TALAT Lecture 2301
Design of Members Axial force and bending moment Example 9.2 : Beam-column with rectangular hollow section 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association TALAT 2301 – Example 9.2
1
Example 9.2 Beam-column with rectangular hollow section
Dimensions and material properties Length
6 MPa 10 . Pa
3800 . mm
lc
Thickness
tw
Width
hy
180 . mm
hi
hy
2 .t f
h i = 168 mm
by
120 . mm
bi
by
2 .t w
b i = 108 mm
[1] Table 3.2b
Alloy: EN AW-6060 T6 EP t < 15 mm
[1] (5.4), (5.5)
fo
f 0.2
fa
fu
E
tf
6 . mm
kN 1000 . newton
6 . mm
f 0.2
70000 . MPa
140 . MPa
γ M1 1.1
fu
170 . MPa
γ M2
1.25
Forces and moment Axial force
N Ed
110 . kN
Transverse force
F Ed
Bending moment
M y.Ed
8 . kN F Ed . l c 4
M y.Ed = 7.6 kN . m
Classification of the cross section in axial compression 2 .t f
hy
Web
β w
[1] Tab. 5.1
β 1w 11 . ε
tw
class c [1] 5.8.4.1
Ae
β w= 28 β 2w 16 . ε
ε
250 . MPa fo
β 3w 22 . ε
if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1
A
TALAT 2301 – Example 9.2
η
1.0
2
ε = 1.336
class c = 3
Classification of the cross section in y-y axis bending 2 .t f
hy
Web
β w 0.4 .
[1] Tab. 5.1
β 1w 11 . ε
[1] 5.4.5
class w
Flange
β f
[1] Tab. 5.1
β 1f 11 . ε
[1] 5.4.5
class f
β w= 11.2
tw
β 2w 16 . ε
β 3w 22 . ε
if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1 2 .t w
by
class w = 1
β =f 18
tf
β 2f 16 . ε
β 3f 22 . ε
if β >f β 1w , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1
class f = 2
Classification of the total cross-section iny-y axis bending: if class f > class w , class f , class w
class y
class y = 2
Classification of the cross section in z-z axis bending 2 .t w
by
Web
β w 0.4 .
[1] Tab. 5.1
β 1w 11 . ε
[1] 5.4.5
class w
Flange
β f
[1] Tab. 5.1
β 1f 11 . ε
[1] 5.4.5
class f
β w= 7.2
tf
β 2w 16 . ε
β 3w 22 . ε
if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1 2 .t f
hy
class w = 1
β =f 28
tw
β 2f 16 . ε
β 3f 22 . ε
if β >f β 1w , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1
class f = 3
Classification of the total cross-section inz-z axis bending: class z
if class f > class w , class f , class w
class z = 3
Cross section constants A
b y .h y
b i.h i b i.h i
12
12
W el.y W pl.y
TALAT 2301 –
iy
I y = 1.565 . 10 mm 5
b y .h y
b i.h i
4
4
Iy
ExampleA 9.2
4
Iz
W el.y = 1.738 . 10 mm
hy
h y .b y
h i.b i
12
12
3
7
I y .2
class y = 2
2
3
2
[1] 5.6.2.1
3
b y .h y
3
Iy
A = 3.456 . 10 mm
3
I z.2
W el.z
by
3
I z = 8.28 . 10 mm 6
W el.z = 1.4 . 10 mm 5
2
W pl.y = 2.1 . 10 mm 5
W pl.y α y W el.y
α y = 1.208
i y = 67.3 mm
3
3
class z = 3 iz
Iz A
α z 1 i z = 49 mm
4
3
Flexural buckling TALAT (5.6)
[1] 5.8.4.1
lc
λ y
π .i y
.
η .f o
φ y 0.5 . 1
0.20 . λ y
0.1
1
χ y φ y [1] Table 5.5
λ y= 0.804
E
k1
1
N Rd
2
λ y
χ y = 0.779 2
φ y
k2
λ z
lc
π .i z
.
η .f o
λ z= 1.105
E
φ z 0.5 . 1
0.20 . λ z
χ z
1
2
λ y
2
φ z
λ z
1
A .f o
N Rd = 439.9 kN
γ M1
Exponents in interaction formula [1] 5.9.4.2 (4)
ψ
α z.α y
ψ
ψ c χ z.ψ
if ( ψ > 2 , 2 , ψ )
ψ = 1.208
ψ c if ψ c < 0.8 , 0.8 , ψ c
ψ c= 0.8
Cross weld in mid section [1] Tab. 5.2
HAZ softening factor
[1] 5.9.4.5
ω o
ρ haz 0.65
ρ haz . f u . γ M1 f o . γ M2 fo M y.Rd α y . W el.y. γ M1 fo M z.Rd α .zW el.z. γ M1 χ min χ y
ω o= 0.695
ω x ω o
M y.Rd = 26.721 kN . m
M y.Ed = 7.6 kN . m
M z.Rd = 17.572 kN . m
M z.Ed
0 . kN . m
χ min = 0.779
Flexural buckling check [1] 5.9.4.2 (4)
N Ed .ω .N χ min x Rd
TALAT 2301 – Example 9.2
ψc
1 . M y.Ed ω o M y.Rd
4
1.7
M z.Ed M z.Rd
1.7 0.6
= 0.939
2
λ z
χ z = 0.586 2
φ z
0.1
< 1,0 OK !