Test 6 - Sol

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Test 6 - Sol as PDF for free.

More details

  • Words: 1,358
  • Pages: 4
Pure Mathematics – Inequalities

p.1

King’s College 2007 – 2008 F.6 Pure Mathematics Revision Test 6 Suggested Solution n

1.

(a) (i)

n

n

n

k =1

k =1

Consider f (t ) = ∑ (a k + tbk ) = ∑ a k + 2t ∑ a k bk + t 2 ∑ bk 2

k =1

2

k =1

2

Q f (t ) ≥ 0 ∀t ∴ Δ≤0 2

⎧ n ⎫ ⎧ n 2 ⎫⎧ n 2 ⎫ ⇔ ⎨2∑ a k bk ⎬ − 4⎨∑ a k ⎬⎨∑ bk ⎬ ≤ 0 ⎩ k =1 ⎭ ⎩ k =1 ⎭⎩ k =1 ⎭ 2

⎧n ⎫ ⎧ n 2 ⎫⎧ n 2 ⎫ ⇔ ⎨∑ a k bk ⎬ ≤ ⎨∑ a k ⎬⎨∑ bk ⎬ ⎩ k =1 ⎭ ⎩ k =1 ⎭⎩ k =1 ⎭

(ii)

p≤

bk ≤ q , k = 1, 2, …, n ak

⎛ b ⎞⎛ b ⎞ ⇒ a k2 ⎜⎜ p − k ⎟⎟⎜⎜ q − k ⎟⎟ ≤ 0 k = 1, 2, K , n a k ⎠⎝ ak ⎠ ⎝ ⇒ pqa k2 − ( p + q )a k bk + bk2 ≤ 0 ⇒

∑ [pqa − ( p + q )a b n

2 k

k =1



k

n

(iii)

]

+ bk2 ≤ 0

n

n

pq ∑ a k2 − ( p + q )∑ a k bk + ∑ bk2 ≤ 0 k =1



k

k =1

k =1

n

n

n

k =1

k =1

k =1

pq ∑ a k2 + ∑ bk2 ≤ ( p + q )∑ a k bk

m bk M ≤ ≤ M ak m

By (b)(ii), n n ⎛m M⎞ n 2 2 ⎜ + ⎟∑ a k bk ≥ ∑ a k + ∑ a k M m ⎝ ⎠ k =1 k =1 k =1

⎛ n ⎞⎛ n ⎞ ≥ 2 ⎜ ∑ a k2 ⎟⎜ ∑ bk2 ⎟ ⎝ k =1 ⎠⎝ k =1 ⎠ 2

2

1⎛ m M ⎞ ⎛ n ⎞ ⎛ n 2 ⎞⎛ n 2 ⎞ ⎜ + ⎟ ⎜ ∑ a k bk ⎟ ≥ ⎜ ∑ a k ⎟⎜ ∑ bk ⎟ 4 ⎝ M m ⎠ ⎝ k =1 ⎠ ⎝ k =1 ⎠⎝ k =1 ⎠

(Q A.M . ≥ G.M .)

Pure Mathematics – Inequalities

(b) Choose a k = 1 +

p.2

1 8 1 4 1 1 , bk = 1 − k +1 , then 1 − 2 = ≤ a k , bk ≤ 1 + = . k 9 3 3 3 3 3

8 4 Take m = , M = . 9 3 By (a)(iii)

By (a)(i),

⎧⎪ n ⎛ 1 ⎞ 1 ⎞ ⎪⎫⎪⎧ n ⎛ 1 − k +1 ⎟ 1 + ⎜ ⎨∑ k ⎟ ⎬ ⎨∑ ⎜ ⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭⎪⎩ k =1 ⎝ 3 ⎠ 2

2

⎫⎪ ⎬ ⎪⎭

2 2 ⎧⎪ n ⎛ 1 ⎞ ⎫⎪⎧⎪ n ⎛ 1 ⎞ ⎫⎪ ⎨∑ ⎜1 + k ⎟ ⎬⎨∑ ⎜1 − k +1 ⎟ ⎬ ⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭

2

⎛4 8⎞ 2 1 ⎜⎜ 3 9 ⎟⎟ ⎧ n ⎛ 1 ⎞⎫ 1 ⎞⎛ ≤ + ⎟⎬ ⎨∑ ⎜1 + ⎟⎜1 − 4 ⎜ 8 4 ⎟ ⎩ k =1 ⎝ 3 k ⎠⎝ 3 k +1 ⎠⎭ ⎜ ⎟ ⎝9 3⎠ 169 ⎧ n ⎛ 1 1 1 ⎞⎫ = ⎨∑ ⎜1 + k − k +1 − 2 k +1 ⎟⎬ 144 ⎩ n =1 ⎝ 3 3 3 ⎠⎭ 169 ⎧ n ⎛ 2 1 1 ⎞⎫ = ⎨∑ ⎜1 + ⋅ k − 2 k +1 ⎟⎬ 144 ⎩ n =1 ⎝ 3 3 3 ⎠⎭ 169 ⎧ 2 n 1 1 n 1⎫ = + n ⎨ ∑ − ∑ ⎬ 144 ⎩ 3 n =1 3 k 3 n =1 9 k ⎭ 169 ⎛ 2 n 1 ⎞ < ⎜n + ∑ k ⎟ 144 ⎝ 3 n =1 3 ⎠

