Pure Mathematics – Matrix and Determinants
p.1
King’s College 2007 – 2008 F.6 Pure Mathematics Revision Test 5 Suggested Solution 1.
(a) (E) has a unique solution 1 1 1 ⇔ k 1 k ≠0 k2 1 k 1 ⇔ k k2 −k
1 1 1 k ≠0 0 0
⇔ k (k − 1) ≠ 0 ⇔ k ≠ 0, 1 2
By Cramer’s Rule,
a 1 1
x=
y=
z=
b 1 k c 1 k k (k − 1) 1 k k2
=
2
a 1 b k c k
k (k − 1)
1
a
2
1 1 a k 1 b k2 1 c
1
b − a 0 k −1 c − a 0 k −1 k (k − 1)
=
0 0 2 k −k
2
a 1 b k c k
k (k − 1)
2
− (k − 1) =
k (k − 1) k (k − 1)
=
1 1 a k −1 0 b − a k 2 −1 0 c − a
b−a 1 c−a 1
a 1 b k
k (k − 1)
−
2
2
=
=
− (b − a − c + a ) c−b = k (k − 1) k (k − 1)
ak − b k −1
k −1 b − a k 2 −1 c − a
− (k − 1)
1 b−a k +1 c − a
= = = 2 2 2 2 k (k − 1) k (k − 1) k (k − 1) k (k − 1) − [c − a − (k + 1)(b − a )] − (c − a − bk + ak − b + a ) b(k + 1) − c − ak = = = k (k − 1) k (k − 1) k (k − 1)
(b) If k = 0, the system (E) becomes ⎧x + y + z = a (E ) : ⎪⎨ y = b ⎪y = c ⎩
Therefore, (E) is consistent iff b = c. The solution set is {(t, b, a – b – t); t ∈ R}
Pure Mathematics – Matrix and Determinants
2.
p.2
5π ⎛ ⎜ cos 6 (a) The transformation matrix is ⎜ 5 ⎜ sin π ⎜ 6 ⎝
5π 6 5π cos 6
− sin
⎞ ⎟ 1 ⎛− 3 −1 ⎞ ⎟ ⎟= ⎜ − 3 ⎟⎠ ⎟ 2 ⎜⎝ 1 ⎟ ⎠
Let (x’, y’) be the image of (x, y) under the rotation.
⎛ x' ⎞ 1 ⎛ − 3 − 1 ⎞⎛ x ⎞ ⎟⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ = ⎜⎜ − 3 ⎟⎠⎝ y ⎠ ⎝ y' ⎠ 2 ⎝ 1 ⎛− 3 −1 ⎞ ⎛ x⎞ ⎟ ⎜⎜ ⎟⎟ = 2⎜⎜ ⎟ 1 3 − ⎝ y⎠ ⎝ ⎠
−1
( (
) )
⎛1 ⎞ ⎛ x' ⎞ 1 ⎛ − 3 1 ⎞⎛ x' ⎞ ⎜ 2 − 3 x'+ y ' ⎟ ⎟⎜⎜ ⎟⎟ = ⎜ ⎟ ⎜⎜ ⎟⎟ = ⎜⎜ ⎟ ⎝ y ' ⎠ 2 ⎝ − 1 − 3 ⎠⎝ y ' ⎠ ⎜⎜ 1 − x'− 3 y ' ⎟⎟ ⎝2 ⎠
Equation of the image of (Γ) is
(
)
2
(
) (
)
(
3 x' 2 +2 x' y '− 3 y ' 2 +
(
)
2
⎡1 ⎤ ⎡1 ⎤⎡1 ⎤ ⎡1 ⎤ 5⎢ − 3 x'+ y ' ⎥ − 2 3 ⎢ − 3 x'+ y ' ⎥ ⎢ − x'− 3 y ' ⎥ + 7 ⎢ − x'− 3 y ' ⎥ − 4 = 0 ⎣2 ⎦ ⎣2 ⎦⎣ 2 ⎦ ⎣2 ⎦
(
)
3 5 3 x' 2 −2 3 x' y '+ y ' 2 − 2 4 2 2 16 x' +32 y ' −16 = 0
) 74 (x' +2
)
3 x' y '+3 y ' 2 − 4 = 0
2
x' 2 +2 y ' 2 −1 = 0 2π ⎛ ⎜ cos 3 (b) The transformation matrix is ⎜ ⎜ sin 2π ⎜ 3 ⎝
2π 3 2π − cos 3 sin
⎞ ⎟ 1 ⎛ −1 ⎟= ⎜ ⎟ 2 ⎜⎝ 3 ⎟ ⎠
3⎞ ⎟ 1 ⎟⎠
Let (x’, y’) be the image of (x, y) under the rotation.
