Ai1 Solving Systems Of Equations Part 2

  • Uploaded by: Kevin Roberts
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ai1 Solving Systems Of Equations Part 2 as PDF for free.

More details

  • Words: 3,284
  • Pages: 8
Solving Systems of Equations – Part 2  In part one we looked at how to approach a situation where there was more than one equation involved. The goal  when asked to solve a system of equations is to find the single point (or points) that will be a solution for all the  equations at the same time. If you think about it graphically, these solutions are where all the graphs cross at a  common point.   We also mentioned some vocabulary words used to describe systems:   1. When a system of linear equations never cross at a single common point we call this system inconsistent.   Inconsistent systems have no solutions. If a linear system has at least one solution, it is called consistent.  2. When the equations in a linear system end up being multiples of each other, they can end up having an  infinite number of solutions. We call these systems dependent. On the other hand, if the system has a  finite number of solutions with equations that are all unique, it is said to be independent.     Before we move on to some more solving techniques, let’s pause and think for a second about what we could do  to prevent inconsistent or dependent systems (or at least recognize them easily so we don’t waste our time).  Unfortunately, in the real world you will come across many cases where a system of equations will have no  solution, or have an infinite number of solutions which can be equally unhelpful. So how do you tell if a system is  inconsistent or dependent?     First we have to understand our goal and the process of getting there. For any given situation there will be some  unknown items that we will try to find the value of (variables). There will also be a collection of information or  constraints that are placed on those variables to tell us what kinds of equations to create.   The examples given in part one had some important things in common:   ‐

They were all systems of only 2 equations 



They each had only 2 variables (x and y) 

  What if you had a situation involving 7 different variables? Would it be possible to find a value for each one? The  answer is yes as long as you have enough information about those variables. If you had 7 variables to solve for,  you would have to have a minimum of 7 unique pieces of information about those variables in order to have the  chance of finding a solution.   If you didn’t have those 7 unique equations, then you would eventually reach a point where one or more variables  could have an infinite number of possible solutions, making the system dependent.        

Consider the following example with two variables:  y = 2 x + 1    How many solutions are there for this equation?     Well, we have two variables and only one piece of information about how they relate, so with this situation there  could be an infinite number of combinations that would work.  (2, 5)  or (‐4, ‐7)  or (721, 1443) are all possible  solutions. You could pick any number you want for x and find some y that would work (or pick a y value and find  an x that works).   This brings us to an extremely important point about systems of equations that will help save you time and energy  in your solving:    

A system of equations relating ‘n’ different variables must have a minimum of ‘n’ unique  equations otherwise the system will have an infinite number of possible solutions.     So if you have 3 variables (say x, y, and z) you would have to have at least 3 different equations otherwise there is  no point in solving because there will be endless possibilities. If you had 5 variables you would need 5 equations.  But be careful, this brings us to another point:    

Just because a system has the same number of unique equations as it does variables, it  is not guaranteed to have a single solution that works for every equation.     You might have a very lovely problem with 12 variables and 12 different equations to describe those variables yet  there is not a single common point that all 12 of those equations share (in fact this is pretty likely with a large  number of variables).   So is there a way to tell if a system is actually going to have a solution?   Yes, there is. It is something called the determinant and it involves matrices which will be discussed in the next  section. We are only going to be talking about systems of 2 linear equations, so you don’t really need it in this case.  It will be a necessity, however, when you start working with systems containing many variables and equations.     So let’s start solving some equations. We have already looked at the graphing method and will now look at two  algebraic methods to solve a system:  substitution and linear combinations.     Don’t forget what we just talked about when you start to solve these systems. Make sure you have the correct  number of equations and make sure they are all genuinely different from each other (not just a multiple of a  previous one).      

Solving Systems of Equations by Substitution  Solving equations using substitution is something that you should have already learned when you first started  algebra. The idea behind substitution is that if you know the value of one variable, you can plug that value into an  equation and use it to help you solve. For example:  

Solve 3 x = 5 y if x = 10   This is a basic example of substitution. We know that x equals 10 so we can replace x with the number 10 in our  equation:  

3(10) = 5 y

     Æ                                     Æ                30 = 5 y y=6  

This example uses a single number for x but we can do the same thing with two variables:  

Solve 3 x = 5 y 3   ( 2 y +   1) =  5 y

 Æ  

  5y 6  y + 3 =

if x = 2 y + 1         Æ    

3 = −  y

 Æ    

y =−3

  Now, what we have just done here is essentially solved a system of equations using substitution (at least we have  solved for y, we would still need to find x).  We had two variables (x and y) and two equations to relate them:  

