Engineering Mathematics 3
ITEGRAL TRASFORMS
Laplace Transforms Grade 50% off the total score within the first week after due date. Zero score after the first week. Name : Group: Subject: Topic: Date Due: Date of Submission:
Section A Question 3.1.1 Find the laplace transform of the following: i. ii.
2
3⋅ t − 1
t 2
vii.
2
t + 3t + 1
viii. t⋅ ( t − 2)
sin
iii.
exp( − 2t)
iv.
cosh( 2⋅ t) −t
v.
e ⋅ sin( t)
vi.
t⋅ cos( t)
2
− 2t
e
xii.
− 2t
e
xiii.
sin( t) cosh( t)
−t
ix. x.
t ⋅e
xi.
cosh
t⋅ sin( 2t)
t 2
Section B Question 3.1.2 Find the laplace transform of i.
H ( t) =
t if 0 ≤ t < 2
v.
H ( t) =
( 1 − t) if t ≥ 2 ii.
H ( t) =
sin( t) if 0 ≤ t < π
H ( t) =
1 if 0 ≤ t < 1
vi.
F( t) =
H ( t) =
1 if 2 ≤ t 0 if 0 ≤ t < 1
1 if 0 ≤ t < 3 0 if t ≥ 3
vii.
G ( t) =
( −1) if 1 ≤ t < 2 iv.
if 0 ≤ t < 1
0 if 1 < t
0 if π ≤ t iii.
−t
e
( 2⋅ t) if 0 ≤ t < 1 t if t ≥ 1
viii. H( t) =
sin( t) if 0 ≤ t < π 0 if t ≥ π
1 if 1 ≤ t < 3 2 if 3 ≤ t
20094em3 Exercise 31.mcd
Copyright 2008 - 2009
1/2
Engineering Mathematics 3
Question 3.1.3 i.
F( t) =
cos( t) if 0 ≤ t < π sin( t) if t ≥ π 2
ii.
G ( t ) = t ⋅ Φ ( t − 1)
iii.
H ( t) = e ⋅ Φ ( t − π )
iv.
F( t) =
−t
t if 0 ≤ t < 1 1 if 1 ≤ t < 2 ( − t) if t ≥ 2
20094em3 Exercise 31.mcd
Copyright 2008 - 2009
2/2