Una Tarde Con Germaine Tailleferre (general)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Una Tarde Con Germaine Tailleferre (general) as PDF for free.

More details

  • Words: 4,349
  • Pages: 19
UNA TARDE CON GERMAINE TAILLEFERRE (CUARTETO ELEGÍACO)

  Fl.  

q=120

     



3

mp

Cl.

Vla.

Fgt.



  



 



 



 Fl.  

Cl.

Vla.

Fgt.



4

 

 Fl.  

Cl.

Vla.

Fgt.

7



 mp

        





  

   3



mf





        mf

        







      

mf



 

      

   

 

pizz.     

 







  





 

      

mf

     



mp

 



  

 

     



mp





     





       

         

2´16´´

Roberto Pineda

      

     



          

2

         Fl.  Cl.

Vla.

Fgt.



        

          

Cl.

Vla.

Fgt.



12



       mf

      



 

ff

Cl.

Vla.

Fgt.



 









 

mf



mf

    3



  







  





                        

                                     



pizz.         

      

f

15       Fl. 

ff

               ff arco               

 

 Fl.  



         

10

 

        

                mf

     



3

   Fl.        18



       arco  Vla.  



Cl.

Fgt.



23



Vla.





Fgt.

        

  Fl. 

Cl.

Vla.

Fgt.

27

 

 

 

 3

p

 

 







    

f



p



           p

 

mf

 

Cl.





p

 

         

 

 Fl. 



 

 





 



3

mf

3





 

  3

  

  3

3



3



        

   

       

  



    

        



mf

3

f



   







        







   3

       3              

    



   

3

4

 Fl.   30

f

 Cl.   Vla.

Fgt.



Vla.

Fgt.







 





f







p





Fgt.

p

 

p

     

 

       











f





p



       



f



3

 

  

mf

    



        

mf

Vla.









p

p



mf

 



   

                     

   3

                 

   

37

  



 





3



    3 

   Fl. 

Cl.





        mf         

33   Fl. 

Cl.

          

   

     mf



     3





mf

       

  Fl.   42

Cl.

Vla.

Fgt.



    

   mf

 

  



 



        



 45    Fl. 





Vla.





Fgt.

         



f

 Fl.  

Cl.

Vla.

Fgt.

     



mf

 

mf











 





f

 

p





 3

       

                

     



mf

               

48

 



         

3

f



         







     





Cl.

  

5



      

 f

 

  mf         



     

       

6

 Fl.  



51

Cl.

Vla.

Fgt.



 



 



Cl.



Vla.



 Fl.

 







 









    57

     





              cresc.          Vla.     cresc. Cl.

      cresc.



   



 f



     













            

  

       

 

     













mp

        

                   

cresc.

Fgt.

mf

    

54    Fl. 

Fgt.



     





                             



 ff



   ff  

ff

 

ff

II 7

  Fl.  









  

















60

Cl.

Vla.

Fgt.



q=110

                                    

p

 Fl. 



Cl.





Vla.



Fgt.



64



          



mf





               



mf





68                 Fl. 

Cl.



Vla.



Fgt.









 

   















           





    



  





              













              











8

72               Fl. 



f

Cl.

Vla.

Fgt.



  

 Fl. 









               



75







       f



mf









        



  

mf



                    Cl.                          Vla.   Fgt.









  Fl. 

Cl.

Vla.

Fgt.

78

   









     

  

      



    

 

           









   

 



 

              

       

9

         Fl.     81

Cl.

Vla.

Fgt.



  

  



                               







 84                 Fl. 

Cl.

Vla.

Fgt.



  p

f







     























                            p f      

88    Fl.  

mf

Cl.



Vla.



Fgt.

 

p



 







 

   









 

  

 

   





  



10

  Fl.  



90

Cl.



Vla.



Fgt.





 



 

   

 

Vla.

Fgt.



 



  

  

  Fl. 

Cl.

Vla.

