! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!
! "#"$%&! ! =)(2!$>!C'(D/)/4-2'A!E!&!!
!"!#$%& &!"#$%&'%()#*+"+,-$).%/% %0-11+"%2%
&
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&$'()*&++++++++++++++&
!"#"$%&'(&"%)*$+,'%)-'.&/0/&1"/)%$'2+%,/)")*' 34 .&+&+56","1+'!7"$$,8'2%1"/,'%)-'.&/0/&1"/),& 3%)4$#+%#1%4%5+,64)#1+"%+7%$8+%9:4"$#$#-1%8#$;%$;-%14,-%:"#$1<%=;-"%$8+%)4$#+1%4)-%-9:#>4?-"$@%$;#1%#1%54??-A%4% 6)+6+)$#+"%<% % #B%!1#"*%5)+11C,:?$#6?#54$#+"@%6)+>-%$;4$%$;-%% ##B%!1#"*%5)+11C,:?$#6?#54$#+"@%1+?>-%7+)%D'% 7+??+8#"*%)4$#+1%4)-%-9:#>4?-"$'% x 6 4B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%EB%F%'%G%%H%%GI%'%D% %
1 2
5 10
5
%
7.5
%
% % % % % % % % % % % %
94 !"#"$%&'(&"%)*$+,& J+)%$)#4"*?-1%$+%E-%1#,#?4)@%5+))-16+"A#"*%4"*?-1%,:1$%E-%-9:4?<%
%
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& & & & &&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&,&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&& &&&&&&&&-& & & & &&&&& & & &&&&&&&&&& & &&.&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&/&&&&&&&&&&&&&&&&$& & &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&0& & AB 1234)& .&&5& +++++++&&&&&&&&&&&&&&(6)3&+++++++++++++++++++&&&&&&&&&'37&&& 5& DE &&&&&&&&&& /&5&&& +++++++& &&&&&&&&&&&& & %%
-&5& +++++++&&&
(;-)-%4)-%$;)--%84.1%$;4$%8-%54"%$-??%#7%4%64#)%+7%$)#4"*?-1%#1%1#,#?4)'% % 2< KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK% % &< KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK% % L< KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK%
% MD4,6?-%2'%%N;+8%$;4$%$)#4"*?-%OPQ%#1%1#,#?4)%$+%$)#4"*?-%RST<%(;-"%7#"A%$;-%154?-%745$+)%$;4$%)-?4$-1%$;-%?-"*$;1%+7%% % %%%%%%%$)#4"*?-%OPQ%$+%$)#4"*?-%RST<% & & & & & & & & &&&&&&&&&8& & & & &&&&&&&&&&& &&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &9& & & & &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&:;&4<&& & & &&& &&&&&&&&&&&&&&&:#&4<&&&&&&&&&&&&&&&&&&&&&&&&&=>#&4<&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&::>;&4<&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& & &&&&&&&&&"&&&&&&&&&&&&& &&::>?&&&&&&&&&&&&&&&&@&&&&&&&&&&&&& &!&&&&&&&&&&&&&&&&& &&:A>;&4<&&&&&&&&&&&&&&&&&&&&&&&B& & & & & & & % % % % % % % % % % % % % % % MD4,6?-%& ,6?+.-)%41U1%;#,%$+%7#"A%$;-%;-#*;$%+7%4%$)--<%V-%,-41:)-1%$;-%?-"*$;%+7%$;-%1;4A+8%+7%4% W$+%+"-%A-5#,4?%6?45-B%:1#"*%1#,#?4)%$)#4"*?-1<%R4U-%4%A#4*)4,<%%%
% MD4,6?-%L'%%O)+>-%$;4$%$)#4"*?-%3XY%#1%1#,#?4)%$+%$)#4"*?-%ZMJ<%%N+?>-%7+)%YZ%4"A%YM<% & &&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&.&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&0& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&A>:&4<& &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&C>?&4<&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&-&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&;>A&4<&&&&&&&&&&&&&&&&&&&&&&&&&& & &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&/&&&&&&&&&&&&&&&&&&&&&A>;&4<&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& & & & & & & & & &&$& & & & & & & & & & & & & & & & & & & % % ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' :;8''04'<=>''?@A'=B-A'CB-+D''04'A'@F'' !
