1 . T h e r at e o f ch an g e o f ra m p vol t a ge w i t h t i m e i s k n ow n as ( a) R am p s p e e d ( b ) c l o ck s p e e d ( c ) d i ff e r e nt i al s p e e d ( d ) s we e p s p e e d 2 . S we e p s p e e d e r r or i s g i ve n by th e f o r mu l a ( a) V s = ( e -T s / R C ) + 1 ( b ) V s = V ( 1 + e -T s / R C ) ( c ) V s = V ( 1 -e -T s / R C ) ( d ) V s / V 3 . T h e m ai n d raw b a ck of s aw to o t h c i r c u i t i s ( a) m o d e r at e % o f s l o p e e r r or ( b ) ove r s h o o t e r ro r ( c ) l ow p e r c e nt a ge of s l o p e e rr o r ( d ) h i g h % o f s we e p s p e e d e r ro r 4 . T h e va r ia t i on s i n p h a s e d e l ay o c c u r d u e t o var i at i o n s i n f a c t or s l i ke a n d ( a) Q p o i nt on l y ( b ) c u r r e nt ga i n & vo l ta g e g ai n ( c ) l o op ga i n , s u p l y vo l t ag e a n d t r an s i s t or p a r am e tr e s ( d ) Q - p o i nt, s u p p l y vol t a ge an d ga i n 5 . S y n ch r on i s a t i on i nvo l ve s ( a) t r ai n of p u l s e s th a t i n d u c e a br u p t ch a n g e i n t h e s t at e of mu l i vi b r a t or ( b ) i n p u t & o u tp u t ar e i n p h as e ( c ) n o ch a ng e i n d u c e d t o s w i tch on mu l t i v i b r at o r ( d ) I n p u t & o u t p u t ar e ou t of p h as e 6 . T h e c o n di t i o n f o r p r o p e r t r an s i m i s s i on i n a f r e q u e n c y d i vi s i on w i t h ou t p h a s e J i tt e r i s g i ve n by ( a) T p < T g < 2 T p ( b ) T p > T g > 2 Tp (c) 2Tg 2Tg 7 . B y m ak i n g — — — — — , a d i v i d e r c i r c u i t w i th a d i v i s i on f a c t or n c an b e b u i lt ( a) T O < n T p ( b ) T O = 2 n T p ( c ) T O > n T p ( d ) T O = nTp 8 . T h e b i gg e s t d i s ad vant ag e of s a m p li n g g a te i s ( a) R i s e t i m e f al l t i m e ( b ) t h e s l ow ri s e o f c o nt ro l c u rr e nt ( c ) t h e s l ow ri s e o f c o nt ro l vo l ta g e ( d ) f a s t r i s e of c o nt r o l vol t a ge 9 . A d va nt ag e s of D i o d e s a m p l i n g ga t e ove r t h e t ra n s i s t e r S am p l i n g g at e ar e ( a) L i n e a ri ty o f o p e r a ti o n a n d e l i m i n a t i on of p e d e s ta l ( b ) s t a b l e o p e r at i n g p o i nt a ch i e ve m e nt ( c ) L i n e a ri ty o n l y ( d ) N o n - l i n e a r i ty o f o p e r a t i on an d e l i m i n at i o n of p e d e s t al 1 0. Fo r a n i d e a l s w i tch t h e t u r n o n a n d t u r n - o ff t i m e s ar e ( a) o n e m i l l i s e c ( b ) 1 & i n fi n i ty ( c ) z e r o ( d ) i n fi n i ty & z e r o 1 1. A i s b as i c al l y a t r an s m i s i on c i r c u i t w h i ch al l ow s i n p u t s i gn a l t o p a s s t h r o u gh i t d u ri n g s e l e c t e d i nt e r va l a n d b l o ck s i t s p as s ag e o u t s i d e t h i s t h i s t i m e i nt e r val . ( a) O R ga t e ( b ) XOR g a te ( c ) n o r ga t e ( d ) S a m p l i n g g a te 1 2. Ty p i c a l N o i s e m a r gi n f or a T T L f a m i l y i s gi ve n by ( a) 0 . 38 ( b ) 0 . 4 ( c ) 0 . 10 ( d ) 0 . 42
1 3. W h i ch o f th e f o l l ow i n g fl i p - fl op s i s u s e d a s l a t ch ( a) I S L ( b ) E CL (c) CMOS (d) TTL 1 4. N O R op e ra t i on i s ( a) ¯ X . ¯ Y ( b ) ¯ X + ¯ Y ( c ) ( ¯ X + ¯ Y ) ( ¯ X + ¯Y ) (d) XY 1 5. T h e B i o l ar te ch n o l o gy g i v i n g th e f a s t e s t l o g i c al f am i l y i s ( a) E C L ( b ) RT L ( c ) D T L ( d ) T T L 1 6. C o u nte rs , M u l t i p l e x e r s , C o m p ar a to r s a r e r e l a t e d t o ( a) L S I (b) MSI (c) VLSI (d) SSI 1 7. T h e I C 74 02 r e f e rs t o — — — — — — – ( a) N O R ( b ) N A N D ( c ) X N O R ( d ) XOR 1 8. A n I C t h a t i s a 4 - b i t l a t ch i s ( a) 7 40 0 ( b ) 7 47 5 ( c ) 7 44 6 ( d ) 7 41 0 1 9. W h a t i s t h e b o ol e a n e xp r e s s i on f o r t h e fi g u re 1 9 F i g u re 19 ( a) Y=ABC (b) Y=(A+B+C) (c) Y= A + B + C (d) Y= A.B.C 2 0. G i ve n b o o l e a n e x p r e s s i on ( X Y Z + X Y + Y Z ) t h e n w h at i s i t s s i m p l i fi e d ve r s i o n ? ( a) X Y Z + X . Y ( b ) X + Y + Z ( c ) X Y ( X + Y + Z ) (d) X + Y + Z ANS : ACDCAACCACDBBAABABBA