TALAT Lecture 2301
Design of Members Bending Moment Example 4.2 : Hollow cross section (polygon) 5 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association
TALAT 2301 – Example 4.2
1
Example 4.2 Hollow cross section (polygon) Half width
b
50 . mm
Thickness
s
1.2 . mm
Half width of flat parts
Co-ordinates and thickness
Comment: Nodes 4 and 9 are added to indicate shift in neutral axis
y
1
0 . mm
O
b
a
a = 20.711 mm
b
a
s
a
b
s
a
b
s
b
a
s
fo
b
O
s
γ M1 1.1 Nodes
z
b
a
t
s
a
b
s
a
b
s
b
a
s
b
O
s
b
a
s
dAi
ti .
yi
2
zi
zi 1
6 MPa 10 . Pa
kN 1000 . newton
z
rows ( y )
0
2 50 0 mm
dAi
A = 397.6 mm
i =1 First moment of area. Gravity centre
Second moment of area
rows ( y )
dAi zi 1 . 2
zi
z gc.gr
1 zi
2
zi 1
2
dAi
zi . zi 1 . 3
Torsion resistance
yi 1 . zi
4
1
yi
yi 1
2
zi
zi 1
A v = 8.284 . 10 mm 3
zi 1
Check: ( 2 .b )
Dn
Wv
2
1 0.5 . yi
4 .A v
A . z gc 5
Av
Iv
Iy
z gc
I y = 5.255 . 10 mm
i =1 Torsion constant
Iy
i =1
i =1
Sum of l/t
A
z gc = 0 mm
Iy
rows ( y )
2
Sy
z gc
i =1
rows ( y ) Area within mid-line
1
Sy
rows ( y )
50
y
1
A
2
2 .( b
2
a ) = 8.284 . 10 mm 2
3
2
ti
Dn = 276.142
2
I v = 9.941 . 10 mm 5
Dn 2 . A v . min ( t )
TALAT 2301 – Example 4.2
1
0
50
Cross section area
1 .. rows ( y )
i
0
mm
yi 1
300 . MPa
50
Gross cross section Area of cross section elements
2
min ( t ) = 1.2 mm
2
4
W v = 1.988 . 10 mm 4
3
2
Effective cross section. ψ
5.4.3 (1)
(5.7 or 5.8)
εi
5.4.4 (5)
if t i > 0 , gi .
βi
if zi > z gc
5.4.5 (3) c) heat-treated, unwelded
ρ c if i
Effective thickness
t eff
Area of effective thickness dAi elements
yi
yi 1
zi 1 zi
i
ε
i
> 22 , 32 .
z gc
ε
i
β
i
i
,
zi
zd
z gc
zi 1
2
z gc
max z
zi 1
2
z gc < zi
z gc , ε o .
2
ε
i
β
i
yi 1
2
zi
zi 1
1 dAi
A eff
1 zi
Sy
zi 1
2
z gc
ε
=
ρ c= i
εi =
0.414 1 0.414 0 0 0.414 1 0.414 0 0
0.824 1 0.824 0.7 0.7 0.824 1 0.824 0.7 0.7
28.452 34.518 28.452 12.081 12.081 28.452 34.518 28.452 12.081 12.081
0.913 31.167 0.8 0.96 0.913 37.812 0.692 0.831 0.913 31.167 0.8 0.96 1.418 8.518 1 1.2 99 0.122 1 1.2 99 0.287 1 1.2 99 0.349 1 1.2 99 0.287 1 1.2 99 0.122 1 1.2 1.418 8.518 1 1.2
dAi zi 1 . 2
2
i
A = 397.645 mm z gc
2
Sy A eff
0 z mm
2
0 0
if zi > z gc . zi 1 < z gc , z gc , zi
z GC1 mm
i
1 .. rows ( y ) zi
Check
1
if zi > z gc . zi 1 < z gc , z gc , zi
z4 = 4.046 mm
z9 = 4.046 mm
50
OK !
50
0 y mm
TALAT 2301 – Example 4.2
3
=
βi =
50
zi
i
gi =
z gc = 4.046 mm
0 .. rows ( y )
t eff
ψi =
The nodes in the vertical webs are moved to the neutral axis from first iteration i
, 99
Comment: εi is given a large value (99) for elements entirely on the tension side
, 1.0
i =1
Gravity centre
max z d
max z
, ε o.
z gc
zi
A eff = 362.498 mm rows ( y )
z gc
ε o= 0.913
fo
max z
i =1
First moment of area.
250 . MPa
ε o
,1
βi
yi
zi
i
i
zi
220 .