MPM2DI& &Unit%2:%Trigonometry%I% %Lesson%2%
&
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&Date:&______________&
Introduction*to*Trigonometry* A. Labeling*Right*Angle*Triangles& & &
&
&
& &
&
& & & B. Investigation:*The*Primary*Trigonometric*Ratios& Calculate&the&required&ratios&to&four&decimal&places&for&each&ratio.& &&&&&&&&&&&&&&&&&&&&&&&&&&& & & &&& & & 2.5& 1.5& & &&&&&&&&&&&&&&&&&&& 53°&
&
&
&
&
&
&&&&&&&&&&
6.25&
5.0& 3.0& 53°&
53°&
2.0&
&&&&&&&&&&&&&&&&&&&&&
4.0& opp hyp
!!!!!!!
opp hyp
adj hyp
opp adj
!!!!!!!
opp hyp
!!!!!!!
adj hyp
opp adj
opp hyp
5.0&
adj hyp
opp adj
opp adj
!!!!!!!
opp hyp
!!!!!!!
adj hyp
!!!!!!!
opp hyp
adj hyp
!!!!!!!
adj hyp
!!!!!!!
opp adj
opp adj
!!!!!!!
3.75&
C. The&Primary&Trigonometric&Ratios! In!similar!right!triangles,!the!ratios!of!the!side!lengths!(opp,!adj,!and!hyp)!are!proportional.!These!ratios!occur!in! relation!to!an!angle!of!reference,! !(theta).!Note:!never!use!the!right!angle!as!the!reference!angle.! There+are+three+primary+trigonometric+ratios:! Sine! !=!
opp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!C! hyp
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !
adj !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! hyp
!!!!!!!!!!!B!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!A!
! ! !
opp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!sin!A!!!!!!!!!!!!!!!!!!!!! ! adj
cos!A!!!!!!!!!!!!!!!!! !
!!tan!A!
! ! Memory&Aid:& ! !
D. Worked&Examples! Example+1:+
find+the+three+primary+trig+ratios+for+angle+D.++++Leave+as+fractions+in+simplest+form.+
!!!!!!!!!!J!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!E! ! ! !!!!!!!!!!!!!!!!26!!!!!!!!!!!!!!!!!!!!!!!!!!!!24! ! ! ! ! ! ! ! D! ! ! Example+2:+ find+the+three+primary+trig+ratios+for+angle+G,+rounding+to+4+decimal+places.+ !!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!G! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!15! ! ! ! !!!!!!H!!!!!!!!!!!!!!8!!!!!!!!!!!!!U! & HW:&&p.&496& &499&&&,&8abc&(reduce&fractions),&20abcd;&&TRIGONOMETRY&WORKSHEET&I:acegh,&2acd,&3acd&
MPM2DI" "Unit%2:%Trigonometry%I% %Lesson%3%
"
""""""""""""""""""""""""" "
"""""""
"""""""""""Date:"___________"
Solving(for(a(Side(Length(in(a(Right(Angle(Triangle( We"can"solve"for"an"unknown"side"length"of"a"right"angle"triangle"by"setting"up"a"trigonometric"ratio"and" solving"using"crossXmultiplication."" " In%the%following%triangles,%solve%for%x%accurate%to%1%decimal%place.% " J" a)""""" " " " " " " b)" " " A" " x" " 9.1"cm" 7"cm" x" " " " 35°" 56°" C" " L" K" B" " " " " " c)" " " " " " " d)" " 12"m" M" N" D"" E" 53°" " " " x" " x" 29"m" " " 30°" " " " F" " " " e)""""" " " x" G"" " " " 9"mm" " " " 40°" " " " I"
O"
"
"
"
"
H"
( ( HW:((p.(496( (501((((#4abdf,(9,(10,(13,(17(
"
f)" x"
P"
Q"
60°" 10.4"cm"
R"
MPM2DI" "Unit%2:%Trigonometry%I% %Lesson%4%
"
""""""""""""""""""""""""" "
"""""""
"""""""""""Date:"______________"
Solving(for(an(Unknown(Angle(in(a(Right(Angle(Triangle( A. Using(Inverse(Operations" Recall:%Inverse%operations%are%used%to%isolate%unknown%variables%in%an%equation.%Solve%each%of%the%following%using% inverse%operations:% % Equation:%
3x 15%
x2
x 7 14%
sin x 0.7071%
What%is%the% operation%on%x?%
%
%
%
%
What%is%the% inverse% operation?%
%
%
%
%
%
% % % % % %
Solve%for%x:% %
%
36%
%
%
B. Solving(for(an(Unknown(Angle(in(a(Right(Triangle" We"can"solve"for"an"unknown"angle"of"a"right"angle"triangle"by"setting"up"a"primary"trigonometric"ratio"and"using" inverse"operations!" " In%the%following%triangles,%solve%for%the$indicated$angle,$accurate%to%the%nearest%degree.% " a) """" " " " " " c)" " 7" " " " 7" 4" " 12" " " " " " " " " b)" " " " " " " d)" 8" " " " 21" " 24" 9" " " " " " " " " HW:((p.(496( (501((((#3(odds),(5(odds),(7ac,(8ef,(20ef,(21(odds),(22,(24((sketch$your$triangles$please!)