3 x = 5y

and

x = 2 y +1  

By combining these together we can have one single equation with only one variable which is something we can  solve using our previous knowledge of algebra and equations. Let’s try another:     Solve the following system of equations using substitution:  

y = 2x + 5

and

y = 4x + 7  

                                                                                 Æ                                         Æ  4x + 7 = 2x + 5 2 x = −2

x = −1

  So we found the value of x but that has not fully solved the system since we still don’t know what y is. Luckily, that  part is easy, just use substitution again and replace x with ‐1.   But there are two equations and two x’s. Does it matter which equation I use?   Nope, just pick one and it will work out the same either way.                                                                                                         Æ  y = 2 x + 5 and x = −1

y = 2( − 1 ) + 5 = −2 + 5 = 3

  So our final solution for this problem is the point x = ‐ 1 and y = 3, or in other words, the point (‐1, 3)   

Let’s do one more. What if you had the system:  

12 = 4 x − 2 y

and

− 42 = −8 x + 5 y  

This one is not set up as nicely as the other ones. We don’t have an equation that says “x =”  or  “y =”  which  means we will have to do some rearranging before we start. Let’s change the first equation to get y by itself.  

12 = 4 x − 2 y        Æ       12 − 4 x = − 2 y        Æ      − 4 x − 4 x ÷(−2) ÷ (−2)

(12 − 4 x ) = y −2

    Æ      

y = −6 + 2 x  

  Now we can go back and use substitution since we know a value for y.  Let’s rewrite our equations:     

y = −6 + 2 x

− 42 = −8 x + 5 y  

and  

so − 42 = −8 x + 5( − 6 + 2 x )       Æ      −42 = −8 x − 30 + 10 x       Æ   −42 = 2 x − 30    

        Æ        −12

= 2x      Æ       x = −6  

  That was the hard part, now we just take our – 6 and insert it back into one of the original equations. Let’s use the  first one since it looks a little easier to use:   

y = −6 + 2 x and

x = −6       Æ        y = −6 + 2( − 6 )

Æ         

y = −6 − 12 = −18  

  And there we have it, x = ‐6  and y = ‐18.  Another way to say this would be that our solution is the point (‐6, ‐18).       Now that we have solved a couple, let’s review our steps:     1. Rearrange one of the equations so you have a single variable on one side. You will need this format to use  substitution.   2. Substitute one equation into the other and simplify.   3. Solve for the remaining variable.   4. Take your solution and plug it back into either of the original equations to find the other variable.       Practice a few more of these and be careful! There are a number of steps and you are using the distributive  property a lot which makes it easy to mix up signs or combine numbers incorrectly. Take your time, check your  work and make sure you write neatly so you can keep track of your steps (and so your teacher and classmates can  understand your steps too!)       Now let’s look at our next method for solving systems of equations:  linear combinations.               

Solving Systems of Equations Using Linear Combinations    Solving by linear combinations might seem a little strange at first but once you get the hang of it, it will be the  easiest method for solving systems algebraically. There are a couple of facts to consider before we start:     1. If you multiply all parts of an equation by the same value, the equation does not change.   2. If you add or subtract two equations, the resulting line will go through the same solution point as the  originals.     Don’t believe it? Try for yourself. Consider the following equations:   2 x + 4 y = 9    and      −6 x − 12 y = −27     Recall from our previous discussion above that these are actually the same line.  Graph them if you need to, you  should only get one line. This should make sense since we are already familiar with the “do the same thing to both  sides of the equation” concept. We just multiplied everything by ‐3 so it’s really just the same equation.     Now for the second statement. Consider the system of equations:   −2 x + y = 8     and       3 x + 5 y = 1     Let’s test that second statement about adding or subtracting the equations. We will first add the two equations:          

 

 

 

− 2x + y = 8 + 3x + 5 y = 1  

 

                         x + 6 y = 9       Now let’s graph these two equations and their sum:                               _________     −2 x +  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New Line    

 

   

Same Solution 

 

 

 

 

 

               

       

       

       

       

       

       

       

y =8 _________       3 x + 5 y = 1 _________         x + 6 y = 9

We can see there is a solution in Quadrant II   and we also see that the new equation goes  through that same intersection.     This is true of any pair of linear equations. Adding  or subtracting the equations can give you a new  equation, but that equation will still have the  same solution! Therefore, this new piece of  information can be very useful in trying to find  the solution to the system.     So how do we use this information? Let’s look   at some examples.    

