Periodic Table.docx

  • Uploaded by: usama
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Periodic Table.docx as PDF for free.

More details

  • Words: 1,054
  • Pages: 4
Periodic table INTRODUCTION: The periodic table, also known as the periodic table of elements, is a tabular display of the chemical elements, which are arranged by atomic number, electron configuration, and recurring chemical properties. The structure of the table shows periodic trends. The seven rows of the table, called periods, generally have metals on the left and non-metals on the right. The columns, called groups, contain elements with similar chemical behaviours. Six groups have accepted names as well as assigned numbers: for example, group 17 elements are the halogens; and group 18 are the noble gases. Also displayed are four simple rectangular areas or blocks associated with the filling of different atomic orbitals. The elements from atomic numbers 1 (hydrogen) through 118 (oganesson) have been discovered or synthesized, completing seven full rows of the periodic table. The first 94 elements all occur naturally, though some are found only in trace amounts and a few were discovered in nature only after having first been synthesized. Elements 95 to 118 have only been synthesized in laboratories or nuclear reactors. The synthesis of elements having higher atomic numbers is currently being pursued: these elements would begin an eighth row, and theoretical work has been done to suggest possible candidates for this extension. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratories all element has a unique atomic number (Z) representing the number of protons in its nucleus. Most elements have differing numbers of neutrons among different atoms, with these variants being referred to as isotopes. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. Elements with no stable isotopes have the atomic masses of their most stable isotopes. In the standard periodic table, the elements are listed in order of increasing atomic number Z (the number of protons in the nucleus of an atom). A new row (period) is started when a new electron shell has its first electron. Columns (groups) are determined by the electron configuration of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. oxygen and selenium are in the same column because they both have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.[7] Since 2016, the periodic table has 118 confirmed elements, from element 1 (hydrogen) to 118 (oganesson). Elements 113, 115, 117 and 118, the most recent discoveries, were officially confirmed by the International Union of Pure and Applied Chemistry (IUPAC) in December 2015. Their

proposed names, nihonium (Nh), moscovium (Mc), tennessine (Ts) and oganesson (Og) respectively, were announced by the IUPAC in June 2016 and made official in November 2016. The first 94 elements occur naturally; the remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are primordial and 11 occur only in decay chains of primordial elements. No element heavier than einsteinium (element 99) has ever been observed in macroscopic quantities in its pure form, nor has astatine (element 85); francium (element 87) has been only photographed in the form of light emitted from microscopic quantities (300,000 atoms). .

MODERN PERIODIC TABLE:

Periodic table history History of the periodic table of chemical elements

In 1669 German merchant and amateur alchemist Hennig Brand attempted to created a Philosopher’s Stone; an object that supposedly could turn metals into pure gold. He heated residues from boiled urine, and a liquid dropped out and burst into flames. This was the first discovery of phosphorus. In 1680 Robert Boyle also discovered phosphorus, and it became public. In 1809 at least 47 elements were discovered, and scientists began to see patterns in the characteristics. In 1863 English chemist John Newlands divided and then discovered 56 elements into 11 groups, based on characteristics.

In 1869 Russian chemist Dimitri Mendeleev started the development of the periodic table, arranging chemical elements by atomic mass. He predicted the discovery of other elements, and left spaces open in his periodic table for them. In 1886 French physicist Antoine Bequerel first discovered radioactivity. Thomson student from New Zealand Ernest Rutherford named three types of radiation; alpha, beta and gamma rays. Marie and Pierre Curie started working on the radiation of uranium and thorium, and subsequently discovered radium and polonium. They discovered that beta particles were negatively charged. In 1894 Sir William Ramsay and Lord Rayleigh discovered the noble gases, which were added to the periodic table as group 0. In 1897 English physicist J. J. Thomson first discovered electrons; small negatively charged particles in an atom. John Townsend and Robert Millikan determined their exact charge and mass. In 1900 Bequerel discovered that electrons and beta particles as identified by the Curies are the same thing.

In 1903 Rutherford announced that radioactivity is caused by the breakdown of atoms.

In 1911 Rutherford and German physicist Hans Geiger discovered that electrons orbit the nucleus of an atom. In 1913 Bohr discovered that electrons move around a nucleus in discrete energy called orbitals. Radiation is emitted during movement from one orbital to another. In 1914 Rutherford first identified protons in the atomic nucleus. He also transmutated a nitrogen atom into an oxygen atom for the first time. English physicist Henry Moseley provided atomic numbers, based on the number of electrons in an atom, rather than based on atomic mass. In 1932 James Chadwick first discovered neutrons, and isotopes were identified. This was the complete basis for the periodic table. In that same year Englishman Cockroft and the Irishman Walton first split an atom by bombarding lithium in a particle accelerator, changing it to two helium nuclei.

In 1945 Glenn Seaborg identified lanthanides and actinides (atomic number >92), which are usually placed below the periodic table.

Related Documents

Periodic Table
April 2020 18
Periodic Table
April 2020 20
Periodic Table
June 2020 17
Periodic Table
November 2019 45
Periodic Table
June 2020 19
Periodic Table
November 2019 54

More Documents from ""

Israel And Gaza
December 2019 55
God's Clinic
May 2020 25
English Syllabi
October 2019 51
Periodic Table.docx
November 2019 57