TRUTH TABLES, EQUIVALENT STATEMENTS & TAUTOLOGIES
TRUTH TABLES
a.Construct a truth table for ~(~πΉ β πΊ) β πΊ. b.Use the truth table from part a to determine the truth value of ~(~πΉ β πΊ) β πΊ, given that πΉ is true and πΊ is false.
~(~πΉ β πΊ) β πΊ πΉ
πΊ
~(~πΉ β πΊ) β πΊ πΉ
πΊ
~πΉ
~(~πΉ β πΊ) β πΊ πΉ
πΊ
~πΉ ~πΉ β πΊ
~(~πΉ β πΊ) β πΊ πΉ
πΊ
~πΉ ~πΉ β πΊ
~(~πΉ β πΊ)
~(~πΉ β πΊ) β πΊ πΉ
πΊ
~πΉ ~πΉ β πΊ
~(~πΉ β πΊ)
~(~πΉ β πΊ) β πΊ
~(~πΉ β πΊ) β πΊ πΉ
πΊ
~πΉ ~πΉ β πΊ
T T F F
T F T F
F F T T
T F T T
~(~πΉ β πΊ)
~(~πΉ β πΊ) β πΊ
F T F F
T T T F
~(~πΉ β πΊ) β πΊ FOR πΉ IS TRUE AND πΊ IS FALSE πΉ
πΊ
~πΉ ~πΉ β πΊ
T T F F
T F T F
F F T T
T F T T
~(~πΉ β πΊ)
~(~πΉ β πΊ) β πΊ
F T F F
T T T F
TRUTH TABLES
a.Construct a truth table for (πΉ β πΊ) β (~π» β πΊ). b.Use the truth table from part a to determine the truth value of (πΉ β πΊ) β (~π» β πΊ), given that πΉ is true, πΊ is true, and π» is false.
(πΉ β πΊ) β (~π» β πΊ) πΉ
πΊ
π»
(πΉ β πΊ) β (~π» β πΊ) πΉ
πΊ
π»
πΉβπΊ
(πΉ β πΊ) β (~π» β πΊ) πΉ
πΊ
π»
πΉ β πΊ ~π»
(πΉ β πΊ) β (~π» β πΊ) πΉ
πΊ
π»
πΉ β πΊ ~π» ~π» β πΊ
(πΉ β πΊ) β (~π» β πΊ) πΉ
πΊ
π»
πΉ β πΊ ~π» ~π» β πΊ (πΉ β πΊ) β (~π» β πΊ)
πΉ
πΊ
π»
πΉ β πΊ ~π» ~π» β πΊ (πΉ β πΊ) β (~π» β πΊ)
(πΉ β πΊ) β (~π» β πΊ)
πΉ
πΊ
π»
πΉ β πΊ ~π» ~π» β πΊ (πΉ β πΊ) β (~π» β πΊ)
T β πΊ)T (πΉTβ πΊ)Tβ (~π» T T T F F F F
T F F T T F F
F T F T F T F
T F F F F F F
F T F T F T F T
T T F T T T F T
T T F F F F F F
πΉ
πΊ
π»
πΉ β πΊ ~π» ~π» β πΊ (πΉ β πΊ) β (~π» β πΊ)
T β πΊ)T (πΉTβ πΊ)Tβ (~π» T T T F F F F
T F F T T F F
F T F T F T F
T F F F F F F
F T F T F T F T
T T F T T T F T
T T F F F F F F
TRUTH TABLES
Construct a truth table for πΉ β ~(πΉ β ~πΊ)
THREE-VALUESD LOGIC
β’ A statement is true, false, or βsomewhere between true and false.β β’ true (T), false (F), or maybe(M)
πΉ
πΊ
~πΉ
πΉβπΊ
πΉβ πΊ
πΉ T T T M M M F F F
πΊ T M F T M F T M F
~πΉ F F F M M M T T T
πΉβπΊ T M F M M F F F F
πΉβπΊ T T T T M M T M F
TRUTH TABLES
Construct a truth table for β’ ~(πΉ β ~πΊ) β’ ~πΉ β πΊ
EQUIVALENT STATEMENTS Two statements are equivalent if they both have the same truth value for all possible truth values of their simple statements. Equivalent statements have identical truth values in the final columns of their truth tables. The notation πΉ β‘ πΊ is used to indicate that the statements πΉ and πΊ are equivalent.
