Ab1 Set Notation And Number Sets

  • Uploaded by: Kevin Roberts
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ab1 Set Notation And Number Sets as PDF for free.

More details

  • Words: 3,494
  • Pages: 9
Set Notation and Number Sets    As you start getting further along in algebra you will start to see a number of new symbols and terms  that might make you feel like learning math is more like learning a new language. This is actually very  true in a number of ways. Writing equations is very much like writing a sentence in any language. There  are rules about the order you write things, where you put your punctuation, and the symbols you use to  “spell” words and phrases.   The transition into algebra is where math stops becoming about arithmetic and calculations and more  about patterns and relationships. Hence the need for new symbols, new ways to write equations, and a  new way to think about numbers.   We will begin with the first and one of the most fundamental concepts in algebra: the set.     A set is a collection of objects. They could be numbers, shapes, equations, matrices, coordinates, or any  number of things. A set could have 1 object or 3 million objects or an infinite number of objects. There is  no limit to size.   A good way to think about a set is to think of a bag. Picture a backpack, a purse, or Santa Claus’ gift  sack….anything that can hold items. This is a set. We denote a set by using a pair of curled brackets { }.   So if you saw A={1, 2, 3} this would be a set containing three items: 1, 2, and 3. This set has the name  “A”  The things that you put inside a set are called elements. An element is a member of a given set.  We use  the symbol  ∈  to mean “is an element of”.  The symbol  ∉  means “is not an element of”.  Using the previous example, if  A = {1, 2,3}   then    1 ∈ A    and    8 ∉ A   (1 is in the set, 8 is not).     Here’s another example without numbers:  Consider the set of all the different kinds of fruits in the  world. We will call it set F. (Imagine a giant bag filled with a bunch of fruit…this is our set. There could  even be a giant “F” printed on the bag if that helps you visualize it.)  What would be an element of this set?   An apple would be an element of this set. We could write this as:    apple ∈ F   A banana would be an element of this set. We could write this as:    banana ∈ F   A t‐bone steak would not be an element of this set. We could write this as:    tbone ∉ F       You get the idea. We actually use sets all the time. Any time you categorize something or group items  together or talk about an item belonging to a certain collection you are talking about sets and elements.  That being said, let’s look at some common sets that you will come across.    

There are a number of sets that you will need to remember as they will become very important as you  move through algebra. Let’s start with the most basic set: an empty one.   Imagine a bag with nothing in it. We call this an empty set (also sometimes called a null set) and it has a  special symbol:  ∅  .  (The symbol represents the name of the set, just like we had sets A and F above)  Since the set has nothing in it, you would write it as a pair of empty brackets:   ∅ = { } .    Take a look at the following statements. Can you tell which ones are true and which are false? 

3 ∈∅

−7 ∈∅

0 ∈∅  

Well, what numbers are in the empty set {  } ?  Is there a 3 in there? Is there a ‐7 in there? Is 0 in there?   No, no, and no. There is nothing in the empty set so any number you think of will not be in there.     ALL THREE OF THESE ARE FALSE STATEMENTS.  The reason to mention this is that many people get  mixed up thinking that zero is an element of the empty set. This is not true.   The empty set has zero elements. It does not have zero as an element. Can you see the difference?      Alright, let’s move on to some more interesting sets. There are five fundamental sets that we are going  to examine:  Natural Numbers, Integers, Rational Numbers, Real Numbers, and Complex Numbers.   Each of them has a special name:  `, ], _, \,  and  ^  respectively and each has some unique  properties.   We begin with the first set:  a bag filled with natural numbers called  ` .    Imagine for a moment that you step into a time machine and are able to go back and watch the whole  history and development of math and numbers. What do you think would be the first thing you saw?   Square roots?  Calculus?  Graphs?  Pi?   Probably not. The first numbers were the simplest. The positive whole numbers that were used to count  items.  1, 2, 3, 4, and so on. These most fundamental of numbers we call the natural numbers.     Definition:  A natural number is any of the positive whole numbers 1, 2, 3, and so on.     

Let’s take all these numbers and put them in a bag (an infinitely large bag since this set is infinite) and  label it  ` .   

