Talat Lecture 2301: Design Of Members Example 9.2: Beam-column With Rectangular Hollow Section

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 9.2: Beam-column With Rectangular Hollow Section as PDF for free.

More details

  • Words: 1,050
  • Pages: 4
TALAT Lecture 2301

Design of Members Axial force and bending moment Example 9.2 : Beam-column with rectangular hollow section 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 9.2

1

Example 9.2 Beam-column with rectangular hollow section

Dimensions and material properties Length

6 MPa 10 . Pa

3800 . mm

lc

Thickness

tw

Width

hy

180 . mm

hi

hy

2 .t f

h i = 168 mm

by

120 . mm

bi

by

2 .t w

b i = 108 mm

[1] Table 3.2b

Alloy: EN AW-6060 T6 EP t < 15 mm

[1] (5.4), (5.5)

fo

f 0.2

fa

fu

E

tf

6 . mm

kN 1000 . newton

6 . mm

f 0.2

70000 . MPa

140 . MPa

γ M1 1.1

fu

170 . MPa

γ M2

1.25

Forces and moment Axial force

N Ed

110 . kN

Transverse force

F Ed

Bending moment

M y.Ed

8 . kN F Ed . l c 4

M y.Ed = 7.6 kN . m

Classification of the cross section in axial compression 2 .t f

hy

Web

β w

[1] Tab. 5.1

β 1w 11 . ε

tw

class c [1] 5.8.4.1

Ae

β w= 28 β 2w 16 . ε

ε

250 . MPa fo

β 3w 22 . ε

if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1

A

TALAT 2301 – Example 9.2

η

1.0

2

ε = 1.336

class c = 3

Classification of the cross section in y-y axis bending 2 .t f

hy

Web

β w 0.4 .

[1] Tab. 5.1

β 1w 11 . ε

[1] 5.4.5

class w

Flange

β f

[1] Tab. 5.1

β 1f 11 . ε

[1] 5.4.5

class f

β w= 11.2

tw

β 2w 16 . ε

β 3w 22 . ε

if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1 2 .t w

by

class w = 1

β =f 18

tf

β 2f 16 . ε

β 3f 22 . ε

if β >f β 1w , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1

class f = 2

Classification of the total cross-section iny-y axis bending: if class f > class w , class f , class w

class y

class y = 2

Classification of the cross section in z-z axis bending 2 .t w

by

Web

β w 0.4 .

[1] Tab. 5.1

β 1w 11 . ε

[1] 5.4.5

class w

Flange

β f

[1] Tab. 5.1

β 1f 11 . ε

[1] 5.4.5

class f

β w= 7.2

tf

β 2w 16 . ε

β 3w 22 . ε

if β w > β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1 2 .t f

hy

class w = 1

β =f 28

tw

β 2f 16 . ε

β 3f 22 . ε

if β >f β 1w , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1

class f = 3

Classification of the total cross-section inz-z axis bending: class z

if class f > class w , class f , class w

class z = 3

Cross section constants A

b y .h y

b i.h i b i.h i

12

12

W el.y W pl.y

TALAT 2301 –

iy

I y = 1.565 . 10 mm 5

b y .h y

b i.h i

4

4

Iy

ExampleA 9.2

4

Iz

W el.y = 1.738 . 10 mm

hy

h y .b y

h i.b i

12

12

3

7

I y .2

class y = 2

2

3

2

[1] 5.6.2.1

3

b y .h y

3

Iy

A = 3.456 . 10 mm

3

I z.2

W el.z

by

3

I z = 8.28 . 10 mm 6

W el.z = 1.4 . 10 mm 5

2

W pl.y = 2.1 . 10 mm 5

W pl.y α y W el.y

α y = 1.208

i y = 67.3 mm

3

3

class z = 3 iz

Iz A

α z 1 i z = 49 mm

4

3

Flexural buckling TALAT (5.6)

[1] 5.8.4.1

lc

λ y

π .i y

.

η .f o

φ y 0.5 . 1

0.20 . λ y

0.1

1

χ y φ y [1] Table 5.5

λ y= 0.804

E

k1

1

N Rd

2

λ y

χ y = 0.779 2

φ y

k2

λ z

lc

π .i z

.

η .f o

λ z= 1.105

E

φ z 0.5 . 1

0.20 . λ z

χ z

1

2

λ y

2

φ z

λ z

1

A .f o

N Rd = 439.9 kN

γ M1

Exponents in interaction formula [1] 5.9.4.2 (4)

ψ

α z.α y

ψ

ψ c χ z.ψ

if ( ψ > 2 , 2 , ψ )

ψ = 1.208

ψ c if ψ c < 0.8 , 0.8 , ψ c

ψ c= 0.8

Cross weld in mid section [1] Tab. 5.2

HAZ softening factor

[1] 5.9.4.5

ω o

ρ haz 0.65

ρ haz . f u . γ M1 f o . γ M2 fo M y.Rd α y . W el.y. γ M1 fo M z.Rd α .zW el.z. γ M1 χ min χ y

ω o= 0.695

ω x ω o

M y.Rd = 26.721 kN . m

M y.Ed = 7.6 kN . m

M z.Rd = 17.572 kN . m

M z.Ed

0 . kN . m

χ min = 0.779

Flexural buckling check [1] 5.9.4.2 (4)

N Ed .ω .N χ min x Rd

TALAT 2301 – Example 9.2

ψc

1 . M y.Ed ω o M y.Rd

4

1.7

M z.Ed M z.Rd

1.7 0.6

= 0.939

2

λ z

χ z = 0.586 2

φ z

0.1

< 1,0 OK !

Related Documents


More Documents from "CORE Materials"