2

1 ⎛ 1− n ⎜ 169 ⎜ 2 1 3 = n+ ⋅ ⋅ 1 144 ⎜ 3 3 1− ⎜ 3 ⎝

⎞ ⎟ ⎟ ⎟ ⎟ ⎠

169 ⎡ 1 ⎛ 1 = n + ⋅ ⎜1 − n ⎢ 144 ⎣ 3 ⎝ 3

2

169 ⎛ 1⎞ < ⎜n + ⎟ 144 ⎝ 3⎠

⎞⎤ ⎟⎥ ⎠⎦

2

2

2

2

⎧n ⎛ 1 ⎞⎛ 1 ⎞⎫ ≥ ⎨∑ ⎜1 + k ⎟⎜1 − k +1 ⎟⎬ ⎩ k =1 ⎝ 3 ⎠⎝ 3 ⎠⎭

2

⎧n ⎛ 1 1 1 ⎞⎫ = ⎨∑ ⎜1 + k − k +1 − 2 k +1 ⎟⎬ 3 3 ⎠⎭ ⎩ n =1 ⎝ 3 2 n 1 1 n 1⎫ ⎧ = ⎨n + ∑ k − ∑ k ⎬ 3 n =1 3 3 n =1 9 ⎭ ⎩

2

2 n 1 1 n 1⎫ ⎧ > ⎨n + ∑ k − ∑ k ⎬ 3 n =1 3 3 n =1 3 ⎭ ⎩

2

1 n 1⎫ ⎧ = ⎨n + ∑ k ⎬ 3 n =1 3 ⎭ ⎩ 1 1⎞ ⎛ > ⎜n + ⋅ ⎟ 3 3⎠ ⎝ 1⎞ ⎛ = ⎜n + ⎟ 9⎠ ⎝

2

2

2

2

2 2 2 2 ⎧⎪ n ⎛ 1⎞ 1 ⎞ ⎫⎪⎧⎪ n ⎛ 1 ⎞ ⎫⎪ 169 ⎛ 1⎞ ⎛ + Therefore, ⎜ n + ⎟ < ⎨∑ ⎜1 + k ⎟ ⎬⎨∑ ⎜1 − k +1 ⎟ ⎬ < n ⎜ ⎟ 9⎠ 3⎠ ⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭ 144 ⎝ ⎝

2

Pure Mathematics – Inequalities

9.

p.3

y2 y D1 , 1 D2 > 0 y1 y2

(a) (i)

By A.M . ≥ G.M . , y2 y y y D1 + 1 D2 ≥ 2 2 D1 ⋅ 1 D2 = 2 D1 D2 y2 y1 y2 y1

(ii)

y2 y D1 + 1 D2 y1 y2

(

)

(

y2 y x1 y1 − z12 + 1 x 2 y 2 − z 22 y1 y2

=

= x1 y 2 −

)

y2 2 y ⋅ z1 + x 2 y1 − 1 ⋅ z 22 y1 y2

⎛y ⎞⎛ y ⎞ ≤ x1 y 2 + x 2 y1 − 2 ⎜⎜ 2 ⋅ z12 ⎟⎟⎜⎜ 1 ⋅ z 22 ⎟⎟ ⎝ y1 ⎠⎝ y 2 ⎠ = x1 y 2 + x 2 y1 − 2 z1 z 2 (iii) (x1 + x 2 )( y1 + y 2 ) − ( z1 + z 2 )

2

= x1 y1 + x 2 y 2 + x1 y 2 + x 2 y1 − z12 − 2 z1 z 2 − z 22 = ( x1 y 2 + x 2 y1 − 2 z1 z 2 ) + (D1 + D2 )

y2 y D1 + 1 D2 + (D1 + D2 ) by (a )(ii ) y1 y2



≥ 2 D1 D2 + (D1 + D2 ) by (a )(i ) ≥ 2 D1 D2 + 2 D1 D2 = 4 D1 D2 (b)

8

(x1 + x2 )( y1 + y 2 ) − (z1 + z 2 )2 ≤

8 4 D1 D2

=2

1 1 ⋅ D1 D2



1 1 + D1 D2

=

1 x1 y1 − z1

2

+

1 x2 y 2 − z 2

2

by A.M . ≥ G.M .

Pure Mathematics – Inequalities

If the equality holds, then ⎧ ⎪ L (1) ⎪ D1 = D2 ⎪ y2 y1 D2 L (2) ⎨ D1 = y y 1 2 ⎪ ⎪ y 2 2 y1 2 z2 L (3) ⎪ z1 = y2 ⎩ y1 Put (1) into (2), we have

y2 y = 1 y1 y 2 ⇒ y12 = y 22 ⇒ y1 = y 2

(Q y1 , y 2 > 0)

From (3), z1 = z2 Sub into (1), x1 = x2

p.4

Related Documents

Test 6 - Sol
November 2019 18
Sol 6
October 2019 14
Test 8 - Sol Draft
November 2019 25
Test 5 - Sol
November 2019 19
Test 7 - Sol
November 2019 32
Test 10 - Sol
November 2019 6