` = {1, 2,3...}   This is our first set. You might be wondering why zero is not included here since it could be considered a  “whole number” or a “counting number”. This is an excellent question and something you should ask  your teacher about.   There is no real agreement among mathematicians whether 0 should or should not be included in the  natural numbers. The general philosophy is to use it when it’s convenient and to leave it out if it creates  problems. Ask your teacher to see how he or she wants you to define natural numbers.     So now that we have developed our counting numbers (and 0), what comes next? What about the other  side of the number line? Let’s throw the negative numbers into our set.   The nice thing about all these basic sets is that they continue to build on each other. So let’s take what  we already have {1, 2, 3,…} and add in zero and all the negative counting numbers to get the set            {…,‐3, ‐2, ‐1, 0, 1, 2, 3,…}.  You might recognize this set from earlier. We call these values integers.     Definition:  An integer is any of the counting numbers 0, 1, 2, 3, .... and their opposites ‐1, ‐2, ‐3, ...    So if we put all this together into a new bag we now have the set of all integers, called  ] . It is said that  the letter Z was chosen to represent the German word Zahlen meaning “numbers”. 

] = {..., −3, −2, −1, 0, 1, 2, 3, ...}   If you haven’t noticed already, the three little dots  . . .   means that the pattern continues on forever.  This set, like the natural numbers, is an infinitely large set.     This is a good point to pause and mention a new symbol and something called a “subset”. Notice how all  the values of  `  are inside of  ] ?  Whenever one set is completely inside of another set, we call this a  subset.   We can say that  ` is a subset of  ] .  We have a symbol for this  ” ⊂ ” meaning “is a subset of”.    In this case  ` ⊂ ]  since every element of  `  is also an element of  ] .   There is a lot more to this, but we will save that for another tutorial. It’s just important now to notice  that one set is contained in the other. 

So we have our bag of natural numbers labeled  `  and our bag of integers labeled  ] . What else is  missing on the number line? Well how about all the values in between the whole numbers?  What kinds  of numbers are between 1 and 2?   Fractions! This is our next set. Let’s take all the positive counting numbers, all the negative counting  numbers, zero, and all the fractions and put them into one bag.   We call this collection the set of rational numbers.  

p

Definition:  An rational number is any number that can be written as a fraction        where   q         p, q ∈ ] and  q ≠ 0     Did that make sense?  Remember what  p, q ∈ ] means?   That says that p and q are elements of  ] . Or in other words, p and q are integers.   So a rational number is basically any fraction that you can come up with involving two integers.  

4 6

−365 2

−9 −1

3827 545

34 −228

0   5

These are all examples of rational numbers. Notice how they include positives, negatives, whole  numbers and zero?  Notice also that  q ≠ 0 . This is because you can’t have a fraction with zero on the bottom. Remember  that dividing by zero is undefined.     So what do we call this new set of rational numbers? We give it the name  _ . It is said that the letter  _   was chosen to represent the word quotient (the dividing of two numbers).  

⎧p ⎫ _ = ⎨ | p, q ∈ ] and q ≠ 0 ⎬   ⎩q ⎭ Did you catch all that?  Time for a new symbol, a vertical line  “|” meaning “such that”.  Here’s how you read the previous statement:  

_  is the set of all fractions 

p  such that p and q are integers and q cannot equal zero.   q

If you are feeling confused about notation right now, just focus on the big picture of the sets and what is  in them. We have 3 so far:  The natural numbers  ` , the integers  ] , and the rational numbers  _ .  (Notice also that  ` is a subset of  ]  and that  ]  is a subset of  _ .  We can write this as  ` ⊂ ] ⊂ _ . ) 

