គំរូគួកណូ​ (cournot Model)

  • Uploaded by: Kong Sotheara
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View គំរូគួកណូ​ (cournot Model) as PDF for free.

More details

  • Words: 790
  • Pages: 9
 

\  fñak; ³ briBaØabRtqñaMTI2/ qmasTI2 Epñk ³ viTüasaRsþesdækic© muxviC¢a ³ mIRkUesdækic© Rkum ³ E2A4 J

kic©karRsavRCavRbFanbT ³ “Cournot Model” ENnaMedaysa®sþacarü³ TYn-pløa cgRkgedaynisßit £ -lwm bBaØa -pl burI -Kg´ suFar¨a

elak TÇàÉ|Çx Tâzâáà|Ç VÉâÜÇÉà  

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

GarmÖkfa enAkñúgGaCIvkmμEbb pþac;mux Bak;kNþalpþac;mux nigRbkYtRbECgeBjelj mansar³sMxan;y:agxøaMg kñúgesdækic©Cati EdlGaCIvkmμTaMgGs;enHsuT§EtRtUv)anpþl;KMnity:agl¥eday esdæviTUmYyrUbeQμaH Autoine Augustin Cournot EdlCaBiess elak)anbegáItnUv KMrU Cournot EdlBiPakSaBI Duopoly. edaycg;[kan; Etyl;c,as;GMBI KMrU Cournot nigmanbMNgcg;TukCaÉksardl;nisiStCMnan;eRkay eTIbeyIg´CanisiStesdækic©én saklviTüal½y PUminÞnItisa®sþ nigviTüasa®sþesdækic© )anrYmKñaCaRkumtUcmYy edIm,IRsavRCav nigcgRkgesovePA mYyk,alenH EdlmancMngeCIgfa {KMrUCournot}. esovePAmYyk,alenHniyayGMBI Rbvtþi rbs;elak Cournot/ RTwsþIbTKMrU Cournot nig lMhat;énKMrU Cournot. edaysarEt eBlevlaxøI karyl;dwg nigkarRsavRCavrbs;eyIg´mankMrit RbEhlCaGaceFIV[Gtßn½y esovePAenHminmanPaBeBjelj. EteTaHCay:agNak¾eday eyIg´sgÇwmfaesovePAenH nwgkøayCa ÉksarCMnYydl;mitþnisiStTaMgT,ay. eTaHCaeyIg´)ansikSaRsavRCavy:agNakþI eyIg´eCOCak;fa eyIg´mankMhusedayGectna kñúgesovePAenH TaMgEpñkkarKNnaelx Gtßn½y nigGkçraviruT§. eyIg´sUmsVaKmn¾cMeBaH ral;mtiriHKn;edImI,sßabna BIRKb;mCÄdæan GñkGan. PMñeBj/ éf¶TI08 Exmifuna qñaM2009 pl burI/ lwm bBaØa/ Kg; suFar:a

RkumnisiStesdækic©qñaMTI2  

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

matika TMB½r 1-Rbvtþirbs;elak Autoine Augustin Cournot ¬28¼8¼1801 dl; 31¼3¼1877¦...............................................1 1-1-karsikSa nigkargardMbUgrbs; Cournot...........................................................................................................................1 1-2-karRsavRCav .............................................................................................................................................................................1 1-3-kargarviTüasa®sþepSgeTot ................................................................................................................................................ 2 2-RTwsþIKMrUKYkNU (Cournot Model) .................................................................................................................................................... 3 3-lMhat;énKMrUKYkNU (Exercise of Cournot Model).................................................................................................................. 3 4-GvsanbT ................................................................................................................................................................................................ 5 Éksareyag.................................................................................................................................................................................................. 6

