j2k
Question
SubFull mark Mark
Solution and marking scheme
3+ y 2 y = 2x − 3
1.
x=
or P1
Make x or y as the subject
2
⎛ 3+ y ⎞ ⎛ 3+ y ⎞ 2 ⎜ ⎟ −⎜ ⎟ y + y = 10 ⎝ 2 ⎠ ⎝ 2 ⎠ or
x 2 − x ( 2 x − 3 ) + ( 2 x − 3 ) = 10 2
K1
Eliminate x or y
9 + 6 y + y − 6 y − 2 y + 4 y − 40 = 0 2
2
2
or
x 2 − 2 x 2 + 3 x + 4 x 2 − 12 x + 9 − 10 = 0
K1
y = 3.215 , − 3.215 or
Solve quadratic equation N1
x = 3.107 , − 0.107
3 y 2 − 31 = 0 31 y2 = 3 or
3x − 9 x − 1 = 0 2
x = 3.107 / 3.108 , − 0.107 / − 0.108 N1
or y = 3.214 / 3.215 , − 3.214 / − 3.215
Answer must correct to 3 decimal places.
3472/2
Additional Mathematics Paper 2
or using formula or completing the square
5
[Lihat sebelah SULIT
j2k
Question 2(a)
Submark
Solution and marking scheme
Full Mark
16π ,8π , 4π ,......
a = 16π
r=
1 2
P1
⎡ ⎛ 1 ⎞7 ⎤ 16π ⎢1 − ⎜ ⎟ ⎥ ⎢⎣ ⎝ 2 ⎠ ⎥⎦ S7 = 1 1− 2 3 4
K1
Sn =
Use
a(1 − r n ) 1− r
= 31 π
N1
3
or 31.75 π
(b)
64π ,16π , 4π ,......
a = 64π
r=
1 4
P1
64π S∞ = 1 1− 4 1 = 85 π 3
K1
a 1− r
3
6
f ( x) = x 2 + px + q 2
2
⎛ p⎞ ⎛ p⎞ = x + px + ⎜ ⎟ − ⎜ ⎟ + q ⎝2⎠ ⎝2⎠ 2
2
p⎞ p2 ⎛ = ⎜x+ ⎟ − +q 2⎠ 4 ⎝ p − =3 2 −
3472/2
S∞ =
N1
or 85.33 π
3(a)
Use
36 + q = −5 4
p = -6
K1 use x² + bx = ( x + b )² – ( b ) 2 2
2
or N1
use axis of symmetry −
b =3 2a
q=4 N1
Additional Mathematics Paper 2
[Lihat sebelah SULIT
j2k
Question
Submark
Solution and marking scheme
Full Mark
Alternative solution
x 2 + px + q = ( x − 3) − 5 2
= x2 − 6x + 9 − 5 = x2 − 6x + 4
p = −6
K1
Comparing coefficient of x or constant term
N1
N1
q=4
3
3(b)
x 2 − 6 x + 4 − 31 ≤ 0 x 2 − 6 x − 27 ≤ 0 K1
( x − 9)( x + 3) ≤ 0
−3 ≤ x ≤ 9
Use f ( x) − 31 ≤ 0 and factorization
N1
2
5
4(a)
cos x 1 + sin x sin x cos x + = cos x 1 + sin x sin x(1 + sin x) + cos 2 x = cos x(1 + sin x)
tan x +
sin x + sin 2 x + cos 2 x cos x(1 + sin x) sin x + 1 = cos x(1 + sin x) 1 = cos x = sec x N1
Use tan x =
K1
sin x cos x
=
3472/2
K1
Use identity
sin 2 x + cos 2 x = 1
Additional Mathematics Paper 2
3
[Lihat sebelah SULIT
j2k
Question
Submark
Solution and marking scheme
Full Mark
4(b)(i)
y=
y
5x
π
−2
3
y = −3sin 2x
π
O
π
3π 2
2
x
2π
–3
P1
Negative sine shape correct. Amplitude = 3
[ Maximum = 3 and Minimum = − 3 ]
Two full cycle in 0 ≤ x ≤ 2π
P1
P1 3
4(b)(ii)
−3sin 2 x =
5x
π
−2
or
y=
5x
π
N1
−2
Draw the straight line
y=
Number of solutions is 3 .
