Test 5 - Sol

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Test 5 - Sol as PDF for free.

More details

  • Words: 1,216
  • Pages: 3
Pure Mathematics – Matrix and Determinants

p.1

King’s College 2007 – 2008 F.6 Pure Mathematics Revision Test 5 Suggested Solution 1.

(a) (E) has a unique solution 1 1 1 ⇔ k 1 k ≠0 k2 1 k 1 ⇔ k k2 −k

1 1 1 k ≠0 0 0

⇔ k (k − 1) ≠ 0 ⇔ k ≠ 0, 1 2

By Cramer’s Rule,

a 1 1

x=

y=

z=

b 1 k c 1 k k (k − 1) 1 k k2

=

2

a 1 b k c k

k (k − 1)

1

a

2

1 1 a k 1 b k2 1 c

1

b − a 0 k −1 c − a 0 k −1 k (k − 1)

=

0 0 2 k −k

2

a 1 b k c k

k (k − 1)

2

− (k − 1) =

k (k − 1) k (k − 1)

=

1 1 a k −1 0 b − a k 2 −1 0 c − a

b−a 1 c−a 1

a 1 b k

k (k − 1)



2

2

=

=

− (b − a − c + a ) c−b = k (k − 1) k (k − 1)

ak − b k −1

k −1 b − a k 2 −1 c − a

− (k − 1)

1 b−a k +1 c − a

= = = 2 2 2 2 k (k − 1) k (k − 1) k (k − 1) k (k − 1) − [c − a − (k + 1)(b − a )] − (c − a − bk + ak − b + a ) b(k + 1) − c − ak = = = k (k − 1) k (k − 1) k (k − 1)

(b) If k = 0, the system (E) becomes ⎧x + y + z = a (E ) : ⎪⎨ y = b ⎪y = c ⎩

Therefore, (E) is consistent iff b = c. The solution set is {(t, b, a – b – t); t ∈ R}

Pure Mathematics – Matrix and Determinants

2.

p.2

5π ⎛ ⎜ cos 6 (a) The transformation matrix is ⎜ 5 ⎜ sin π ⎜ 6 ⎝

5π 6 5π cos 6

− sin

⎞ ⎟ 1 ⎛− 3 −1 ⎞ ⎟ ⎟= ⎜ − 3 ⎟⎠ ⎟ 2 ⎜⎝ 1 ⎟ ⎠

Let (x’, y’) be the image of (x, y) under the rotation.

⎛ x' ⎞ 1 ⎛ − 3 − 1 ⎞⎛ x ⎞ ⎟⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ = ⎜⎜ − 3 ⎟⎠⎝ y ⎠ ⎝ y' ⎠ 2 ⎝ 1 ⎛− 3 −1 ⎞ ⎛ x⎞ ⎟ ⎜⎜ ⎟⎟ = 2⎜⎜ ⎟ 1 3 − ⎝ y⎠ ⎝ ⎠

−1

( (

) )

⎛1 ⎞ ⎛ x' ⎞ 1 ⎛ − 3 1 ⎞⎛ x' ⎞ ⎜ 2 − 3 x'+ y ' ⎟ ⎟⎜⎜ ⎟⎟ = ⎜ ⎟ ⎜⎜ ⎟⎟ = ⎜⎜ ⎟ ⎝ y ' ⎠ 2 ⎝ − 1 − 3 ⎠⎝ y ' ⎠ ⎜⎜ 1 − x'− 3 y ' ⎟⎟ ⎝2 ⎠

Equation of the image of (Γ) is

(

)

2

(

) (

)

(

3 x' 2 +2 x' y '− 3 y ' 2 +

(

)

2

⎡1 ⎤ ⎡1 ⎤⎡1 ⎤ ⎡1 ⎤ 5⎢ − 3 x'+ y ' ⎥ − 2 3 ⎢ − 3 x'+ y ' ⎥ ⎢ − x'− 3 y ' ⎥ + 7 ⎢ − x'− 3 y ' ⎥ − 4 = 0 ⎣2 ⎦ ⎣2 ⎦⎣ 2 ⎦ ⎣2 ⎦

(

)

3 5 3 x' 2 −2 3 x' y '+ y ' 2 − 2 4 2 2 16 x' +32 y ' −16 = 0

) 74 (x' +2

)

3 x' y '+3 y ' 2 − 4 = 0

2

x' 2 +2 y ' 2 −1 = 0 2π ⎛ ⎜ cos 3 (b) The transformation matrix is ⎜ ⎜ sin 2π ⎜ 3 ⎝

2π 3 2π − cos 3 sin

⎞ ⎟ 1 ⎛ −1 ⎟= ⎜ ⎟ 2 ⎜⎝ 3 ⎟ ⎠

3⎞ ⎟ 1 ⎟⎠

Let (x’, y’) be the image of (x, y) under the rotation.

