced the idea of demagnetisation.
His father, Henrey, came from Montpellier, where the family was important in the legal and administrative history of Languedoc. His mother, Catherine Bajet, was related to the wealthy de Senac family. During Charles-Augustin's youth the family moved to Paris. Charles-Augustin attended lectures at the College Mazarin and the College de France. An argument with his mother over career plans caused Coulomb to follow his father to Montpellier who became penniless later through financial speculations. Coulomb graduated in November 1761 with the rank of lieutenant en premier in the Corps du Génie. He worked at Brest and then at Martinique. While he was in Martinique he became seriously ill several times. The research he did in Richefort won him the double first prize at the academy in Paris in 1781. He became a resident in Paris. He found a wife there and raised a family. He wrote 25 scientific Momoirs at the Academy from 1781 to 1806. He also participated in 310 committee reports to the Academy. In 1787 Coulomb was sent to England to investigate hospital conditions in London. In 1801 he was elected to the position of the president of the Institute de France. By 1791, the National Assembly reorganized the Corps du Génie. Coulomb had to resign from the corps. He received an annual pension which was reduced by two-thirds after the Revolution. He returned to his research in Paris in December 1795, upon his election as member for physique experiméntale in the new Institute de France. Coulomb's last public service was as inspector general of public instruction from 1802 until his death. Coulomb's health declined precipitously in the early summer of 1806 and he died. Secondary accounts indicate that Revolution took most of his properties and that he died almost in poverty.
Michael Faraday Michael Faraday (b. Newington, Surrey, England, 22nd Sep. 1791, d. Hampton Court, Middlesex, England, 25th August 1867) was a physicist, a chemist, a physical chemist and a natural philosopher. The SI unit of capacitance was named after him as the Farad (F). He was born into a poor family, of which he was he third of four children. His father, James Faraday, was a blacksmith. James Faraday's poor health prevented him from providing more than bare necessities to his family. Michael later recalled that he was once given a loaf of bread to feed him for a week. His parents were members of the Sandemanian Church, and Michael was brought up within this discipline. His most favourite book was the Bible in which he had heavily underlined, Timothy 6:10, "The love of money is the root of all evil." Michael, at the age of 14, was apprenticed to Riebau, a bookseller and a bookbinder, in whose shop he read books on science that came to his hands. In 1812, one of the customers at Riebau's shop, gave Faraday a ticket to attend the last four lectures of a course given by Humphry Davy at the Royal Institution of Great Britain. He applied to Davy for employment, sending him as evidence of his interest the notes that he had made of his lectures. At the age of 21, he was appointed assistance to Davy to help with both lecture experiments and research. He accompanied Davy on a tour in Europe where he saw much of the active scientific research. In 1821, he married Sarah Barnard, a union that was happy though childless. Faraday became the discoverer of electromagnetic induction, of the laws of electrolysis, and of the fundamental relations between between light and magnetism. He was the originator of the conceptions that underlie the modern theory of the electromagnetic field. He also discovered two unknown chlorides of carbon and a new compound of carbon. His last discovery was the rotation of the plane of polarization of light in magnetic field. When Faraday was endeavouring to explain to the Prime Minister or to the Chancellor of the Exchequer an important discovery, a politician's alleged comment was, "But, after all, what use is it?" Whereupon Faraday replied, "Why sir, there is a probability that you will soon be able to tax it!" His mind deteriorated rapidly after the mid-1850s. In 1862, he resigned his position at the Royal Institution, retiring to a house provided for him by Queen Victoria at Hampton Court.
Joseph Henry
Joseph Henry (b. Albany, NY, USA, 17th December 1797, d. Washington, USA, 13th May 1878) was a pioneer in the field of electromagnetism. The SI unit of inductance was named after him as the Henry (H). He was born to a poor family of Scottish descent and raised as a Presbyterian, a faith he followed throughout his life. His elementary education was in Albany and Galway, New York, where he stayed with relatives. Henry was apprenticed to an Albany watchmaker and silversmith. The theater was his principal interest as an adolescent, until a chance reading of George Gregory's Popular Lectures on Experimental Philosophy, Astronomy, and chemistry turned him to science. In 1819 he enrolled in the Albany Academy and remained there until 1822, with a year off to teach in a rural school in order to support himself. He did odd surviving jobs while he was doing his scientific research. in 1825, Henry was appointed professor of mathematics and natural philosophy at the Albany Academy. In 1832, he accepted a chair at the College of New Jersey. Henry's earliest known work was in chemistry. In 1827, he started active research on electricity and magnetism. Throughout his career, Henry was interested in terrestrial magnetism and other geophysical topics. He independently uncovered the sense of Ohm's law and engaged in impedance matching. In 1832, Henry discovered self-inductance following some experiments. He also conducted investigations on capillarity, phosphorescence, heat, colour blindness and the relative radiation of solar spots with skill and imagination. His 1835 paper was on the action of a spiral conductor in increasing the intensity of galvanic currents. He conceived of astronomy as the model science and mechanics as the ultimate analytical tool. Henry could not accept Faraday's field concept because of his belief in central forces acting in a universal fluid. He concluded that the currents are oscillatory wave phenomena exciting equivalent effects in an electrical plenum coincident, if not identical, with the universal aether. Henry formed the Smithsonian Committee, consisting of dedicated men forming internationally recognized standards and engaging in free and harmonious intellectual intercourse among themselves. Being the secretary of the Smithsonian, he was not interested in popularizing science but with supporting research and disseminating findings.
