B. PROSES GLIKOLISIS Glikolisis adalah rangkaian reaksi kimia penguraian glukosa (yang memiliki 6 atom C) menjadi asam piruvat (senyawa yang memiliki 3 atom C),NADH, dan ATP. NADH (Nikotinamida Adenina Dinukleotida Hidrogen) adalah koenzim yang mengikat elektron (H), sehingga disebut sumber elektron berenergi tinggi. ATP (adenosin trifosfat) merupakan senyawa berenergi tinggi. Setiap pelepasan gugus fosfatnya menghasilkan energi. Pada proses glikolisis, setiap 1 molekul glukosa diubah menjadi 2 molekul asam piruvat, 2 NADH, dan 2 ATP. Glikolisis
memiliki
sifat-sifat,
antara
lain:
glikolisis
dapat
berlangsung
secara aerob maupun anaerob, glikolisis melibatkan enzim ATP dan ADP, serta peranan ATP dan ADP pada glikolisis adalah memindahkan (mentransfer) fosfat dari molekul yang satu ke molekul yang lain. Pada sel eukariotik, glikolisis terjadi di sitoplasma(sitosol). Glikolisis terjadi melalui 10 tahapan yang terdiri dari 5 tahapan penggunaan energi dan 5 tahapan pelepasan energi. Berikut ini reaksi glikolisis secara lengkap: Dari skema tahapan glikolisis menunjukkan bahwa energi yang dibutuhkan pada tahap penggunaan energi adalah 2 ATP. Sementara itu, energi yang dihasilkan pada tahap pelepasan energi adalah 4 ATP dan 2 NADH. Dengan demikian, selisih energi atau hasil akhir glikolisis adalah 2 ATP + 2 NADH. Tahapan Glikolisis Glikolisis secara harfiah berarti pemecahan glukosa atau dekomposisi. Melalui proses ini, satu molekul glukosa sepenuhnya dipecah untuk menghasilkan dua molekul asam piruvat, dua molekul ATP dan dua NADH (Reduced nikotinamida adenin dinukleotida) radikal yang membawa elektron yang dihasilkan. Butuh waktu bertahun-tahun penelitian melelahkan dalam biokimia yang mengungkapkan tahap-tahap glikolisis yang membuat respirasi selular mungkin. Berikut adalah berbagai tahap yang disajikan dalam urutan awal terjadinya dengan glukosa sebagai bahan baku utama. Seluruh proses melibatkan sepuluh tahap dengan membentuk produk pada setiap tahap dan setiap tahap diatur oleh enzim yang berbeda. Produksi berbagai senyawa di setiap tahap menawarkan entry point yang berbeda ke dalam proses. Itu berarti, proses ini dapat langsung mulai dari tahap peralihan jika senyawa yang reaktan pada tahap yang langsung tersedia.
Langkah Proses Glikolisis Tahap 1: Fosforilasi Glukosa oleh ATP Tahap pertama adalah fosforilasi glukosa atau penambahan gugus fosfat pada glukosa. Reaksi ini dibantu oleh enzim heksokinase yang memisahkan satu kelompok fosfat dari ATP dan menambahkannya ke glukosa, mengubahnya menjadi glukosa 6-fosfat. Proses glikolisis ini memerlukan satu molekul ATP dan diubah menjadi ADP karena pemisahan satu kelompok fosfat. Reaksi keseluruhan dapat diringkas sebagai berikut: C6H12O6 + ATP + heksokinase → C6H11O6P1 + ADP \