5x
π
−2
K1
N1 3
3472/2
Additional Mathematics Paper 2
9
[Lihat sebelah SULIT
j2k
Question
Solution and marking scheme
Submark
Full Mark
7
7
5 (a)
K1
∑ x = 12
∑ x = 240
20
Use x =
∑x N
N1
The mean X=
240 + 5 + 8 + 10 + 11 + 14 288 = 25 25
N1
= 11.52
(b)
∑ x2 20
K1
− 122 = 3
∑x
2
= 3060
N1 Use formula
σ=
∑x N
2
− x2
The standard deviation
σ=
3060 + 52 + 82 + 102 + 112 + 142 2 − (11.52 ) 25
=
3566 2 − (11.52 ) 25
=
9.9296
= 3.151
3472/2
K1 For the new x 2 and X
∑
N1
Additional Mathematics Paper 2
[Lihat sebelah SULIT
j2k
Question
Submark
Solution and marking scheme
6(a)
(i)
uuur uuur uuur PR = PO + OR = −6a + 15b % %
Full Mark
K1 N1
Use
uuur uuur uuur PR = PO + OR
uuur uuur uuur (ii) OQ = OP + PQ
uuur oruuur uuur OQ = OP + PQ
3 uuur = 6a + OR % 5 N1
= 6a + 9b % %
3
(b)
uuur uuur (i) OS = hOQ
= h(6a + 9b) % % uuur uuur uuur (ii) OS = OP + PS
N1
uuur = 6a + k PR %
= 6a + k ( −6a + 15b ) % % %
N1
h(6a + 9b) = 6a + k ( −6a + 15b ) % % % % %
6h = 6 − 6k
9h = 15k
h = 1− k
5 h= k 3
K1
5 k = 1− k 3 k=
3 8
N1
5⎛3⎞ 5 h= ⎜ ⎟ = 3⎝8⎠ 8
3472/2
Equate coefficient of a or b % and % Eliminate h or k
N1
Additional Mathematics Paper 2
5
8
[Lihat sebelah SULIT
j2k
Qn. 7(a)
log y =
log x log y
(b)(i)
(ii)
3472/2
Submark
Solution and Marking Scheme 1 1 log x + log 4k n n
P1
0.18
0.30
0.40
0.60
0.74
N1
0.48
0.54
0.59
0.69
0.76
N1
gradient 1 = n
n=2
K1
N1
Full Mark
K1
Correct axes and scale
N1
All points plotted correctly
N1
Line of best-fit
K1
N1
6
intercept 1 = log 4k n
k = 1.51
Additional Mathematics Paper 2
4
10
[Lihat sebelah SULIT
j2k
log 10 y Graph of log10 y against log10 x 0.9
0.8 •
0.7
•
0.6
• •
0.5
•
0.4 0.39 0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
log 10 x
3472/2
Additional Mathematics Paper 2
[Lihat sebelah SULIT
j2k
Qn. 8. (a)
Use ∫ ( y 2 − y1 ) dx
∫ (x + 4 −
Full Mark
K1
Solving simultaneous equation
P(– 2, 2)
(b)
Submark
Solution and Marking Scheme
N1
Q(4, 8)
N1
3
K1
x2 ) dx 2
Use correct
K1
Integrate ∫ ( y 2 − y1 ) dx
4
K1
x2 x3 + 4x − 2 6
limit ∫ into −2
2
x x3 + 4x − 2 6
18
N1
Note : If use area of trapezium and
4
∫
ydx , give the marks
accordingly.
(c)
Integrate π ∫ (
x2 2 ) dx 2
K1
2
K1
⎡ x5 ⎤ =π ⎢ ⎥ ⎣ 20 ⎦
limit ∫ into 0
⎡ x5 ⎤ ⎥ ⎣ 20 ⎦
π⎢ 8 π 5
3472/2
Use correct
N1
Additional Mathematics Paper 2
3
10
[Lihat sebelah SULIT
j2k
Qn.
Submark
Solution and Marking Scheme
Full Mark
9(a)
Equation of AD :
Use m = – 2 and find K1 equation of straight line
y – 6 = –2 ( x – 2 )
N1
y = –2x + 10 or equivalent
2 (b)
y = –2x + 10 and x – 2y = 0
D(4, 2)
(c)
p = 3 or C(8, 4)
N1
2
P1
Substitute (8, 4) into y = 3x + q
K1
q = – 20
(d)
Solving simultaneous equations
K1
N1
Area OABC = 4 × Δ OAD
3
K1
Using formula 1 0 4 2 0 Δ OAD = × 2 0 2 6 0
K1
40
Find area of triangle
N1
3 10
Alternative solution :
B(10, 10)
P1
Using formula 0 8 10 2 0 1 Area OABC = × 2 0 4 10 6 0
40
3472/2
K1
Find area of parallelogram
N1
Additional Mathematics Paper 2
[Lihat sebelah SULIT
j2k
Qn. 10(a)
Submark
Solution and Marking Scheme 6⎞ ⎜ ⎟ or equivalent ⎝ 10 ⎠ K1 ∠ POQ = 2 × α
α = sin
−1 ⎛
Full Mark
K1
∠ POQ = 1.287 rad
N1
3
Alternative solution :
