UNACH
HERRAMIENTAS 1º “C”
SISTEMA BINARIO Internamente, la máquina computadora representa los valores numéricos mediante grupos de bits. agrupados en bytes. Por ejemplo, el número 3 se representa mediante un byte que tiene "activos" los bits primero y segundo (contando desde la derecha); 00000011. Esta sería la forma de representación del número 3 en un sistema numérico de base 2, también conocido como BINARIO. El sistema que utilizamos normalmente es un sistema DECIMAL o de base 10. En un sistema DECIMAL, contamos desde el 0 hasta el 9 antes de añadir un nuevo dígito. El número 22 en un sistema decimal significa que tenemos dos conjuntos de 10s y 2 conjuntos de 1s.
En un sistema BINARIO sólo pueden haber dos valores para cada dígito: ya sea un 0=DESACTIVADO ó un 1=ACTIVADO. Para representar el número 22 en notación BINARIA lo haríamos como 00010110, notación que se explica según la siguiente tabla:
Posición del BIT: 7 6 5 4 3 2 1 0 Valor Binario: 0 0 0 1 0 1 1 0 Valor Decimal: 128 64 32 16 8 4 2 1 Valores a Sumar: 0 0 0 16 0 4 2 0 Valor Resultante: 16 + 4 + 2=22
Todos los valores que corresponden a posiciones a las que se asigna el valor binario de 0 (cero) no se cuentan, ya que 0 representa DESACTIVADO.
De la misma manera, los números que corresponden a las posiciones con valor binario 1 se sumarán, (16 + 4 + 2=22) ya que 1 representa ACTIVADO.
Valores Decimales y sus equivalentes Binarios:
UNACH
HERRAMIENTAS 1º “C”
POSICIÓN BIT VALOR DECIMAL VALOR BINARIO 111 2 2 10 3 3 11 4 4 100 5 5 101 6 6 110 7 7 111 8 8 1000 9 9 1001 10 10 1010 11 16 10000 12 32 100000 13 64 1000000 14 100 1100100 15 256 100000000 16 512 1000000000 17 1000 1111110100 18 1024 10000000000
Bits, Bytes y Palabras... Se suelen escribir los números binarios como una secuencia de grupos de cuatro bits, también conocidos como NIBBLES. Según el número de estas agrupaciones los números binarios se clasifican como:
Unidad: Núm. bits Ejemplo: Bit 1 1 Nibble 4 0101
UNACH
HERRAMIENTAS 1º “C”
Byte (Octeto) 8 0000 0101 Palabra 16 0000 0000 0000 0101 Doble Palabra 32 0000 0000 0000 0000 0000 0000 0000 0101
Los computadores personales con el sistema operativo MS DOS utilizaban palabras de 16 BITS. Los sistemas operativos actuales sobre los que corre AutoCAD 2000 utilizan Palabras de 32 BITS.
SISTEMA DECIMAL El sistema decimal es un sistema de numeración en el que las cantidades se representan utilizando como base el número diez, por lo que se compone de las cifras: cero (0); uno (1); dos (2); tres (3); cuatro (4); cinco (5); seis (6); siete (7); ocho (8) y nueve (9). Este conjunto de símbolos se denomina números árabes. los números decimales son lo que no tienen coma (,). Es el sistema de numeración usado habitualmente en todo el mundo (excepto ciertas culturas) y en todas las áreas que requieren de un sistema de numeración. Sin embargo hay ciertas técnicas, como por ejemplo en la informática, donde se utilizan sistemas de numeración adaptados al método de trabajo como el binario o el hexadecimal. También pueden existir en algunos idiomas vestigios del uso de otros sistemas de numeración, como el quinario, el duodecimal y el vigesimal. Por ejemplo, cuando se cuentan artículos por docenas, o cuando se emplean palabras especiales para designar ciertos números (en francés, por ejemplo, el número 80 se expresa como "cuatro veintenas"). Según los antropólogos, el origen del sistema decimal está en los diez dedos que tenemos los humanos en las manos, los cuales siempre nos han servido de base para contar. El sistema decimal es un sistema de numeración posicional, por lo que el valor del dígito depende de su posición dentro del número. Así:
Los números decimales se pueden representar en rectas numéricas.
UNACH
HERRAMIENTAS 1º “C”
SISTEMA HEXADECIMAL El sistema hexadecimal, a veces abreviado como hex, es el sistema de numeración posicional de base 16 —empleando por tanto 16 símbolos—. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 28 valores posibles, y esto puede representarse como , que, según el teorema general de la numeración posicional, equivale al número en base 16 10016, dos dígitos hexadecimales corresponden exactamente —permiten representar la misma línea de enteros— a un byte. En principio dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:
Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0,A16 = 3×162 + E×161 + 0×160 + A×16-1 = 3×256 + 14×16 + 0×1 + 10×0,0625 = 992,625. El sistema hexadecimal actual fue introducido en el ámbito de la computación por primera vez por IBM en 1963. Una representación anterior, con 0–9 y u–z, fue usada en 1956 por la computadora Bendix G-15.
UNACH
HERRAMIENTAS 1º “C”
SISTEMA OCTAL El sistema numérico en base 8 se llama octal y utiliza los dígitos 0 a 7. Por ejemplo, el número binário para 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 001 010. De modo que el número decimal 74 en octal es 112. En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales. Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares. Esto explicaría por qué en latín nueve (novem) se parece tanto a nuevo (novus). Podría tener el significado de número nuevo.