Six Sigma
En un comienzo.. . •
La historia de Six Sigma comienza en Motorola. La compañía recibía muchas quejas de sus clientes que decían que, aunque les gustaba hacer negocios con Motorola, querían un nivel de servicio más elevado en lo referente a entregas, finalización de pedidos, exactitud en los datos de las transacciones, etc.
•
Como consecuencia de esto, la compañía lanzó en 1987 un programa de control de calidad a largo plazo llamado “programa de calidad Six Sigma”. El propósito de este programa era mejorar la satisfacción del cliente, reduciendo al mínimo o eliminando los defectos y variaciones en los productos y procesos.
•
¿Porque Six Sigma? El nombre se escogió para reflejar el objetivo principal del programa de calidad, es decir, medir el numero de defectos y variaciones y reducirlo. El “programa de calidad Six Sigma” tuvo un éxito enorme. Otras grandes empresas como Ford, Caterpillar y General Electric lo han implementado.
Pero….
que es Six Sigma?
Es una metodologia que se enfoca en la mejora de procesos satisfaccion del cliente y resultados financieros La meta de todo proceso Six Sigma es: -minimizar la variacion -centrar el proceso, de tal manera que el centro del valor alcanzado se encuentre al menos a 6 desviaciones estandar de lo que se considera no aceptable (o el limite superior e inferior de la especificacion).
Proceso Six Sigma Six Sigma
Limite inferio r 99.9996% del producto de acuerdo a especificacion
6σ 5σ
4 σ
3σ
Limite superio r
Centro del proceso
2 σ
σ
σ
2 σ
3σ
4 σ
5σ 6σ
Que es Sigma (σ)?
Sigma es un simbolo que representa el grado de variacion de un proceso. En estadistica representa la desviacion estandar, que por definicion es la medida en la cual los numeros se encuentran dispersos con relacion a su promedio. Se representa con la ecuacion:
σ = Σ ( X-Xn )2 n-1
N= numero de muestras X= promedio
Significado practico de 6S 99% Correcto (4σ) Servicio Postal 20,000 articulos perdidos cada hora
99.99966% Correcto (6σ) 7 articulos perdidos por hora
Aerolineas 2 aterrizajes forzosos diarios
1 aterrizaje forzoso cada 5 años
Medicos 200,000 prescripciones erroneas al año
68 prescripciones erroneas al año
Que sig nifi ca 6 Si gma e n la vid a diaria ?
P Asesoria Recetas PM’ Cuentas en restaurantes 1000000 legal medicas s100000 Procesamiento de nomi 10000
σ
%non1000 defective 100
2 3 4 5 6
10 69.1% 93.32% 1 99.379% 1 99.9767% 99.99966%
2
3
4
Manejo de equipaje Mejor en su Segurid Clase ad en Aerolin 5 6 7 6σ eas
Sigma Level
Pero…que es Six Sigma? Es una metodologia, es decir, una forma de desarrollar un proyecto basada en el trabajo en equipo.
Los equipos Six Sigma deben: • Tener un problema especifico • Tener un objetivo o meta establecido • Ser multi-funcionales • Tener un lider (green-black belt) • Tener sesiones periodicas programadas
Miembros de un equipo Six Sigma Extended Team
Core Team Six Sigma Project
Master Black Belt
Belt Sponsor
En que consiste la metodologia 6S?