For our first example, consider the system:     −2 x + 5 y = −15    and    2 x + 18 y = −8     Now the goal to solving by linear combinations is to add or subtract these equations to create a new equation that  is easier to solve. To add or subtract equations, we need to line them up and essentially combine like terms (x with  x, y with y, etc). Let’s add these equations and see what happens:      

 

 

 

 

− 2 x + 5 y = −15 + 2 x + 18 y = −8  

                                 23 y = −23     Look what happens when we get the sum! The x coefficient has disappeared and we now have a very simple  equation to solve in order to find y!    If  23 y = −23  then y obviously equals ‐1.  So what about x?     In order to find x, we go back to the previous idea of substitution. If we know that y = ‐ 1 then we can substitute  that into any of the original equations. Let’s put it in the first one:    

−2 x + 5 y = −15 and y = −1        Æ        −2 x + 5(−1) = −15           Æ        −2 x − 5 = −15         

 

Æ          −2 x

= −10          Æ          x = 5  

  So our solution is the point  (5, −1) .         But not every equation is going to add or subtract so nicely…what do we do if the numbers are all different?       Well notice what made that previous problem so easy. It was the fact that the numbers in front of x were 2 and ‐2  so when we added the equations together, they cancelled out.     If you have a situation where that doesn’t happen, you will have to go back to that first fact we mentioned above:       If you multiply all parts of an equation by the same value, the equation does not change.       Let’s examine a situation where this happens:       3x − y = −1 Consider the system:         5 x + 4 y = 38   Now our goal here is to eventually add or subtract these two equations to get a new one with only one variable.  However, if we combined them as they look now, this will not happen.     There is no way to cancel the x’s or the y’s at this point, so we will have to add another step before we combine.  

Our first move then is to multiply one or both equations by some number so that either the x or the y coefficients  will be the same value. (You can choose any number you want and you can use different multiplier for each  equation).  Can you see a way to change these numbers around to make it easier?     We are going to try and cancel out the x variable first although it’s perfectly alright if you chose to do y first   (and in this case, y is actually the easier choice so nice job if you noticed that)    So if we want to make the x variables cancel out, I need to make that 3 and 5 into the same number. To do this,  let’s multiply the top equation by 5 and multiply the bottom equation by 3 which will turn them both into 15.       5 ⋅ (3 x − y  = −1)  15 x − 5 y = −5           Æ    3 ⋅ (5 x + 4 y = 38) 15 x + 12 y = 114     Now notice how we did this. You have to multiply the entire equation by the same number or else you are not  keeping the equation the same. This means you have to get the x‐coefficient, the y‐coefficient, and the value on  the other side of the equal sign.     Now we have a new system that is easier to deal with:    

15 x − 5 y = −5 15 x + 12 y = 114  

  Notice now how the x‐coefficients are the same. So what can I do to these equations to make the x disappear?  Should I add them or subtract them?    I hope you said subtract because if we added them at this point, the x would not disappear but instead we would  have  30x  which doesn’t really help.     So let’s subtract these equations and finish solving our system:       

 

 

 

 

15 x − 5 y = −5 − 15 x + 12 y = 114  

                   −17 y = −119     So we have  −17 y = −119  and solving for y we get   y = 7     Substitute that value back in to any of our original equations and we can find x:       

5 x + 4 y = 38 and

y = 7           Æ          5 x + 4(7) = 38          Æ            5 x + 28 = 38    

Æ         5 x          

= 10        Æ       x = 2  

  So let’s review our steps for linear combinations and then we will try one more.     1. Multiply one or more equations by a selected value to make either the x  or  y  coefficients the same.  2. Combine the two equations into a single one by addition or subtraction  3. Solve for whichever variable remains  4. Substitute this solution back into one of the original equations and solve to find the other variable.     Here’s one more. Solve the system:     

7 x − 9 y = −68 4 x + 3 y = 10  

  Now once you get the hang of this, you can start looking ahead before you start. Which is going to be easier,  cancelling out the x’s or cancelling out the y’s?     Well, we could turn the x coefficients into 28 by multiplying each equation by 4 and 7 respectively. Or, we could  change the 3y into 9y and only have to change one equation. That sounds easier so we’ll choose that route.    

7 x − 9 y = −68 7 x − 9 y = −68            Æ           3 (4 x + 3 y = 10) 12 x + 9 y = 30  

  Now notice that we only changed one of the equations. That is perfectly OK and it makes things a little easier so  keep your eyes out for this option. Don’t go through the work of changing both equations if you only need to  change one of them. Remember that it does not matter whether you cancel the x or the y values first.     So let’s continue solving with our new system. The next step is to add so 9 and ‐9 will cancel each other out.    

+

7 x − 9 y = −68 12 x + 9 y = 30   = −38  

           19 x

  Now solving the equation  19 x = −38  gives us the solution of  x = −2     For the final step, we go back to one of the original equations and replace x with ‐2. Let’s use the one with the  smallest numbers   4 x + 3 y = 10 .   (Again, it makes no difference which equation you choose, you will get the  same answer no matter what)   

4 x + 3 y = 10 and x = −2           Æ           4(−2) + 3 y = 10             Æ          −8 + 3 y = 10    

Æ            3 y

= 18          Æ          y = 6  

  So our final answer is  x = −2   and    y = 6   or, in other words, the point  (−2, 6)  is a solution to the system.     Keep practicing and remember to BE CAREFUL! Check your work and keep it neat so you can avoid making errors  in the small stuff. Good luck!      www.mathmadesimple.org 

Related Documents


More Documents from "Eamon Barkhordarian"