Logarithm Problems Solve these following problems briefly and clearly! log a = ... 1. Given a=0,666... and b=0,444..., value of log b c. 12 e. 3 a. 14 b. 13 d. 2
2. If 5log 2 = x then log 2,5 = …. a. b.
1- x 1+ x 1+ x 1 -x
1 - 2x 1 -x 1 + 2x d. 1 +x
c.
e.
1 +x 1 - 2x
a
log 16 - 3 alog 4 + alog 32 = 3 is …. c. 4 e. 2 d. 3
3. The value a of a. 6 b. 5
4. The simple form of 9 log( x − y )− 9 log( x 2 − y 2 ) is ... . a. - 9 log (x+y) d. 9 log (-x+y) b. 9 log (x+y) e. 9 log (x-y) c. 9 log (x-y) 5. The simple form of
a. 1 b. 2 6. The value of a. 1 b. 2
27
log 125. 25 log c. 3 d. 4
5
1 8 1 log is ... . 64 9 e. 5
1 1 + 25 + log 10 log 100 c. 3 d. 4
64
m3 n2 3 = 9 , then log 7. If log is ... . n3 m2 a. 4 c. 0 b. 2 d. -2
1 is ... . log 1000 e. 5
e. -4
8. If alog b + blog a = 2 then the correct relationship is .… a. a2 + b2 = 1 d. 2a - b = 0 b. a - b = a + b e. 2b = a c. a - b = 0 ⎛ 2 log 5 + 3 log 5 ⎞ 36 ⎟ ⋅ log 0,2 is … 9. The value of ⎜⎜ 2 3 ⎟ ⎝ log 5 x log5 ⎠
c. - 12 d. 6log 2
a. 1 b. -1
e. 6log 3
10. Given 2log 3 = a and 2log 7 = b then 2log 63 = .… a. 2a + b c. 2b + a e. -2b+a b. 2a - b d. -2a+b 11. If
2
3 log( x + ) = 2 , then value of x is … . x c. 1 or 3 a. 1 or 4 b. -1 or 4 d. -1 or 3
12. If log x2-logx + log a. 1 b. 10
x = 6 then x = … . c. 100 d. 1000
13. Solution Set of the equation ( ( 5 log x) 2 = 9 is ... . 1 a. {125} c. { ,125 } 125 1 d. { b. {243} ,243 } 243
14. Solution of the equation (9 log(3 x − 2 ) = 16 is ... . 2 2 e. {- ,2} a. { } 3 3 2 b. {2} d. { ,2} 3
e. -3 or 1
e. 10000
e. {-125,125}
3
e. {-2,
2 } 3
15. Solution of the equation 7log (x + 1) + 7log (x - 5) = 1 is …. a. -2 c. 6 e. -6 or 2 b. 2 d. -2 or 6