122 = 102 + 102 – 2(10)(10) cos ∠ POQ ⎛ 10 2 + 10 2 − 12 2 ∠POQ = cos −1 ⎜⎜ 2(10)(10) ⎝
⎞ ⎟ ⎟ ⎠
Using (2π – 1.287)
N1
K1 K1
Major arc PQ = 10 ( 2π – 1.287 ) = 49.96 cm
(c )
Use formula s = rθ
N1
3
1 2
Lsector = × (10 ) 2 × 1.287
Ltriangle =
Use cosine rule
N1
∠ POQ = 1.287 rad
(b)
K1
K1
1 × ( 10 ) 2 × sin 1.287 2
Using formula Lsector = 12 r2θ
K1 Using1 formula LΔ = 2 absin C K1
= 16.35 cm
2
N1
Lsector - LΔ
4
10
= 3.9149 cm
3472/2
Additional Mathematics Paper 2
[Lihat sebelah SULIT
j2k
Qn. 11 (a)(i)
p=
3 ,p+q=1 5
Use P(X = r) = n Cr prqn–r , p+q=1
3 2 = 5C0( )0( )5 5 5
K1
= 0.01024
b)(i)
Full Mark
P1
P( X = 0 )
(ii)
Submark
Solution and Marking Scheme
N1
3
Using P( X ≥ 4 ) = P( X = 4 ) + P( X = 5 ) 3 2 3 = 5C4( )4( )1 + ( )5 5 5 5
K1
= 0.337
N1
2
P ( 30 ≤ X ≤ 60 ) 30 − 35 60 − 35 ≤Z≤ ) =P( 10 10
use
K1
Z=
X −μ
σ
Use P( – 0.5 ≤ Z ≤ 2.5 ) = 1 – P( Z ≥ 0.5 ) – P( Z ≥ 2.5 )
K1
= 1- 0.30854 – 0.00621 = 0.68525 (ii)
N1
Number of pupils = P( X ≥ 60 ) × 483
3
3472/2
3
K1
N1
Additional Mathematics Paper 2
2
10
[Lihat sebelah SULIT
j2k
Qn.
Submark
Solution and Marking Scheme
12.
Subst. t = 0 into
(a)
dv dt
K1
2
a= 15 – 6t
N1
15 ms-2
(b) Use
Full mark
dv = 0 and subst. t in v = 15t – 3t2 dt 5 [t = ] 2
K1
2 75 −1 3 ms /18 ms −1 4 4
Integrate s = ∫ v dt =
(c) Use s = 0
N1
15 2 3 t −t 2
K1
15 1 / 7 / 7.5 2 2
(d)
Subst. t = 3 or t = 4 in 15 s = t2 − t3 2
15
3472/2
N1
3
K1
K1
Note : If use
K1
1 2
S4 – S3
N1
4
∫3 vdt , give the marks accordingly. Additional Mathematics Paper 2
3 10
[Lihat sebelah SULIT
j2k
Qn. 13. (a)
Solution and Marking Scheme
Use I =
P2007 × 100 P2005
x = 48.6 y = 135 z = 80
3
Value of m : 25, m, 80, 30 or equivalent 120 × 25+130m+135 × 80+139 × 30
P1
∑I W Use Iˆ = i i
∑ Wi 120×25+130m+135×80+139 × 30 132.1 = 135+m
150.00 x
100 132.1
K1
3
N1
(ii)
Full mark
K1
N2, 1, 0
(b) (i)
Submark
m =65
K1
2
N1
(iii)
I 08 / 05 = 132.1 + (132.1x0.3)
171.73
3472/2
RM 113.55
K1
N1
Additional Mathematics Paper 2
2 10
[Lihat sebelah SULIT
j2k
Qn.
Submark
Solution and Marking Scheme
14. (a) (b)
x + y ≤ 80
or equivalent
N1
y ≤ 4x
or equivalent
N1
x + 4y ≥ 120
or equivalent
N1
Full mark
3
y 100
y = 4x 90
80
x + y = 80 x=30
70
(16,64) 60
50
40
30
20
x + 4y = 120 10
10
20
30
40
50
60
80
70
90
100
x
At least one straight line is drawn correctly from inequalities involving x and y K1
All the three straight lines are drawn correctly
Region is correctly shaded (c)
(i) (ii)
minimum = 23 (16,64)
N1
3
N1
N1
N1
Subst. point in the range
K1
in 20x + 40y RM2880
3472/2
N1
Additional Mathematics Paper 2
4
10
[Lihat sebelah SULIT
j2k
Qn. 15. (a)
Submark
Solution and Marking Scheme Use area △= ½ ab sin c in △BCD 1 20 = × 9.3 × 6 × sin BCD 2
Full mark
K1
45o48’ / 45.8o N1
0.74545
4555
N1
(c)
Use cosine rule in ΔBCD BD2 = 9.32 + 62 − 2×9.3×6 cos ∠ 45°48’
K1
(b)
K1
Use sine rule in ΔBCD sin ∠CBD sin 45 o 48 ' = 9 .3 6.685 N1
(d)
4
6.685
94o 10’
2
4444 Obtain ∠ ADB by using K1 qqq11111aaaaaaaaaaaaaaaaaa 180o – 85o50’ – ∠14s4 BAD or equivalent 5.555555 5555
z5555555555555555 K1 Use area Δ ADB =
½ × 6.685 × 13 × sin∠ ADB
K1 Sum of area: 20 cm2 + ΔABD 555
102
N1
3472/2
58.82 cm2
Additional Mathematics Paper 2
4
10
[Lihat sebelah SULIT