⎛ x' ⎞ 1 ⎛ − 1 ⎜⎜ ⎟⎟ = ⎜⎜ ⎝ y' ⎠ 2 ⎝ 3

3 ⎞⎛ x ⎞ ⎟⎜⎜ ⎟⎟ 1 ⎟⎠⎝ y ⎠

⎛ −1 ⎛ x⎞ ⎜⎜ ⎟⎟ = 2⎜⎜ ⎝ y⎠ ⎝ 3

3⎞ ⎟ 1 ⎟⎠

−1

⎛ x' ⎞ 1 ⎛ − 1 ⎜⎜ ⎟⎟ = ⎜⎜ ⎝ y' ⎠ 2 ⎝ 3

(

)

⎛1 ⎞ 3 ⎞⎛ x' ⎞ ⎜ 2 − x'+ 3 y ' ⎟ ⎟⎜⎜ ⎟⎟ = ⎜ ⎟ 1 ⎟⎠⎝ y ' ⎠ ⎜⎜ 1 3 x'+ y ' ⎟⎟ ⎝ 2 ⎠

(

)

Equation of the image of (Γ) is ⎡1 ⎢2 ⎣

(

)

(

2

) (

⎤ ⎡1 ⎤⎡ 1 3 x'+ y ' ⎥ − 2 3 ⎢ − x'+ 3 y ' ⎥ ⎢ ⎦ ⎣2 ⎦⎣ 2

(

)

(

)

(

)

2

⎤ ⎡1 ⎤ 3 x'+ y ' ⎥ − ⎢ − x'+ 3 y ' ⎥ − 2 = 0 ⎦ ⎣2 ⎦

) (

)

1 3 1 − 3 x 2 '+2 x' y '+ 3 y ' 2 − x' 2 −2 3 x' y '+3 y ' 2 − 2 = 0 3 x' 2 +2 3 x' y '+ y ' 2 − 4 2 4 2 2 8 x' −8 y ' −8 = 0 x ' 2 − y ' 2 −1 = 0

Pure Mathematics – Matrix and Determinants

⎛0 (c) The reflection matrix is ⎜⎜ ⎝1 ⎛1 Let the shear matrix be ⎜⎜ ⎝μ

p.3

1⎞ ⎟ 0 ⎟⎠ 0⎞ ⎟ . Therefore, 1 ⎟⎠

⎛ 1 ⎞ ⎛ 1 0 ⎞⎛1⎞ ⎛ 1 ⎞ ⎟⎟ ⇒ μ = 2 ⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎝ 3 ⎠ ⎝ μ 1 ⎠⎝1⎠ ⎝1 + μ ⎠ ⎛ 1 0⎞ ⎛ 1 0⎞ ⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ ⎝ μ 1⎠ ⎝ 2 1⎠

Let (x’, y’) be the image of (x, y) under the transformation.

⎛ x' ⎞ ⎛ 1 0 ⎞⎛ 0 1 ⎞⎛ x ⎞ ⎛ 0 1 ⎞⎛ x ⎞ ⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟⎜⎜ ⎟⎟ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟⎜⎜ ⎝ y ' ⎠ ⎝ 2 1 ⎠⎝ 1 0 ⎠⎝ y ⎠ ⎝ 1 2 ⎠⎝ y ⎠ −1

⎛ x ⎞ ⎛ 0 1 ⎞ ⎛ x' ⎞ ⎛ − 2 1 ⎞⎛ x' ⎞ ⎛ − 2 x'+ y ' ⎞ ⎟⎟ ⎟⎟⎜⎜ ⎟⎟ = ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ = ⎜⎜ ⎜⎜ ⎟⎟ = ⎜⎜ y 1 2 y ' 1 0 y ' x ' ⎠ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎝ ⎠ ⎝ Equation of the image of (Γ) is

(− 2 x'+ y ')2 + (x')2 − 4(− 2 x'+ y ') = 0

(4 x'

2

)

−4 x' y '+ y ' 2 + x' 2 +8 x'−4 y ' = 0

5 x' −4 x' y '+ y ' +8 x'−4 y ' = 0 2

2

Related Documents

Test 5 - Sol
November 2019 19
Sol 5
October 2019 12
5 Sol
October 2019 16
Test 8 - Sol Draft
November 2019 25
Test 6 - Sol
November 2019 18
Test 7 - Sol
November 2019 32