Tahap 2: Produksi Fruktosa 6 Fosfat Tahap kedua adalah pembuatan fruktosa 6-fosfat. Proses glikolisis yang ke dua dibantu oleh enzim fosfoglukosaisomerase. Tahap ini mengubah produk dari tahap sebelumnya, yaitu glukosa 6-fosfat yang diubah menjadi fruktosa 6-fosfat. Fruktosa 6-fosfat merupakan isomer (Isomer adalah molekul yang berbeda dengan rumus molekul yang sama tetapi susunan atomnya berbeda. Reaksi kimia tahap ini sebagai berikut: C6H11O6P1 + Enzim Phosphoglucoisomerase → C6H11O6P1
Tahap 3: Produksi Fruktosa 1, 6-difosfat Pada tahap berikutnya, Fruktosa isomer 6-fosfat diubah menjadi fruktosa 1, 6-difosfat dengan penambahan kelompok fosfat. Konversi ini dibantu oleh enzim fosfofruktokinase yang memanfaatkan satu molekul ATP. Reaksi ini diringkas sebagai berikut: C6H11O6P1 + enzim fosfofruktokinase + ATP → C6H10O6P2
Tahap 4: Pemecahan Fruktosa 1, 6-difosfat Pada tahap keempat, enzim aldolase memisahkan Fruktosa 1, 6-difosfat menjadi dua molekul gula yang berbeda, keduanya isomer satu sama lain. Adapun gula yang terbentuk adalah gliseraldehida fosfat dan fosfat dihidroksiaseton. Reaksinya sebagai berikut: C6H10O6P2 + Enzim aldolase → C3H5O3P1 + C3H5O3P1
Tahap 5: interkonversi Dua Glukosa Fosfat dihidroksiaseton adalah molekul hidup pendek. Dibuat secara cepat, kemudian diubah menjadi fosfat gliseraldehida oleh enzim fosfat triose. Jadi dalam totalitas, tahap keempat dan kelima dari glikolisis menghasilkan dua molekul fosfat gliseraldehida. C3H5O3P1 + enzim fosfat triose → C3H5O3P1
Tahap 6: Pembentukan NADH & 1,3-Bifosfogliserat Tahap keenam melibatkan dua reaksi penting. Pertama adalah pembentukan NADH dari NAD + dengan menggunakan enzim fosfat dehidrogenase triose dan kedua adalah penciptaan 1,3- asam bifosfogliserat dari dua molekul fosfat gliseraldehida yang dihasilkan pada tahap sebelumnya. Reaksi keduanya adalah sebagai berikut: Enzim Fosfat dehidrogenase Triose + 2 NAD + + 2 H-→ 2NADH + 2 H + Enzim fosfat dehidrogenasi Triose + fosfat gliseraldehida + 2 (C3H5O3P1) + 2P → 2 molekul asam 1,3Bifosfogliserat (C3H4O4P2)
Tahap 7: Produksi ATP & 3-fosfogliserat Asam Tahap ketujuh melibatkan pembuatan 2 molekul ATP bersama dengan dua molekul asam 3-fosfogliserat dari reaksi fosfogliserokinase pada dua molekul asam 1,3-diphoshoglyceric yang dihasilkan dari tahap sebelumnya . C3H4O4P2 + 2ADP phosphoglycerokinase → C3H5O4P1 + 2ATP
Tahap 8: Relokasi Atom Fosfor Tahap delapan adalah reaksi penataan ulang sangat halus yang melibatkan relokasi dari atom fosfor dalam asam 3-fosfogliserat dari karbon ketiga dalam rantai untuk karbon kedua dan menciptakan
asam
2
-
fosfogliserat.
Reaksi
seluruh
diringkas
sebagai
berikut:
2 molekul C3H5O4P1 + enzim fosfoogliseromutase → 2 molekul C3H5O4P1
Tahap 9: Menghilangkan Molekul Air Enzim enolase datang ke dalam untuk menghilangkan sebuah molekul air dari asam 2fosfogliserat untuk membentuk asam yang lain yaitu asam fosfoenolpirupat (PEP). Reaksi ini mengubah kedua molekul asam 2-fosfogliserat yang terbentuk pada tahap sebelumnya.