DE MORGANβS LAWS FOR STATEMENTS
β’ For any statements πΉ and πΊ, ~(πΉ β πΊ) β‘ ~πΉ β ~πΊ ~(πΉ β πΊ) β‘ ~πΉ β ~πΊ β’ it can be used to restate certain English sentences in an equivalent form.
TAUTOLOGIES AND SELF-CONTRADICTIONS
β’ TAUTOLOGIES A statement that is always true β’ SELF-CONTRADICTIONS A statement that is always false
TRUTH TABLES
Construct a truth table for β’ πΉ β (~πΉ β πΊ)
CONDITIONAL AND BICONDITIONAL
β’ CONDITIONAL STATEMENTS can be written in form if πΉ, then πΊ or if πΉ, πΊ form. statement πΉ, antecedent statement πΊ, consequent
TRUTH VALUE FOR πΉ β πΊ
πΉ: You can use word processor. πΊ: You can create a webpage. Antecedent (T), Consequent (T) Truth value (T)
TRUTH VALUE FOR πΉ β πΊ
πΉ: You can use word processor. πΊ: You can create a webpage. Antecedent (T), Consequent (F) Truth value (F)
TRUTH VALUE FOR πΉ β πΊ
πΉ: You can use word processor. πΊ: You can create a webpage. Antecedent (F), Consequent (T) Truth value (T)
TRUTH VALUE FOR πΉ β πΊ
πΉ: You can use word processor. πΊ: You can create a webpage. Antecedent (F), Consequent (F) Truth value (T)
TRUTH TABLE FOR πΉ β πΊ
πΉ
πΊ
πΉβπΊ
T
T
T
T
F
F
F
T
T
F
F
T
FIND THE TRUTH VALUE OF A CONDITIONAL
a. If 2 is an integer, then 2 is a rational number. b. If 3 is a negative number, then 5 > 7. c. If 5 > 3, then 2 + 7 = 4
TRUTH TABLES
Construct a truth table for β’ [πΉ β (πΊ β ~πΉ)] β ~πΉ
TRUTH TABLES
Construct a truth table for β’ ~πΉ β πΊ β’ πΉ β πΊ β‘ ~πΉ β πΊ
WRITE A CONDITIONAL IN ITS EQUIVALENT DISJUNCTIVE FORM
a. If I could play the guitar, I would join the band. b. If Cam Newton cannot play, then his team will lose.
TRUTH TABLES
Construct a truth table for β’ ~(πΉ β πΊ) β‘ πΉ β ~πΊ
WRITE THE NEGATION OF A CONDITIONAL
a. If they pay me the money, I will sign the contract. b. If the lines are parallel, then they do not intersect.
CONDITIONAL AND BICONDITIONAL
β’ BICONDITIONAL STATEMENTS the statement (πΉ β πΊ) β (πΊ β πΉ) denoted by πΉ β πΊ. β’ πΉ β πΊ β‘ (πΉ β πΊ) β (πΊ β πΉ)
WRITE SYMBOLIC BICONDITIONAL STATEMENTS IN WORDS
Let πΉ, πΊ, and π» represent the following: πΉ: She will go on vacation. πΊ: She cannot take the train. π»: She cannot get a loan. a. πΉ β ~πΊ
b. ~π» β ~πΉ
TRUTH TABLE FOR πΉ β πΊ
πΉ
πΊ
πΉβπΊ
T
T
T
T
F
F
F
T
F
F
F
T
DETERMINE THE TRUTH VALUE OF A BICONDITIONAL
a. π₯ + 4 = 7 if and only if x = 3. 2 b. π₯ = 36 if and only if x = 6.
DETERMINE THE TRUTH VALUE OF A BICONDITIONAL
a. π₯ + 4 = 7 if and only if x = 3. 2 b. π₯ = 36 if and only if x = 6.