MPM2DI" "Unit%2:%Trigonometry%I% %Lesson%5%
"
""""""""""""""""""""""""" "
"""""""
"""""""""""Date:"______________"
Solving(Right(Angle(Triangles( include"the"three"primary%trigonometric%ratios,"the"Pythagorean%Theorem,"and"Sum%of%Interior%Angles." " sin"A"=" "
"
cos"A"=" "
"
tan"A"="
" a"
" "
C"
b"
A"
Pythagorean"Theorem:" " " Sum"of"Interior"Angles:" "
" Example"1:(Solve%each%of%the%following%triangles.%%Round%each%side%length%to%the%nearest%tenth%of%a%unit%and%each% angle%to%the"nearest%degree.% " %%%% % % % % % % a)%%Given% DEF,%where% %E%=%90°,%side%EF%=%4.9%metres,%and% %F%=%34°.% " " " " " " " " " " " " " " "
! b)!Given& GHI,&where& &H&=&90°,&side&HI&=&9.2¢imetres,&and&side&GI&=&11.3¢imetres.& & & & & & & & & & & & & & & & & & & & & & & Example&2:&Find&side&EF&to&the&nearest&tenth&of&a&metre.&& ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! HW:!!p.!500!!!!#26abdef!;!TRIGONOMETRY!WORKSHEET!II:!#1,!2,!3abc,!4abc
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!
! !
! ! ! !
!
"#"$%&! ! =)(2!$>!C'(D/)/4-2'A!E!&&!!
MPM2DI& &Unit%2:%Trigonometry%II% %Lesson%6%
&
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&Date:&______________&
Angles'of'Elevation'and'Depression' Two&angles&that&are&often&referenced&in&the&sighting&of&objects&(and&in&the&creation&of&trigonometry&questions!)& are&the&angle'of'elevation&and&the&angle'of'depression.& & The&angle&of&elevation&is&the&angle%between%the%horizontal% and%the%line+of+sight%up%to%the%object.&
The&angle&of&depression&is&the&angle%between%the%horizontal% and%the%line+of+sight%down%to%the%object.% % &
' ' Example+1:%%An%observer%on%the%top%of%a%radar%tower%measures%the%angle%of%depression%to%a%buoy%on%the%water%to% be%28°.%%If%the%observer%is%40%metres%above%the%water,%how%far,%to%the%nearest%metre,%is%the%buoy%from%the%base%of% the%tower?& & & & & & & & & & Example+2:%% head%is%70°.%%Find%the%height%of%the%dinosaur%to%the%nearest%metre.% & & & % % % % % % Example+3:%The%angle%of%depression%to%a%disabled%ship%from%an%approaching%helicopter%is%55°.%%If%the%helicopter%is% 500%metres%above%the%level%of%the%water,%what%is%the%horizontal%distance%from%the%helicopter%to%the%ship?% & & & & & & & & & ' HW:''TRIGONOMETRY'WORKSHEET'III:'#3,'5,'6,'9,'12'(record'your'eyeball'height'here:'_____________'cm)