OK, on to the next set. We started with the most basic of numbers: 1, 2, 3, …  then added in all the  negative numbers and zero. We then started filling in all the gaps between these numbers by adding in  all the possible rational fractions that could ever be created.   So what’s left? Doesn’t that just about cover it? What other numbers are there?   Well, believe it or not, there are some numbers that cannot be created by dividing two integers.     There are certain characteristics that all rational numbers have in common. If you take a rational  fraction and write it out in its decimal form it will do one of two things:   1. It will terminate.  In other words, it has a finite number of decimal values. Examples:  0.5, 7.125,  ‐9.236892, etc.  2. It will repeat a sequence of numbers forever. Examples:   0.333, 4.828282, − 2.18666, etc.  This is true for every single rational number!  So what happens if you have a decimal that is non‐ terminating and non‐repeating. In other words, it goes on forever without repeating itself over and over.   For example:  1.121122111222111122221111122222….   or  ‐5.010010001000010000010000001…  See how these keep expanding without repetition? These numbers cannot be written as fractions! So  this means we need a new name for these kinds of numbers. If they are not rational, then what should  we call them?   How about irrational!  And this is in fact what we call them, irrational numbers.  Definition:  An irrational number is any number that cannot be written as the quotient of two integers.         Irrational numbers are non‐repeating and non‐terminating.     Some more examples of irrational numbers are  π ,  e ,  2 ,  5 , and  92837.262     In fact, if you take the square root of any non‐perfect square, you will get an irrational number. This isn’t  the only way to get an irrational number though. There are infinitely many irrational numbers and an  infinite number of ways to get them.     If you think of all the possible ways to create an endless string of decimal numbers, you can imagine  how many different irrational numbers there are.       So let’s go back to our basic sets. We have  ` ,  ] , and  _ . Now we have filled in all the gaps in  _  to  create a new set. This set has all the natural numbers, all the integers, all the rational numbers, and all  the irrational numbers. This creates all the numbers on the number line and we can categorize all these  numbers under a single name:  real numbers.   Definition:  The set of real numbers  \  is the set of all rational numbers combined with the set of all          irrational numbers.      

  So basically, any number you can think of (positive, negative, zero, fraction, decimal) is a real number.     As you saw in the definition, we give the set of real numbers the symbol  \ .      This is going to be one of the sets you talk about most since it contains all the numbers that we are used  to seeing. Now when you hear the phrase “real numbers” or “the real number line” you have a better  idea of what’s going on. Real numbers are all the fractions, decimals, positives, and negatives that we  use in the majority of mathematics.     So that’s it right? We have covered every number on the number line so what else could possibly be out  there?     Well hold on tight because there is one more left. But first, it’s story time.   Remember that time machine we mentioned earlier? Jump back in and let’s look at how these number  systems have developed over time.   Natural numbers obviously came first from the earliest carvings on cave walls and the first written  communication of numbers. Many cultures lived their entire existence knowing only the natural  numbers.  Ancient civilizations in the Americas, Middle East and Asia eventually came across an  understanding and way to communicate the concept of zero, but nobody was really able to grasp the  idea of a negative number until the Chinese around 100BC.   In fact, many ancient cultures, including the Egyptians, had intricate systems for working with fractions  way before they understood the mathematics behind negatives. Would you believe that modern Europe  was still arguing about the validity of negative numbers up until the 17th century?   It was common throughout history to question the creation and usage of new number systems since a  lot of times these numbers did not apply to the kind of math that was being done at the time. For  example, in Europe they would often just ignore negative results because they believed negatives had  no real life relevance to what mathematicians were attempting to do.   When the ancient Greeks started creating definitions for irrational numbers, nobody believed them! In  fact, legend has it that the man who first discovered irrational numbers was killed because his discovery  was considered to be religious heresy! They believed that all numbers could be written as beautiful,  perfect ratios. Besides, fractions could take care of all their measurements and calculating needs…why  should they have to believe in these strange irrational numbers that may or may not actually exist?   Well, here is one more case of a new number system that was hard for people to grasp. The real  numbers meet all of our day to day calculating needs. What else could we possibly need?   It’s time to open your mind and accept the existence of something else, even if it seems strange and is  not something that you will need to pay your bills or balance your checkbook.   This new number system is the set of complex numbers.  