RkumnisiStesdækic©qñaMTI2  

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

1-Rbvtþirbs;elak Autoine Augustin Cournot ¬28¼8¼1801 dl; 31¼3¼1877¦ 1-1-karsikSa nigkargardMbUgrbs;elak Cournot elak Autoine Augustin Cournot EdlCa esdæviTUpg/ TsSnviTUpg nigKNitviTU)araMgpgenaH )anekIt enAéf¶28 ExsIha qñaM1801 kñúgTIRkugtUcmYyén Gray (Haute‐Saône)  kñúgRbeTs)araMg. elak)ancUlsikSaenA salamFümsikSa  Collège de Gray rvagqñaM1809 nig1816. kñúgv½y19qñaM elak)ancuHeQμaHcUleronkñúgvKÁsikSa KNitviTüamYyénsala kñúg  Besançon ehIybnÞab;mk elak)anCab;eQμaHkñúg  École  Normale  Supérieure  kñúgTIRkug Paris RbeTs)araMgkñúgqñaM 1821. edaybBaðaneya)ay  École  Normale  Supérieure RtUv)anbiT/ dUecñHqñaM1822 elakCournot )anepÞreTA Sorbonne ehIyKat;TTYl)anbriBaØabRtEpñkKNitviTüakñúgqñaM1823. elak)ansuxcitþ RblUkxøÜnKat;eTAkñúg BiPBGñkRsavRCav ehIyEdl elak)ancUlrYmkñúgsalaCan;x<s;mYyenA Academie des Sciences ehIy)anTTYlCYbCamYy esdæviTUmYyrUb KWelak Joseph Droz. cab;BIqñaM1823 elak Cournot RtUv)an[cUleFVIkarCaGñkRbwkSaGkSrsa®sþenA Marshal Gouvoin Saint Cyr. kñúgqñaM 1829 elak)anTTYl)ansBaØabRtfñak;bNÐitEpñkviTüasa®sþEdlepþatelI ynþkarI nigtarasa®sþ. RTwsþI nig GtßbTmYycMnYnrbs;elak Cournot )anTak;Tajkarcab;GarmμN_rbs; KNitviTU Siméon‐Denis  Poisson ehIyelak Poisson k¾GeBa¢Ijelak Cournot mkcUlmYykñúgbNÐitsPa. dMbUgelak Cournot bdiesF/ EteRkayBI)ancb;kic©snüaCamYy RKYsar Saint CyrkñúgqñaM1833/ elakCournot k¾cUleTAbNÐitsPa CabeNþaH GasnñkñúgTIRkug Paris. kñúgqñaM1934 elak Cournot )ankøayCasa®sþacarüEpñkkarviPaK nigynþkarI enAÉ Lyons. ehIykñúgqñaM 1835 elak Cournot eFVICasaRsþacarüKNitviTüa enA Grenoble ehIyCa saklviTüaFikar enATIenaH. bIqñaMeRkaymk Kat;)aneFVIkarCa GFikarelIRbB½n§Gb;rMrdæ. 1-2-karRsavRCav elak Cournot )ancab;epþImkarsegátdMbUgelI tYnaTIrbs; KNitviTüaeTAelI viTüasa®sþsgÁm. elak eCOfa esdæviTU RtUvEteRbI]bkrN_KNitviTüa. Kat;EfmTaMgGHGagfa kareRbIR)as;KNitviTüa kñúgesdækic©minTak;TgsMxan; RkumnisiStesdækic©qñaMTI2  

1

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

elIPaBRtwmRtUv\tex©aHelIelxnBVnþenaHeT/ eKalbMNgrbs;Kat;kñúgkareRbIR)as;KNitviTüa KWsMxan;edIm,IENnaM nUvesckþIsMGagelIRTwsþIrbs;Kat; CaCagkarKNnaelx. kñúgqñaM1838 elak Cournot )anecjpSayesovePAmYyman cMNgeCIgfa {Recherches  sur  les  principes  mathématiques  de  la  théorie  des  richesses} EdlkñúgesovePAenH Kat;BiPakSaBI esdækic©KNitsaRsþ CaBiessKW TsSnrbs;Kat;elI Monopoly, Oligopoly, Perfect Competition nig muxgarénkarpÁt;pÁg; nigtMrUvkar. kñúgkarbgðajlMnwgénEl,gOligopoly rbs;elak Cournot/ elak)anbBa©ÚlnUvTMrg; famkb,nal¥bMput EdlshRKasnImYy²eRbIedIm,I eRCIserIsbrimaNplitplb¤ Output Edlpþl;R)ak;cMenjGtibrma kñúgkareqøIytb nwgbrimaNplitplb¤ Outputsrub rbs;shRKas kalBIeBlmun. 1-3-kargarviTüasaRsþepSgeTot kñúgqñaM1841 elak Cournot )anecjpSay BI Lyon nUvesovePAbeRgónelIkarviPaK. kñúgqñaM1843 Kat;)anesckþIBüayamdMbUgrbs;elakelI RTwsþIRbU)ab‘ÍelIet (Probability Theory). elak)aneFVIkarEbgEck rvag RbU)abbIRbePT KW Objective, Subjective nig Philosophical Probability. bnÞab;BIqñaM1848 énbdivtþn_/ elak Cournot RtUv)anEtgtaMgCa KN³kmμakarGb;rMCan;x<s; Commission des  Hautes  Études. kñúgry³eBlenaHehIy Edlelak)ansresrkarBnül;dMbUgrbs;Kat; sþIBITsSnviC¢aén viTüasa®sþ ¬1851¦. Éqña1854/ Kat;)aneFVICasaklviTüaFikar kñúg sala Dijon. b:uEnþbBaðaEPñkb¤ ckçúRbsaT ¬exSayEPñk¦ rbs;Kat; )ankøaykan;EtF¶n;F¶reTA². elak)anQb;beRgónenAqñaM 1862 ehIyRtlb;eTA TIRkug Parisvij. kñúgqñaM 1859 elak Cournot )ansresrRbvtþiGnusSavrIy_rbs;Kat; ¬ecjpSayqñaM1913¦. fVIebImanKMnit Tutidæiniym elIkarfmfyénKMnitécñRbDitrbs;elak Cournot/ k¾elakminTan;bBa©b;enAeLIyeT. elak)an ecjpSaynUvesovePABIrk,aleTotniyayBiIkarsegátTsSnviC¢a kñúgqñaM 1861 nig 1872 Edl)andak; PaBl,Il,ajrbs;elak eTAkñúgshKmn_TsSnviTU)araMg. elak Cournot )anTTYlmrN³PaBenA éf¶31 ExmIna qñaM1877 EdlenAeBlKat;erobnwgBikarEPñkpgEdr.