D M AI C
DEFINIR MEDIR
ANALIZAR MEJORAR CONTROLAR
Herramientas Six Sigma Medicion: Mapeo de Proceso Matriz Causa-Efecto Analisis del Sistema de Medicion
Analisis: Estudio de Capacidad Multi-vari Analisis Estadistico Mejora: Diseno de Experimentos Diseno a prueba de error Control: Plan de Control
Project Tracker
Project Start Date = Charter signed by belt Develop Charter Review 6 Project Approved & Sigma & other Schedule on Database Database
Project hopper and Sponsor role Project Hopper
Define
“Y” Identified
Draft Charter
10/7/03 10/07/03
Process Map
C&E Matrix or FTA
30 day MBB check-in
Preliminary FMEA or FTA
11/10/03
11/17/03
12/01/03
10/8/03
10/10/03
10/07/03
10/08/03
MBB Review
MSA
Measure 10/27/03
Initial Capability Study
Multi-Vari
Analyze
MBB Revie w
Contract Approval
12/15/033
Legend
12/15/03
Actual completion date Completion check
M/D/Y 12/26/03
One Factor or Multiple Factor Testing (DOE)
Improve 3/5/04
Control Plan
1/20/04
1/20/04
1/21/04
M/D/Y
Planned completion date MBB Revie w
Project Close Date = Quality Champion Sign-off
3/5/04
Control plan hand off Training
Final Capability Study
Process Owner Sign-off
Final Project Presentation & Report
MBB Review & Approvals
Control 3/25/04
4/5/04
4/5/04
4/2/04
4/9/04
4/14/04
Grados de Six Sigma • Yellow Belt • Green Belt • Black Belt • Master Black Belt
Como certificarte? • Existen companias dedicadas a la certificacion de Belts. • Para todos los grados, la certificacion incluye una parte teorica y una practica • Generalmente la parte teorica incluye de 2 a 4 semanas de entrenamiento. • La parte practica es cubierta con la implementacion de un proyecto Six Sigma
Leoni Wiring Systems Inventory Reduction
Definicion del Problema
Raw Material Inventory Project Objective: Benefits:
Project Team:
Schedule:
Reduce raw material inventory level from 100 days in supply to 40 days supply without affecting on time delivery. -reduced investment -reduced material handling cost -reduced material storage cost -increased floor space availability for new business -decreased manpower required to manage inventory -reduced risk of obsolete and excess material -total savings of $240k Belt: Haydee Garcia Sponsors: Jay Meridew CFO MBB: James Blomenberg Mick Holland COO Core Team: Logistics Manager: Abelardo Aragonez Warehouse Supervisor: Moises Ibarra Procurement Supervisor: Brenda Carranza Finance Manager: Cynthia Armenta Measure: 12/17/03 Analyze: 01/23/04 Customer Service Supervisor: Eduardo Quijada Improve: 03/08/04 Control: 04/27/04 Closeout: 05/21/04
Medicion
Measure Phase
System Mother Nature
I nventory Management
50k High Level Process Step
Process Inputs
8
10
Outputs (Y’s) 9
9
9
252
Static Data
9
9
9
252
Plan Production, Procure Material, Receive Material, Process Demand
Training
9
9
9
252
Run MRP
Raw Matl Inventory Accuracy
9
9
9
252
People
9
9
9
252
Purchasing Agreements
9
9
9
252
9
9
9
252
Process Demand
Cust. Demand (Firmed Orders/Forecast)
9
9
3
192
Process Demand
Supplemental Forecast
9
9
3
192
Vindiola (3rd party provider)
9
9
3
192
Procure Material, Receive Material, Process Demand, Plan Production
Raw Material Type
People On Time Raw Analysis Material Material I nventory Visual (MRP) Raw Material Management Top 5 KPIV’s: Quantity System Mother Nature 10Maps KPIV carried Process All X’sRaw 37 inputs On Time 1. Supplemental Forecast to FMEA Top 5 KPIV’s: Analysis C&E Matrix M 1st “Hit List” 10 inputs Material Screened List 5 inputs FMEA/Multi-Vari Procure Material
Receive Material, Process Demand, Plan Production, Procure Material
8
10
Type of material
10
Raw material quantity
1. 2. 3. 4. 5.
Procedures
On time raw material
Rating of Importance to Customer Receive Material
Process Step
Process Inputs
Process Demand
EDI system
9
9
9
252
Plan Production, Run MRP, Process Demand,
Static Data
9
9
9
252
Plan Production, Procure Material, Receive Material, Process Demand
Training
9
9
9
252
Raw Matl Inventory Accuracy
9
9
9
252
9
9
252
9
9
252
9
9
252
9
3
192
9
3
192
9
3
192
Run MRP
2. 3. 4. 5.