2 molekul C3H5O4P1 + enzim enolase -> 2 molekul (PEP (C3H3O3P1) + H2O 2
Tahap 10: Pembentukan asam piruvat dan ATP Tahap ini menghasilkan dua molekul ATP dan dua molekul asam piruvat dengan bantuan enzim piruvatkinase pada dua molekul asam fosfoenolpiruvat dihasilkan pada tahap sebelumnya. Hal ini dimungkinkan setelah terjadi transfer dari atom fosfor dari asam fosfoenolpiruvat (PEP) untuk ADP. 2 molekul PEP (C3H3O3P1) + + 2ADP + enzim piruvatkinase → 2ATP + 2 molekul asam piruvat
C. SIKLUS ASAM SITRAT Siklus asam sitrat atau yang dikenal juga dengan sebagai (siklus krebs) atau siklus asam trikarboksilat merupakan lintasan akhir bersama oksidasi karbohidrat, lipid dan protein. HA Krebs(1937) yang telah memberikan sumbangan percobaan eskperimental dan konseptual agar siklus ini dapat dipahami. Siklus Krebs terkait dengan segi metabolisme biokimia yang sebenarnya; bahan yang masuk berasal dari karbohidrat dan keluar membentuk lemak, sedangkan bahan yang masuk berasal dari asam amino dan keluar membentuk karbohidrat. Namun, jarang sekali dari lemak menuju karbohidrat. Glukosa, asam lemak dan banyak asam amino akan dimetabolisasi menjadi asetil koA atau intermediet yang ada pada siklus asam sitrat. Asetil koA selanjutnya dioksidasi yang akan menghasilkan hidrogen atau elektron sebagai ekuivalen pereduksi. Hidrogen tersebut kemudian memasuki rantai respirasi tempat sejumlah besar ATP dihasilkan dalam prses fosforilasi oksidatif. Enzim enzim yang berperan pada siklus asam sitrat terdapat didalam mitokondria. Siklus krebs disebut siklus asam sitrat karena menggambarkan langkah pertama dari siklus tersebut, yaitu penyatuan asetil KoA dengan asam oksaloasetat untuk membentuk asam sitrat. Siklus ini juga berperan sentral dalam glukoneogenesis, liogenesis, dan interkonversi asam-asam amino. Banyak proses ini berlangsung di sebagian besar jaringan, tetapi hati adalah satu-satunya jaringan tempat semuanya berlangsung dengan tingkat yang signifikan. Jadi,akibat yang timbul dapat parah, contohnya jika sejumlah sel hati rusak, seperti pada hepatitis akut atau
diganti oleh jaringan ikat (seperti pada sirosis). Beberapa defek genetik pada enzim-enzim siklus asam sitrat yang pernah dilaporkan menyebabkan kerusakan saraf berat karena sangat terganggunya pembentukan ATP di sistem saraf pusat. Selain disebut dengan siklus asam sitrat, siklus krebs juga disebut siklus asam trikarboksilat (─COOH) karena hampir di awal-awal siklus krebs, senyawanya tersusun dari asam trikarboksilat. Trikarboksilat itu merupakan gugus asam (─COOH). Kelebihan asetil-KoA dalam hati digunakan untuk menghasilkan benda keton, yang mengarah ke keadaan ketosis. Selama proses ini, konsentrasi glukagon tinggi hadir dalam serum, yang inactivates heksokinase dan fosfofruktokinase-1 (regulator dari glikolisis) secara tidak langsung, menyebabkan sel-sel yang paling dalam tubuh untuk menggunakan asam lemak sebagai sumber energi utama mereka. Otak tidak dapat menggunakan asam lemak untuk energi karena asam lemak tidak dapat melewati sawar darah-otak. Namun, badan-badan keton yang dihasilkan dalam hati dapat melintasi penghalang darah-otak. Di otak, badan-badan keton ini kemudian dimasukkan ke dalam asetil-KoA dan digunakan dalam siklus Krebs. Asetil KoA + 3 NAD + FAD + ADP + HPO42- —> 2 CO2 + KoA + 3 NADH+ + FADH+ + ATP
Tujuan Siklus Krebs Adapun tujuan dari siklus krebs adalah sebagai berikut: 1. Menjelaskan reaksi-reaksi metabolik akhir yang umum terdapat pada jalur biokimia utama katabolisme tenaga 2. Menggambarkan bahwa CO2 tidak hanya merupakan hasil akhir metabolisme, namun dapat berperan sebagai zat antara, misalnya untuk proses lipogenesis. 3. Mengenali peran sentral mitokondria pada katalisis dan pengendalian jalur-jalur metabolik tertentu, mitokondria berfungsi sebagai penghasil energi.
Fungsi Siklus Krebs Fungsi siklus krebs adalah sebagai berikut: 1. Menghasilkan sebagian besar CO2.