RkumnisiStesdækic©qñaMTI2  

2

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

2-RTwsþIbTKMrUKYkNU (Cournot Model) RTwsþInaHRtUv)anbegþIteday elak Autoine Augustin Cournot. elak)anEcgRTwsþIKMrUKYkNUenH edaysnμt;fa ³ manRkumh‘unBIr plit niglk;plitpldUcKña Rkumh‘unnImYy² kMrit brimaNplitplb¤ Output énKURbkYtRbECgrbs;xøÜnfaenAefr bnÞab;eTIb eFVIkarsMerccitþfaRtUvplit niglk;b:unμan. 3-lMhat;énKMrUKYkNU (Exercise of Cournot Model) lMhat;³ ]bmafa kñúgTIpSarplitplmYyRbePT manRkumh‘un A nig B lk;plitpldUcKña EdlshRKasTaMgBIr RbQmnwgExSekagtMrUvkar P=50-4Q (PKWCaéfø KitCa$, QKWCabrimaNOutput KitCaÉkta) ehIy Q=Q1+Q2 Edl Q1 nig Q2 tagbrimaN Output rbs;shRKas A nig B erogKña. ehIyGnuKmn_cMnaymFüm nig GnuKmn_ cMNaylMeGogrbs;Rkumh‘un A nig B KW AC1=MC1=14 nig AC2=MC2=14. Rkumh‘unnImYy²maneKaledAplit Output Edlpþl;R)ak;cMeNjGtibrma edaysnμt;faRkumh‘undéTeTotrkSa OutputenAefr. k¼ cUrrkExSekagRbtikmμrbs;Rkumh‘un A nig B. x¼ KNnalMnwgrbs;shRKasnImYy². „

„

cMelIy³ k¼rkExSekagRbtikmμrbs;Rkumh‘un A nig B -ExSekagRbtikmμrbs;Rkumh‘un A tamrUbmnþ ³ TR1=PQ1 , Et P=50-4Q ¬smμtikmμ¦ TR1=50Q1-4QQ1 eday Q=Q1+Q2 ¬smμtikmμ¦ 2

TR1=50Q1-4(Q1) -4Q1Q2

eday MR1=(TR1)l=50-8Q1-4Q2 ehIy MC1=14 ¬smμtikmμ¦ T

π

max

MR1=MC1

50-8Q1-4Q2=14

8Q1=36-4Q2

Q1=4.5-0.5Q2 (1)

-ExSekagRbtikmμrbs;Rkumh‘un B tamrUbmnþ ³ TR2=PQ2 , Et P=50-4Q ¬smμtikmμ¦ RkumnisiStesdækic©qñaMTI2  

3

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

naM[ TR2=50Q2-4QQ2 eday Q=Q1+Q2 ¬smμtikmμ¦ naM[ TR2=50Q2-4(Q2)2-4Q1Q2 eday MR2=(TR2)l=50-8Q2-4Q1 ehIy MC2=14 ¬smμtikmμ¦ T

