Per Trans 2007

  • Uploaded by: Dalia Tiesyte
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Per Trans 2007 as PDF for free.

More details

  • Words: 241
  • Pages: 9
Challenges in the Tracking and Prediction  of Scheduled­Vehicle Journeys Dalia Tiešytė, Christian S. Jensen,  {csj,dalia}@cs.aau.dk

Professional Communication Course 2006, Aalborg

Professional Communication, 25­27 October 2006, Aalborg

Scenario

GPS Position

Historical data Position

Minimize costs

Central server

2 18:05 AAU Busterm

Positionrelated info

Maintain accurate state

Professional Communication, 25­27 October 2006, Aalborg

2

Roadmap  Introduction • Challenges   

Efficient tracking Accurate prediction Historical data analysis

• Summary • Questions, suggestions, …

Professional Communication, 25­27 October 2006, Aalborg

3

Introduction • Goal: state correspondence with accuracy  guarantees at minimal costs Vehicle state

Vehicle Server’s  Prediction

Vehicle state? Efficient tracking

Statistical  analysis

Server Prediction Prediction  data

Challenging! Professional Communication, 25­27 October 2006, Aalborg

4

Challenges – Tracking Vehicle Actual  position Shared  prediction

Required  accuracy

Server

Update  policy

Predicted  position Shared  prediction Server’s  prediction External  data

Professional Communication, 25­27 October 2006, Aalborg

5

Challenges ­ Prediction Historical journey patterns Tracking data

A smart algorithm

Predicted journey patterns

External data

Professional Communication, 25­27 October 2006, Aalborg

6

Challenges – Statistical Analysis Historical GPS data Clustering Similarity function

Professional Communication, 25­27 October 2006, Aalborg

Historical journey patterns

7

Summary • Efficient tracking: minimal costs, accuracy  guarantees, dependency on prediction  algorithms. • Accurate prediction: external factors are  difficult to foresee, tracking data is sparse. • Statistical analysis: matching of sub­ journeys, incomplete tracking data,  efficiency

Professional Communication, 25­27 October 2006, Aalborg

8

 Thank you!  Questions? Suggestions?

Professional Communication, 25-27 October 2006, Aalborg 9

Related Documents

Per Trans 2007
May 2020 11
Trans Per Eff
June 2020 2
Trans
November 2019 51
Trans
November 2019 43
Trans
November 2019 40
Trans
October 2019 39

More Documents from ""

Acmgis2008
May 2020 11
May 2020 3
Per Trans 2007
May 2020 11
Its 2007
May 2020 16
Funciones Exp-log
December 2019 18