Total
Raw Material Inventory Accuracy A Found Critical X’s Controlling Critical X’s Static Data Training Break point= 560 Procedures Matrix Critical Input Variables
Procure Material, Receive Material, Process Demand, Plan
People Production Supplemental Forecast 3 inputs Design of Exp. Purchasing I 50K Agreements Material 2 inputs 9 RawProcure Material Inventory Accuracy Control Plans Receive Material, Process Demand, Plan Production, Procure C 9 Procedures Material Static Data 6 Inputs/ 3 Outputs Cust. Demand (Firmed 9 Orders/Forecast) Process Demand Training 5K Break point= 560 9 Supplemental Forecast Process Demand Procedures Vindiola (3 party 37 Inputs carried to C&E Receive Material
Total
EDI system
Process Demand
Plan Production, Run MRP, Process Demand,
Raw Material Quantity
10
Type of material
Inputs (X’s)
Raw Material Type
Rating of Importance to Customer
Raw material quantity
People Material Visual (MRP)
Outputs (Y’s)
On time raw material
50k High Level
Inputs (X’s)
9
rd
provider)
9
MSA results # of days = of inventory
$ in raw material $ in production
= raw material quantity X suppliers’ cost harness quantity X customer price 4 elements to check: – – – –
Raw material quantity Raw material price Harness quantity Harness price
94.09% 91.46% 95.00% 93.25%
Analisis
Analyze Phase I and MR Chart for DaysProd by MONTH Individual Value
Not normal data
Normality: P value= 0.004 Stability:
5 100 90 80 70 60 50 40 30 20
Subgroup
Moving Range
40
Process Capability Analysis for DaysProd
6
15
7
22
1 55656
9
Process Data USL
65.0000
Target
40.0000
Lower Bound Mean
Target
Mean=62.64 LCL=38.15
50 6
100
7
8
1
1
9 1
10
Overall
Sample N
156
StDev (Within)
6.6414
StDev (Overall)
10.2668
Potential (Within) Capability Cp * CPU CPL
-0.01 *
Cpk
-0.01
Cpm
* Overall Capability
Pp PPU
0
20
40
Observed Performance * -0.00
PPL
*
Ppk
-0.00
PPM < LB
0.00
60
80
Exp. "Within" Performance PPM < LB
100 Exp. "Overall" Performance
*
PPM < LB
*
PPM > USL
442307.69
PPM > USL
507181.36
PPM > USL
504645.67
PPM Total
442307.69
PPM Total
507181.36
PPM Total
504645.67
1
11
12
Stable data
UCL=30.09
LCL=0
Within
0.0000
10
150
R=9.209
USL
65.1196
12
6
0 LB
11
6666
0 5
10
UCL=87.13
62 1
30 20
8
We need to move the mean to the target value
After the Multi-Vari analysis, we found 3 inputs with big impact on our main output : 3. Training 4. Inventory Accuracy 5. Supplemental Forecast With these, we conducted a full factorial DOE, having the following results: Pareto Chart of the Standardized Effects (response is DAYS, Alpha = .10) A: SUPP B: INV C: TRAIN
A
Main Effects Plot (data means) for DAYS C
AL RM NO
AB
HI
HI
LO
HI
LO
54.0
51.5
0
1
2
3
4
5
6
DAYS
B
49.0
46.5
44.0 SUPP
INV
TRAIN
Mejora
Improvement Summary • Customer Service Department was transfered to Hermosillo plant in order to improve communication, offer a better service, and have a deeper understanding of the forecasted production. • Material Agreements were developed with customers in order to establish safety stock levels, MOQ, Standard pack size, etc. • A new method was implemented to improve stock accuracy by classifying and prioritizing raw material, and redesigning cyclecounting. • Special training material was developed to help personnel in logistics area do a better job and understand the business. • Continuous review and updating of ERP static data is taking place
Control
Control Plan Raw Material Inventory Reduction Control Plan
Process
Process Step
Inventory
Inventory
management Inventory
Output
N/A
management Inventory Days Process demand N/A
management Inventory
Inventory
management
management
Input
N/A
Process Specifications 40 days +/- 7 days
Capability /Date
Measurement Technique Report
1/21/2004 Supplemental 100% accuracy Forecast Training
MSA Result
Sample Size
95%
1/21/2004 actual demand HR employee file
required training
1/21/2004
Control Method
Reaction Plan
RM & WIP
MPS report vs
completion of
Sample Frequency daily
I-MR chart
Contact Logistics Manager
weekly
p-chart
Contact Logistics Manager
biannually
p-chart
Contact HR manager
100% 95% every employee 100%
fin