π

max

MR2=MC2

50-8Q2-4Q1=14

8Q2=36-4Q1

Q2=4.5-0.5Q1 (2)

dUecñH ExSekagRbtikmμRkumh‘un A KW Q1=4.5-0.5Q2 ExSekagRbtikmμRkumh‘un B KW Q2=4.5-0.5Q1 x¼ KNnalMnwgrbs;shRKasnImYy² tamsmμtikmμ ³ edayRkumh‘unnImYy² maneKaledAplit Output Edlpþl;R)ak;cMeNjGtibrma edaysnμt;fa Rkumh‘undéTeTotrkSa OutputenAefr enaHnaM[vaCalMnwgKYkNU. tam (1)nig(2)³ Q1=4.5-0.5[4.5-0.5Q1]=4.5-2.25+0.25Q1 0.75Q1=2.25 naM[ Q1=3Ékta ykCMnYskñúg(2) eyIg)an ³ Q2=4.5-(0.5)(3)=3Ékta ehIy Q=Q1+Q2=3+3=6Ékta P=50-4x6=$26 -R)ak;cMenjGtibrmaTπ1 nig Tπ2 rbs;Rkumh‘un A nig B Tπ1=(P-AC1)Q1 eday AC1=14

π =(26-14) 3=$36 Tπ =(P-AC )Q eday AC =14 Tπ =(26-14) 3=$36

T

x

1

2 2

2

2

2

x

dUecñH lMnwgshRKasnImYy²KW ³

P=$26 , Q=6Ékta Q1=Q2=3Ékta T

π =Tπ =$36 1

2

-sg;ExSekag RkumnisiStesdækic©qñaMTI2  

4

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

ExSekagRbtikmμRkumh‘un A : Q1=4.5-0.5Q2 ExSekagRbtikmμRkumh‘un B : Q2=4.5-0.5Q1 Q1  9 

Q1

0

4.5

Q2

9

0

Q1

0

9

Q2

4.5 0

Q2=4.5-0.5Q1 

4.5 

lMnwgKYkNU



z





Q1=4.5-0.5Q2 

4.5 

9

Q2 

4-GvsanbT eyIgsegáteXIjfaeTaHCa RTwsIþ Cournot manGayukalrab;ryqñaMehIyenaH k¾enAman\T§iBldl;brisßan esdækic© enAeBlbc©úb,nñCaBiesscMeBaHRTwsþI\riyabf Monopolies nig Duopolies EdleRbIR)as;GnuKmn_KNitviTüa ExSekagpÁt;pÁg; nigtMrUvkarCaGnuKmn_énéfø EdlRtUv)anerobcMedIm,Ipþl;nUvcMeNHdwgsMxan; elIkarBüakrN_esdækic© elIkMriténGaCIvkmμepSg² k¾dUcCa esdækic©Cati. edaykarxMRbwgERbgRtYsRtaypøÚv elak Cournot )anbegáItKMnit kñúgkarGPivDÆesdækic© kñúgviFI EdlGac[sgÁmmnusS karBar nig eFVI[rIkcMerInnUvkMeNInesdækic©.

rcb;s RkumnisiStesdækic©qñaMTI2  

5

kic©karRsavRCav

saklviTüal½yPUmiÞnItisa®sþ nigviTüasa®sþesdækic©

mIRkUesdækic©/ KMrCU ournot

 

Éksareyag

1-dkRsg;BIesovePA {Microeconomics Thoery} niBn§eday Dominick Sanlvatore, 1974, 1983, 1992. 2-tam website: http://www.-history-www.gap-system.org//cournot.html 3- http://newworldencyclopedia.com/entry/AntoineAugustinCournot, Rbvtþi nigRTwsþIrbs; elak Cournot cuHéf¶TI 3 Ex4 qñaM 2008. 4- http://en.wikipedia.org/wiki/Cournot, Rbvtþirbs;elak Cournot/ cuHéf¶TI 31¼01¼2009. 5- http://economyprofessor.com/theorists/antoineaugustincournot.php.mht, RbvtiþrUbrbs; elak Antoine Augustin Cournot.

RkumnisiStesdækic©qñaMTI2  

6

kic©karRsavRCav

Related Documents

Model Model
April 2020 51
Model
November 2019 70
Model
August 2019 67
Model
May 2020 45
Model
October 2019 47

More Documents from ""