You have, hopefully, by this point been introduced to the idea of a square root. For example, consider  the square root of 16.  Square roots are a way to “unsquare” a number.  If you take  42  you get 16. So if I  give you 16 can you tell me what number was squared to get 16?    Well, there are two options that could have given us 16.   42 = 4 ⋅ 4 = 16   or   (−4) 2 = (−4) ⋅ (−4) = 16 .   What if we started with ‐16 instead? What number could you multiply by itself to get ‐16?   We just saw that  42 = 16  and  (−4) 2 = 16  but what about ‐16?     Uh oh…we’ve hit a point where we need to come up with a new type of number. If we try to find the  value of  −16  there is no real number that can help us here. We don’t want to just say that  −16   doesn’t exist since there are obviously equations that require us to do these kind of calculations. For  example, how would you solve  x 2 = −16 ?    To deal with this problem, mathematicians developed a new definition that could help them push  through this wall. They created what are called complex numbers.      It all starts by defining a new number called  i .  This number is equal to  −1 .   Definition:   i = −1   Using this new value, we can find the answer to problems such as  −16 .  This would be the same as  writing   16 ⋅ −1    or    4 ⋅ −1    or    4i .    So   −16 = 4i .  Using this value of  i  we can create whole new number lines and whole new sets of equations using  complex numbers.   Definition:  A complex number is any number in the form  a + bi  where  a, b ∈ \  and  i = −1 .  Here are some examples of complex numbers: 

35i

7 + 19i

4 2 − i 5 3

−6 − 4i

2 −πi

21

−72.3 + 2.49i

8i 7

 

0

So our final set contains the following things:   ‐

All natural numbers (1, 2, 3, …) 



All negative counting numbers and 0 



All rational numbers 



All irrational numbers 



All complex numbers 

  We call this set  ^  for complex (which is a very fitting name since this concept can be pretty complex) 

^ = { a + bi | a, b ∈ \ and i = −1 }     So let’s recap what we’ve learned about sets.   •

Sets can be any size and can contain all kinds of different objects.  



Sets are denoted by using curled brackets  {   }. 



The things inside sets are called elements. We use the symbols   ∈   and  ∉  to show that an item 

3 5

is or is not in a particular set.  (i.e.   − ∈ _  )  •

When one set is completely contained within another we call this a subset. We use the symbol  ⊂  to show this.  (i.e.  natural numbers are a subset of real numbers   or    ` ⊂ \ ) 



The empty set (or null set) is a set with no elements.   ∅ = { }  



Natural numbers are positive whole numbers. 



Integers are positive and negative whole numbers along with zero. 



Rational numbers are any numbers that can be found by dividing two integers. 



Irrational numbers are numbers that cannot be defined by the division of two integers. 



Real numbers are the combination of all the previous numbers (natural, integer, rational, and  irrational). They make up every value on the number line.  



Complex numbers involve the combination of real numbers and values containing  i . ( i = −1 )     

That’s as far as we will go with sets and set notation in this tutorial. This is perhaps more than what will  be covered in your average middle school/high school algebra course but you will see this all again in  college algebra. Besides, it really helps you understand numbers much better when you have the big  picture in mind from the beginning.     Pretty much everything you deal with all the way through high school will be in the real number set.  Depending on the courses you take, you will probably see a little bit about complex numbers, but  probably won’t get too deep into that until college.   For those looking for more information on sets such as closure, identity elements, groups, fields, etc.  check out the “Upper Level” section of the tutorials.     That’s all for sets. We will leave you with a handy diagram to hopefully make sense of all that we talked  about here. Enjoy!  Note:  1. Irrational numbers are those real numbers that do not fall within the rational number section.                   2. Zero is being included as an integer and not a natural number in this diagram      Complex Numbers   ^   −23.83 − 89.52i                                        Real Numbers   \              −π i                                                7 + 2i   π  Rational Numbers    _         6               −4i                                              .125    2.121122111222...   83   Integers   ]     4   0       −3                  − 3 − i          ‐25                     7    

4

Natural Numbers   `  

‐4647        ‐41 

1   

36 

1043 

         2.3684   ‐12            ‐19275   



15 

98 

‐32        ‐5 

 

 

 

   

 

5 7   8

            www.mathmadesimple.org 

17 2e

Related Documents

Ab1
December 2019 14
Notation
July 2020 20
Notation
November 2019 31

More Documents from ""