Wilhelm Eduard Weber
Wilhelm Eduard Weber (b. Wittenberg, Germany, 24th October 1804, d. Gottingen, Germany, 23rd June 1891) was one of the twelve children of Michael Weber, professor of theology at the University of Wittenberg. The family lived in the house of Christian August Langguth, a professor of medicine and natural history. The house was burned during the bombardment of Wittenberg by the Prussians in 1813. The following year the Webers settled in Halle. Wilhelm began his scientific work in collaboration with Ernest Heinrich at the University of Halle. Wilhelm published his famous paper, which contained experimental investigations of water and sound waves, in 1825. In 1831, he became the professor of physics at Gottingen, where his friendship with Gauss began. In 1832, Weber introduced absolute units of measurements into magnetism. Gauss and Weber founded the Gottingen Magnetische Verenin to initiate a network of magnetic observations and to correlate the resulting measurements. In 1833, they set up a battery-operated telegraph line some 9,000 feet long, between the physics and astronomical observatory, in order to facilitate simultaneous magnetic observations. Weber also managed to find time to work with his younger brother Eduard on the physiology and physics of human locomotion.
With the death of William IV in 1837, Victoria became the queen of England and her uncle, Ernst August, acceded to the rule of Hannover and at once revoked the liberal constitution of 1833. Weber was one of the seven Gottingen professors who signed a statement of protest. At the king's order all the seven lost their positions. But, Weber continued his research. In 1843, Weber became the professor of physics at Leipzig. There he formulated his law of electrical force, which was later discarded with the triumph of Maxwell's field theory. In 1848, he was able to return to his old position. Weber retired in 1870's, relinquishing his duties in physics to his assistant, Edward Rieche. Rieche, later began the development of electron theory of metals from Weber's ideas. Weber received many honours from Germany, France, and England, including the title of Geheimrat and the Royal Society's Copley Medal. The SI unit of magnetic flux was named after him as the Weber (Wb). Weber, a friendly, modest, and unsophisticated man, remained unmarried. He died peacefully in his garden.
Heinrich Rudolf Hertz
Heinrich Rudolf Hertz (b. Hamburg, Germany, 22nd Feb. 1857, d. Bonn, Germany, 1st January 1894), a physicist, whose research has come to be regarded as the starting point of radio - it was he who first detected and measured electromagnetic waves in space. The SI unit of frequency was named after him as the Hertz (Hz). His grandfather, Heinrich David Hertz, the youngest son of a wealthy Jewish family was converted to the Lutheran faith along with his wife and children. David Heinrich Hertz's son, Gustav, became a Minister of Justice and was the first to attend a university in the family. He married a classmate's sister, Anna Elisabeth Pfefferkorn, and had five children, the eldest of whom was Heinrich Rudolf Hertz. He was an exceptionally gifted child and excelled in every way. After completing his secondary education, he wanted to be a structural engineer and served as an apprentice in a civil engineering office. Reading a lot of books, he became interested in telegraphy and enrolled in the Technical University of Dresden. Finding the level of instruction low for him, after one semester, he embarked on his year of compulsory military service. He then enrolled in the Technical University of Munich to do physics, but later, switched to the University of Munich. He was still not satisfied, and after two semesters transferred to the University of Berlin where Gustav Kirchhoff and Hermann Helmholtz taught physics. Very soon he was working as a student assistant to Helmholtz. He graduated the following year, before which he had written two papers on his research - determining if electrons have inertial mass and induction in rotating spheres. He obtained his doctorate in 1880 and was appointed assistant of Helmholtz. After three years, he went to the University of Kiel to become a lecturer in physics and soon he was promoted and became a professor at the Technical High School in Karlsruhe, and then he went to the University of Bonn. In 1886 he married Elizabeth Doll, and started his research on electric waves. He wrote many papers not only in electromagnetism but also in the theory of contact mechanics and the measurement of hardness. Suffering a severe illness which led to chronic blood poisoning he died after indescribable suffering. He was an extremely modest man and once denying the request for publishing his portrait he said, "... Too much honour certainly does me harm in the eyes of reasonable men..." and four years after, following his death, his portrait was published.