ρ c 0
0
max z = 50 mm
ψ
ρ .ct
t eff .
z gc
zd
0.8 1
zi 1 > z gc , if zi 1
β
Zero position
ti
rows ( y )
Cross section area
z gc ,
0.30 . ψ i ,
if ψ i > 1 , 0.7
gi
5.4.3 (1) c)
z gc < zi
if zi 1
i
First iteration
,
50
y GC1 mm
mm
Second iteration ψi
5.4.3 (1)
(5.7 or 5.8)
gi
βi
5.4.3 (1) c)
5.4.4 (5)
εi
if zi > z gc
ρ c if i
Effective thickness
t eff
Cross section class Area of effective thickness elements Cross section area First moment of area.
β e i
class
dAi
yi
if t i > 0 , gi .
z gc ,
0.30 . ψ i , 1
if ψ i > 1 , 0.7
5.4.5 (3) c) heat-treated, unwelded
Max slenderness - Internal elements
z gc < zi
if zi 1
yi 1
2
zi 1 z gc zi z gc , zi z gc zi 1 z gc
i
ε
> 22 , 32 .
i
β
i
ψ
max z
i
zi
220 .
i
zi 1
i
ε
i
z gc < zi
z gc , ε o .
max z zi
t eff . i
max z
, ε o.
z gc
zi 1
yi
yi 1
rows ( y )
2
i
β
i
, 1.0
max β e
zi 1
=
ρ c= i
t eff
βi =
εi =
ε
0.458 1 0.458 0 0 0.363 1 0.363 0 0
0.837 1 0.837 0.7 0.7 0.809 1 0.809 0.7 0.7
28.906 34.518 28.906 14.441 9.721 27.918 34.518 27.918 9.721 14.441
0.913 0.913 0.913 1.349 99 99 99 99 99 1.349
31.665 0.791 0.949 37.812 0.692 0.831 31.665 0.791 0.949 10.707 1 1.2 0.098 1 1.2 0.282 1 1.2 0.349 1 1.2 0.282 1 1.2 0.098 1 1.2 10.707 1 1.2
2
i
mm
dAi i =1 rows ( y )
A eff = 361.596 mm
1
dAi zi 1 . 2
zi
Sy i =1
2
Sy
z gc
A eff
z gc = 4.144 mm
Gravity centre
50 0
Gross cross section
z
I y.gr
Iy
mm
I y.gr = 5.255 . 10 mm 5
4
z GC1 mm
0 0
z GC2 mm
50 50
0 y mm
TALAT 2301 – Example 4.2
4
=
gi =
1
A eff
i
ψi =
class = 4
zi
, 99
z gc
2
ε
β max = 37.812
if β max 22 , 3 , 4
max z d
,1
βi β max
z gc
max z = 54.046 mm
2
ρ .ct β
zi
i
ti
ε
zd
0.8
zi 1 > z gc , if zi 1
β
z gc = 4.046 mm
,
50
y GC1 mm
Second moment of area of effective I y cross section
rows ( y )
1 2
zi
zi 1
I eff
dAi
zi . zi 1 . 3
2
zd
Compare gross section
zd
Moment resistance
M Rd
2
5
i
zi
z gc
max z.eff
max z d
W eff
i
zi
z gc.gr
max z.gr
max z d
W gr
W eff .
A . z gc
I eff = 5.187 . 10 mm
i =1
Section modulus
Iy
I eff
4
W eff = 9.579 . 10 mm 3
max z.eff I y.gr
W gr = 1.051 . 10 mm 4
max z.gr
fo
3
3
M Rd = 2.613 kN . m
γ M1
Axial force Move node close zi to GC1 to nearest node 5.4.3 (1) c)
βi
ρ c if i
Effective thickness
t eff
Area of effective thickness elements dAi
First moment of area. Gravity centre
yi
if t i > 0 ,
5.4.5 (3) c) heat-treated, unwelded
Cross section area
z GC1 < 1 . mm , zi 1 , zi
if zi
β
yi 1
2
zi
2
zi 1
,1
ti i
ε o
> 22 , 32 .
ε o β
220 .
i
ε o β
2
ε o= 0.913
, 1.0
i
βi
ρ .ct
t eff .
yi
i
yi 1
rows ( y )
2
zi
zi 1
2
1 dAi
A eff
A eff = 275.335 mm
2
i =1 rows ( y )
1
Sy
zi
dAi zi 1 . 2
=
i = βi =
ε o
1 2 3 4 5 6 7 8 9 10
37.812 37.812 37.812 0 37.812 37.812 37.812 37.812 0 37.812
34.518 34.518 34.518 0 34.518 34.518 34.518 34.518 0 34.518
ρ c= i 0.692 0.692 0.692 1 0.692 0.692 0.692 0.692 1 0.692
Sy
z gc
A eff
i =1 z gc = 0 mm
50 0 z mm 0
Axial force resistance
N Rd
A eff .
0
fo
z GC
γ M1
mm
N Rd = 75.091 kN
50 50
0 y GC
y , mm mm
TALAT 2301 – Example 4.2
5
50
t eff
i
mm
=
0.831 0.831 0.831 1.2 0.831 0.831 0.831 0.831 1.2 0.831