Fgt.

95





  



 



   

  



p cresc.



   

  

p cresc.







 



 

    p



   

  

         

    

p cresc.





             p cresc.





  





  



 

 

92         Fl. 

Cl.









  

p



    

 





                                 p sempre               p

  Fl. 



99

Cl.

Vla.

Fgt.



         

    









 



f

 



 



                         

   

3

f

 

 

 f

 Fl. 









Cl.











Vla.







Fgt.



103





p

               

 Fl. 



Cl.





Vla.



Fgt.

107





              



          



11



mf





              



mf









 

   





           







12

111                 Fl. 

Cl.

Vla.

Fgt.







Vla.

Fgt.



Vla.

Fgt.



  







                                 

  

 Fl. 

Cl.

    











               

118





 

mf



         













        



       f







  

                  

      





 









f











115               Fl. 

Cl.





 

        





  Fl.  121

Cl.

  mf

Vla.

Fgt.



 



13

    

  

      

   



     Fl.    

Fgt.









         



    p



        p



  





 



III

f

mf





   

    



           





mf

 mf





      



127 q=114

p

Fgt.





mf

Vla.











   



ff

            Fl.  

Cl.

  



  

124

    Vla. 



          



Cl.

cresc.

     



    

mf cresc.



p cresc.

  

p cresc.

  

p cresc.

 

14

131        Fl. 

Cl.

Vla.



 mf

 

mf

Fgt.



 

mf

f

 

Fgt.



dim.





dim.

dim.

f

      

mf

      



p





    

p



p cresc.

Vla.

Fgt.

 

p cresc.





p cresc.





    

















f

 

f

f

mf





 



dim.

f

 



mf

139

p cresc.



mf



    

f

         

   



p



 

                 Fl.          

Cl.

dim.

                              

 

 

 



  

Vla.





f

 

Cl.

 



  Fl.   135

     



        

dim.



dim.

     

dim.

15

 Fl.   143

     

 







 





 

 

    

p

Cl.

p

Vla.

p

Fgt.



 

Fgt.



 



 

     Fl. 

 Cl.    Vla.

Fgt.

    

  

        





A tempo



 



f





         

 

f



f





            

   

      

 

   

mf



152

f

mf

mf

     

 

mf



rit. 148                    Fl.            Cl.        

Vla.

     

      



  

 

               

16

   Fl. 

            

156

Cl.

 

Vla.

 

Fgt.





   

        



                          

160         Fl. 

     









 



 





Vla.

 



 





Fgt.

 





 Fl.  

Cl.

Vla.

Fgt.

164

 

mp

       mf

      



               









 





Cl.

     



mp

      

            mf

                     

mp

      





3



mp

  mf

  

  

 Fl. 







167

Cl.

Vla.

Fgt.





 

 













         

  Fl. 

      

Cl.

Vla.

Fgt.

            

    mf







       



      



mf

 

172



       

mf

          mf    Vla.  



         

170

Cl.

Fgt.



3

mp

     

 Fl.  

     



17

        

          



   

    

18

  Fl.  174

Cl.





   

   

pizz.

Vla.

Fgt.



                   mf   

 Fl.  

Cl.

Vla.

Fgt.



177

   

 Fl.  

Cl.

Vla.

Fgt.

     

mp

     

180



      mf







   3

        mf

mf



 

      

  

 

pizz.     

 

 mf





mp

 





     



        



mp

           

mf

mp



arco

 







  



           

  

 

        

      



 

 





  

              

 

mf





183          Fl. 

Cl.

Vla.

Fgt.







 



     

Cl.

 





Vla.

 





186

 

                   Vla.      

cresc.



                    

Cl.



           

        

188             Fl.  

Fgt.

cresc. arco



 

            

   

    



cresc.





cresc.

             

 





     

     

  Fl.  

Fgt.

19







  

   

     

   

 ff

  ff  ff



ff

   

Related Documents