Charles William Siemens Charles William Siemens (ne: Carl Wilhelm Siemens, b. Lenthe, Germany, 4th April 1823, d. London, England, 9th November 1883) was a pioneer in the practical application of scientific discoveries to industrial processes. The SI unit of electrical conductance was named after him as the Siemens (S). Christian Ferdinand Siemens, a wealthy farmer, and his wife, Eleonore Deichmann had eleven sons and three daughters, of whom Charles William was the seventh child. In July 1839, Eleonore died. Unable to bear this loss, Ferdinand died six months later. A few years later, the children were dispersed among relations and friends. Siemens went to England in 1843. Being a shrewd businessman, he sold the patent of the electroplating invention of his elder brother, Werner. William was naturalised as a British subject on the 19th of March 1859. On the 23rd of July he same year, he married Anne Gordon. Siemens Brothers, founded in 1865 by William and Werner, soon became a world famous manufacturer of telegraphic equipment, cables, dynamos and lighting equipment. William was a member of the Society of Telegraph Engineers; the British Association, the Institution of Civil Engineers, and the Institute of Mechanical Engineers and a fellow of the Royal Society. He developed a highly successful meter for measuring water consumption. His important invention of the regenerative gas furnace and its application to open-hearth steel making and other industrial processes made him independently wealthy before 1870. In 1874, he designed the cable ship 'Faraday' and assisted in the laying of the first of several transatlantic cables. During the last 15 years of his life he actively supported the development of the engineering profession and stimulated public interest in the reduction of air pollution and the potential value of electric power in a wide variety of engineering applications. Suffering an acute pain in the region of the heart for a few weeks, he was attacked by a difficulty of breathing. As he was sitting in his arm chair, peacefully and quietly, as if he were falling asleep, his spirit passed away. The burial took place on the 26th of November, followed by a very grand funeral service. As he had requested, the inscription on his coffin contained simply his name. The Institute of Civil Engineers erected a stained glass window in Westminster Abbey as a tribute of respect in his memory.
James Dewey Watson
James Dewey Watson (born April 6, 1928) is an American molecular biologist, best known as one of the codiscoverers of the structure of DNA. Watson, Francis Crick, and Maurice Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine “for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material”. He studied at the University of Chicago and Indiana University and subsequently worked at the University of Cambridge’s Cavendish Laboratory in England where he first met Francis Crick. In 1956 he became a junior member of Harvard University’s Biological Laboratories until 1976, but in 1968 served as Director of Cold Spring Harbor Laboratory on Long Island, New York and shifted its research emphasis to the study of cancer. In 1994 he became its President for ten years, and then subsequently served as its Chancellor until 2007, when he was forced into retirement by controversy over several comments about race and intelligence. Between 1988 and 1992 he was associated with the National Institutes of Health, helping to establish the Human Genome Project. He has written many science books, including the seminal textbook The Molecular Biology of the Gene (1965) and his bestselling book The Double Helix (1968) about the DNA Structure discovery. BIOGRAPHY Watson was born in Chicago, Illinois, on April 6, 1928, the son of a businessman, also named James Dewey Watson, and Margaret Jean Mitchell. His father was of midwestern English descent. His mother’s father Lauchlin Mitchell, a tailor, was from Glasgow, Scotland, and her mother, Lizzie Gleason, was the child of Irish parents from Tipperary. Watson was fascinated with bird watching, a hobby he shared with his father. Watson appeared on Quiz Kids, a popular radio show that challenged precocious youngsters to answer questions. Thanks to the liberal policy of University president Robert Hutchins, he enrolled at the University of Chicago at the age of 15. After reading Erwin Schrödinger’s book What Is Life? in 1946, Watson changed his professional ambitions from the study of ornithology to genetics. He earned his B.S. in Zoology from the University of Chicago in 1947. In his autobiography, Avoid Boring People, Watson describes the University of Chicago as an idyllic academic institution where he was instilled with the capacity for critical thought and an ethical compulsion not to suffer fools who impeded his search for truth, in contrast to his description of his later work at Harvard University.