2. Metabolisme lain yang menghasilkan CO2 misalnya jalur pentosa phospat atau P3 (pentosa phospat pathway) atau kalau di harper heksosa monofosfat. 3. Sumber enzim-enzim tereduksi yang mendorong RR ( Rantai Respirasi). 4. Merupakan alat agar tenaga yang berlebihan dapat digunakan untuk sintesis lemak sebelum pembentukan TG untuk penimbunan lemak. 5. Menyediakan prekursor-prekursor penting untuk sub-sub unit yang diperlukan dalam sintesis berbagai molekul. 6. Menyediakan mekanisme pengendalian langsung atau tidak langsung untuk lain-lain sistem enzim.
Tahap-tahap Daur Siklus Krebs
Reaksi 1: Pembentukan Sitrat Reaksi pertama dari siklus krebs adalah kondensasi asetil-KoA dengan oksaloasetat untuk membentuk sitrat dikatalisasis oleh sitrat sintase yang membentuk ikatan karbon-ke-karbonan antara karbon metal pada asetil-KoA dan karbon karbonil pada oksaloasetat. Ikatan tiotester pada sitril-KoA yang terbentuk mengalami hidrolisis dan membebaskan sitrat dan KoASH suatu reaksi eksotermik.
Reaksi 2: Pembentukan Isositrat Sitrat yang disusun kembali untuk membentuk bentuk isomer, isositrat oleh enzim acontinase. Dalam reaksi ini, molekul air akan dihapus dari asam sitrat dan kemudian dimasukkan kembali di lokasi lain. Efek keseluruhan dari konversi ini adalah bahwa gugus-OH dipindahkan dari posisi 3 ‘ke 4’ pada molekul. Transformasi ini menghasilkan molekul isositrat.
Reaksi 3: Oksidasi Isositrat menjadi α-ketoglutarat Pada langkah ini, dehidrogenasi isositrat mengkatalisis dekarboksilasi oksidatif dari isositrat untuk membentuk α-ketoglutarat. Dalam reaksi, turunan NADH dari NAD terlihat. Enzim isositrat dehidrogenase mengkatalisis oksidasi dari gugus -OH pada posisi 4 ‘dari isositrat
untuk menghasilkan perantara yang kemudian memiliki molekul karbon dioksida dihapus dari itu untuk menghasilkan alpha-ketoglutarat.
Reaksi 4: Oksidasi α-ketoglutarat menjadi suksinil –KoA Alpha-ketoglutarat teroksidasi, karbon dioksida akan dihapus, dan koenzim A ditambahkan untuk membentuk senyawa 4-karbon suksinil-KoA. Selama oksidasi ini, NAD + direduksi menjadi NADH + H +. Enzim yang mengkatalisis reaksi ini adalah alpha-ketoglutarat dehidrogenase.
Reaksi 5: Mengubah suksinil -KoA menjadi suksinat KoA dihapus dari suksinil-KoA untuk menghasilkan suksinat.Energi yang dilepaskan digunakan untuk membuat guanosin trifosfat (GTP) dari guanosin difosfat (GDP) dan Pi oleh fosforilasi tingkat substrat. GTP kemudian dapat digunakan untuk membuat ATP. Enzim suksinil-KoA sintase mengkatalisis reaksi ini dari siklus asam sitrat.
Reaksi 6: Oksidasi suksinat menjadi fumarat Suksinat dioksidasi menjadi fumarat. Selama oksidasi ini, FAD direduksi menjadi FADH2. Enzim suksinat dehidrogenase mengkatalisis pemindahan dua hidrogen dari suksinat.
Reaksi 7: Hidrasi Fumarat menjadi Malat Hidrasi reversibel fumarat menjadi L-malat dikatalisis oleh fumarase (fumarat hidratase). Fumarase berlanjut ke proses penataan ulang dengan menambahkan hidrogen dan oksigen kembali ke substrat yang telah dihapus sebelumnya.
Reaksi 8: Oksidasi Malat menjadi oksaloasetat Malat dioksidasi untuk menghasilkan oksaloasetat, senyawa awal dari siklus asam sitrat oleh dehidrogenase malat. Selama oksidasi ini, NAD + direduksi menjadi NADH + H +.
Jumlah ATP yang dihasilkan selama siklus krebs adalah 12 ATP 3 NAD + = 9 ATP 1 FAD = 2 ATP 1 ATP = 1 ATP