MPM2DI& &Unit%2:%Trigonometry%II% %Lesson%7%
&
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&Date:&______________&
The$Cosine$Law$ A. What$is$the$Cosine$Law?& The&Pythagorean&Theorem&only&applies&to&right&angle&triangles.&&& Extending&this&theorem&to&apply&to&any&type&of&triangle&(including&right& angle&triangles)&results&in&a&new&trigonometric&law:&the$Cosine$Law.&&& The&cosine&law&can&be&expressed&in&two&different&forms:& & % % % % % % % % % % % % % To&use&the&cosine&law,&we&will&have&three&pieces&of&information&about&the&triangle,&but&will&be&unable&to&set&up&the& Sine&Law&ratios.&Basically,%when&given%three(sides((SSS)%and&no&angles%or%two(sides(and(a(contained(angle((SAS),%we& will&use&the&cosine&law.& & i) Set&up&the&Cosine&Law&to&solve&for&side&f:& & & & & % ii) Set&up&the&Cosine&Law&to&solve&for&angle&D:& & & % % %
B. Using$the$Cosine$Law$Given$Two$Sides$and$the$Contained$Angle$(SAS)& Example%1:%%Given% & & & & & &
where% D%=%50°,%e%=%10,%f%=%8%m,%find%side%d,%accurate%to%one%decimal%place.&
&
C. Using(the(Cosine(Law(Given(Three(Sides((SSS)! When(given(a(choice,(find(the(largest(angle(first((hint:(the(largest(angle(corresponds(to(the(largest(side)!!( Example(2:((Given( where((j(=(5(cm,(e(=(6(cm,(r(=(8(cm,(find( R,(accurate(to(the(nearest(degree.( ( ( ( ( ( ( ( ( ( ( (
( D. Solving(Triangles(Using(the(Cosine(Law( Example(3:( nearest(degree.( (
,(given( Q(=(130°,(r(=(8,(p(=(10;(solve(sides(accurate(to(1(decimal(place(and(angles(to(the(
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( HW:((Complete(the(following.(Sketch(the(triangles(for(#6F8.(When(given(a(choice,(find(the(largest(angle(first!( 1)!Find!b,!in! ABC,!given! B!=!36°,!a!=!8,!c!=!10! ! 2)!Find!e,!in! DEF,!!given! E!=!75°,!d!=!15,!f!=!9! 3)!Find!h,!in! GHI,!!given! H!=!120°,!g!=!6.3,!i!=!4.7! ! 4)!Find! U,!in! STU,!given!s!=!4,!t!=!7,!u!=!8! 5)!Find! X,!in! XYZ!,!given!x!=!1.78,!y!=!11.3,!z!=!12.3! 6)!Solve! JKL,!given! K!=!136°,!j!=!10,!l!=!12! 7)!Solve! PQR!,!given!p!=!9,!q!=!8,!r!=!5! ! ! 8)!Solve! ABC,!given!a!=!8.8,!b!=!6.3,!c!=!8.4! % Answers:! 1)!b!=!5.9! 2)!e!=!15.4! 3)!h!=!9.6! 4)! U!=!89°! 5)! X!=!7°! 7)! P!=!84°,!! Q!=!62°,!! R!=!34°! 8)! A!=!72°,!!! B!=!43°,!!! C!=!65°! ! !
6)!k!=!20,!!! J!=!20°,!!! L!=!24°!
!
