Engineering Mathematics 3
ITEGRAL TRASFORMS
Inverse Laplace Transforms Grade 50% off the total score within the first week after due date. Zero score after the first week. Name : Group: Subject: Topic: Date Due: Date of Submission:
Section A (Table) Question 3.2.1 Use the laplace transform to find the following 1 i.
3
1
,s > 0
vi.
2s + 3
s
ii.
1 1
s−
iii.
,s >
1
,s > 0
s 2
, s > 3
s −9
, s > −1
2
, s > −1
,s > 0
2
2
x.
s− 1
1
,s > 3
iv.
g( s) =
( s − 1) − 4 ii.
1
g( s) =
2
2
s +9
, s > −2
g( s) =
s⋅ ( s + 1)
s
ix.
3
1
3
s +9
,s > 2
3
1
2s + 2 Question 3.2.2 Find G(t). i.
2
viii.
1
( s + 2)
v.
vii.
2
( s − 2)
iv.
1
,s > −
,s > 0
v.
g( s) =
( s − 1) + 4
1 s
−
1 2
+
s
3
,s > 0
s
1 ( 2s − 3)
1
3
,s >
3 2
− 2s
iii.
g( s) =
e
s
,s > 0
20094em3 Exercise 32.mcd
Copyright 2008 - 2009
1/2
Engineering Mathematics 3
Section B (Use Partial Fractions) Question 3.2.3 Find H(t). i.
h ( s) =
1 s⋅ ( s − 1)
iii. iv.
h ( s) =
h ( s) =
h ( s) =
2⋅ s
, s > −2
2
s + 5⋅ s + 6
s
, s>
s⋅ ( 2s − 1) 1
h ( s) =
v.
1
1+
ii.
, s > 1
vi.
1
s ⋅ ( s − 2) 1
(
2
( s + 1) ⋅ s + 1
)
3s + 1 2
, s > −2
s + 4s + 4
2
1
, s>2
2
h ( s) =
vii.
h ( s) =
( s − 2)
2
s⋅ ( s + 1)
,s > 0
, s > −1
Section C (Use Completing of squares) Section 3.2.4 Find G(t). i.
s
g( s) =
2
s + 5⋅ S + 6
ii.
2s − 1
g( s) =
2
s + 5s + 6
iii.
1 − 3s
g( s) =
2
( s − 1) + 4
iv.
3s − 1
g( s) =
2
( s + 1) − 1
v.
2s − 1
g( s) =
2
( 2s − 1) + 4
Section D (Heaviside Theorem) Question 3.2.5. − 2s
Find G(t). if g( s) = e
1
⋅
where s > 0.
2
s +1 i.
− 2s
g( s) = e
⋅
1 2
, s > 0
s +1 Ans: G( t) = U( t − 2) ⋅ sin( t − 2) − 2s
ii.
g( s) =
( s + 1) ⋅ e 2
where s > 1.
( s + 1) − 4 1 1 Ans: G( t) = Φ ( t − 2) ⋅ ⋅ exp( − 3⋅ t + 6) + ⋅ exp( t − 2) 2 2
20094em3 Exercise 32.mcd
Copyright 2008 - 2009
2/2