⎛ x' ⎞ 1 ⎛ − 1 ⎜⎜ ⎟⎟ = ⎜⎜ ⎝ y' ⎠ 2 ⎝ 3
3 ⎞⎛ x ⎞ ⎟⎜⎜ ⎟⎟ 1 ⎟⎠⎝ y ⎠
⎛ −1 ⎛ x⎞ ⎜⎜ ⎟⎟ = 2⎜⎜ ⎝ y⎠ ⎝ 3
3⎞ ⎟ 1 ⎟⎠
−1
⎛ x' ⎞ 1 ⎛ − 1 ⎜⎜ ⎟⎟ = ⎜⎜ ⎝ y' ⎠ 2 ⎝ 3
(
)
⎛1 ⎞ 3 ⎞⎛ x' ⎞ ⎜ 2 − x'+ 3 y ' ⎟ ⎟⎜⎜ ⎟⎟ = ⎜ ⎟ 1 ⎟⎠⎝ y ' ⎠ ⎜⎜ 1 3 x'+ y ' ⎟⎟ ⎝ 2 ⎠
(
)
Equation of the image of (Γ) is ⎡1 ⎢2 ⎣
(
)
(
2
) (
⎤ ⎡1 ⎤⎡ 1 3 x'+ y ' ⎥ − 2 3 ⎢ − x'+ 3 y ' ⎥ ⎢ ⎦ ⎣2 ⎦⎣ 2
(
)
(
)
(
)
2
⎤ ⎡1 ⎤ 3 x'+ y ' ⎥ − ⎢ − x'+ 3 y ' ⎥ − 2 = 0 ⎦ ⎣2 ⎦
) (
)
1 3 1 − 3 x 2 '+2 x' y '+ 3 y ' 2 − x' 2 −2 3 x' y '+3 y ' 2 − 2 = 0 3 x' 2 +2 3 x' y '+ y ' 2 − 4 2 4 2 2 8 x' −8 y ' −8 = 0 x ' 2 − y ' 2 −1 = 0
Pure Mathematics – Matrix and Determinants
⎛0 (c) The reflection matrix is ⎜⎜ ⎝1 ⎛1 Let the shear matrix be ⎜⎜ ⎝μ
p.3
1⎞ ⎟ 0 ⎟⎠ 0⎞ ⎟ . Therefore, 1 ⎟⎠
⎛ 1 ⎞ ⎛ 1 0 ⎞⎛1⎞ ⎛ 1 ⎞ ⎟⎟ ⇒ μ = 2 ⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎝ 3 ⎠ ⎝ μ 1 ⎠⎝1⎠ ⎝1 + μ ⎠ ⎛ 1 0⎞ ⎛ 1 0⎞ ⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ ⎝ μ 1⎠ ⎝ 2 1⎠
Let (x’, y’) be the image of (x, y) under the transformation.
⎛ x' ⎞ ⎛ 1 0 ⎞⎛ 0 1 ⎞⎛ x ⎞ ⎛ 0 1 ⎞⎛ x ⎞ ⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟⎜⎜ ⎝ y ' ⎠ ⎝ 2 1 ⎠⎝ 1 0 ⎠⎝ y ⎠ ⎝ 1 2 ⎠⎝ y ⎠ −1
⎛ x ⎞ ⎛ 0 1 ⎞ ⎛ x' ⎞ ⎛ − 2 1 ⎞⎛ x' ⎞ ⎛ − 2 x'+ y ' ⎞ ⎟⎟ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ = ⎜⎜ ⎜⎜ ⎟⎟ = ⎜⎜ y 1 2 y ' 1 0 y ' x ' ⎠ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎝ ⎠ ⎝ Equation of the image of (Γ) is
(− 2 x'+ y ')2 + (x')2 − 4(− 2 x'+ y ') = 0
(4 x'
2
)
−4 x' y '+ y ' 2 + x' 2 +8 x'−4 y ' = 0
5 x' −4 x' y '+ y ' +8 x'−4 y ' = 0 2
2