Teoremas De Pitagoras

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Teoremas De Pitagoras as PDF for free.

More details

  • Words: 342
  • Pages: 3
Teoremas de Pitágoras A lo largo de la historia han sido muchas las demostraciones y pruebas que matemáticos y amantes de las matemáticas han dado sobre este teorema. Se reproducen a continuación algunas de las más conocidas. En primer lugar deberíamos recordar un par de ideas:



Un triángulo rectángulo es un triángulo que tiene un ángulo recto, es decir de 90º.



En un triángulo rectángulo, el lado más grande recibe el nombre de hipotenusa y los otros dos lados se llaman catetos.

Teorema de Pitágoras.-En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

Demostración:

Si tenemos un triángulo rectángulo como el del dibujo del enunciado del teorema podemos construir un cuadrado que tenga de lado justo lo que mide el cateto b, más lo que mide el cateto c, es decir b + c, como en

la figura de la derecha. El área de este cuadrado será (b + c)2. Si ahora trazamos las hipotenusas de los triángulos rectángulos que salen tendremos la figura de la izquierda. El área del cuadrado, que es la misma de antes, se puede poner ahora Como la suma de las áreas de los cuatro Triángulos rectángulos azules (base por altura partido por 2):

más el área del cuadrado amarillo . Es decir, el área del cuadrado grande también es el área del cuadrado pequeño más 4 veces el área del triángulo:

Podemos igualar las dos formas de calcular el área del cuadrado grande y tenemos:

si ahora desarrollamos el binomio , nos queda:

que después de simplificar resulta lo que estábamos buscando:

DEMOSTRACIONES GEOMÉTRICAS PITÁGORAS.

Una de las demostraciones geométricas mas conocidas, es la que se muestra a continuación, que suele atribuirse al propio Pitágoras. A partir de la igualdad de los triángulos rectángulos es evidente la igualdad

a2 + b2 = c2 PLATÓN.

La relación que expresa el teorema de Pitágoras es especialmente intuitiva si se aplica a un triángulo rectángulo e isósceles. Este problema lo trata Platón en sus famosos diálogos.

Related Documents

Teoremas De Pitagoras
June 2020 5
Teoremas
May 2020 11
Pitagoras
June 2020 13
Teoremas
June 2020 5
Teoremas
May 2020 6