MPM2DI& &Unit%2:%Trigonometry%II% %Lesson%8%
&
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&Date:&______________&
The$Sine$Law$$ A. Proving$the$Sine$Law& i) For&ANY&triangle,&the&following&equivalent&ratios&can&be&observed:&& & % % % % % % % % & This&relationship&is&called&the$Sine$Law.&To&use&the&sine&law,&we&must&have&one&complete&ratio&(both&values&known)& and&one&ratio&with&one&value&missing.&Basically,%we&need%one$corresponding$side,angle$pair%(e.g.% A%and%side%a)%+$ one$other$piece$of$information%to&use&the&sine&law.% & ii) Prove&the&ratios&in&the&Sine&Law&are&equivalent&using&the&following&triangles:& & & & & & & & & & & & & & & & & & & &
B. Using$the$Sine$Law$Given$Two$Angles$and$One$Opposite$Side& Example%1:%% &
L%=%58°,% F%=%22°,%e%=%63.8%m,%find%side%f,%accurate%to%one%decimal%place.&
& & & & &
$
$
&
C. Using(the(Sine(Law(Given(Two(Sides(and(One(Opposite(Angle! Example(2:((Given( ( ( ( ( ( ( ( ( ( ( ( ( ( (
where( J(=(42°,(j(=(10.2(cm,(e(=(8.5(cm,(find( E,(accurate(to(the(nearest(degree.(
( D. Solving(Triangles(Using(the(Sine(Law( ( Example(3:( G(=(27°,(p(=(17,(g(=(13,(for(all(unknown(values;(solve(sides(accurate(to(1(decimal( place(and(angles(to(the(nearest(degree.( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( HW:((p.(549( (550((((#1,(2,(3,(4,(5,(6,(8,(10,(11(
MPM2DI& &Unit%2:%Trigonometry%II% %Lesson%9%
&
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&Date:&______________&
Sine%&%Cosine%Law%Applications% Recall:%For&non0right&triangles,%to&use&the&Sine&Law,&we&need%one(corresponding(side/angle(pair%(e.g.% A%and%side%a)%% +(one(other(piece(of(information.%Otherwise,&we&will&use&the&Cosine&Law!& % Example%1:%%A%greenhouse%is%10%metres%wide%and%the%rafters%make%angles%of%25°%and%60°%with%the%joists.%%Find%the% length%of%each%type%of%rafter,%accurate%to%one%decimal%place.& & & & & & & & & & & Example%2:%%From%a%point%A,%the%angle%of%elevation%to%the%top%of%a%transmission%tower%is%61°.%%At%a%point%B,%52% metres%closer%to%the%base%of%the%tower,%the%angle%of%elevation%to%the%top%is%71°.%%How%high%is%the%tower,%accurate%to% one%decimal%place?% % % % % % % % % % % % % % % Example%3:%%A%triangular%piece%of%land%is%bounded%by%32%metres%of%brick%wall,%50%metres%of%fencing,%and%28%metres%of% road%frontage.%%What%angle%does%the%fence%make%with%the%road?%
% % % % % % % % HW:%%p.%555% %556%%%%#1:5;%%%%%%p.%568%%%%#15:18%
MPM2DI& &Unit%2:%Trigonometry%II% %Lesson%10% &
&&&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&&
&&&&&&&&&&&Date:&______________&
Solving(Problems(Using(Trigonometry( Based&on&the&type&of&triangle&involved&in&a&given&problem,&we&have&different&tools&that&are&available&for&us&to&use:& %
Right& Triangles&
NonFRight& Triangles&
% % Example(1:%%Fiona%is%installing%a%guy%wire%to%stabilize%a%tower%that%is%61.0%metres%tall.%After%attaching%the%wire%to%the% top%of%the%tower,%Fiona%is%lowered%in%the%basket%of%the%arm%on%the%repair%truck.%Part%way%down,%the%arm%malfunctions% and%she%is%stuck.%Looking%up%at%the%top%of%the%tower,%the%angle%of%elevation%is%42°;%looking%down%at%the%bottom%of%the% tower,%the%angle%of%depression%is%32°.%Her%horizontal%sightline%%is%40.0%metres%away%from%the%tower.% & a) How&much&wire&has&been&let&out?& & & b)&How&much&more&wire&is&needed&to&reach&the&ground?& % %
%
! Example!2:!!The!Queen!Charlotte!Islands!in!BC!form!a!fairly!triangular!region!in!the!Pacific!Ocean.!Two!sides!are! about!256!km!and!288!km!and!form!an!angle!of!19°.!! ! a) What!is!the!length!of!the!third!side?!! ! ! ! ! ! ! ! ! ! ! ! ! ! b) What!is!the!approximate!area!bounded!by!the!Queen!Charlotte!Islands?!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! HW:!!p.!574! !576!!#1,!3(assume!a!right!triangle),!4=6,!9,!15,!18;!!p.!588!#6!