Linear Algebraic Equations: LU DECOMPOSITION
Chapter 3
Representing Linear Algebraic Equations in Matrix Form
a11 x1 + a12 x2 + + a1n xn = b1 a 21 x1 + a 22 x2 + + a 2 n xn = b2 a n1 x1 + a n 2 x2 + + a nn xn = bn [ A]{ X } = {B}
LU DECOMPOSITION •
By using this method, system of linear equations [A]{x}={b} will be transformed to [L][U]{x}={b} where [L] is a lower triangular matrix and [U] is an upper triangular matrix.
•
In this course, 4 methods to decompose matrix A into matrix L and U will be discussed which are : (i)
Gauss Elimination Method
(ii)
Doolittle Method
(iii) (iv)
Crout Method Cholesky Method
LU DECOMPOSITION 1) Solve [L]{y}={b} by using forward substitution. 2) Solve [U]{x}={y} by using backward substitution.
5) LU Decomposition which is categorized under direct method also known as matrix factorization.
DOOLITTLE METHOD a11 a 21 a31
a12 a 22 a32
a13 1 0 0 u11 u12 u13 a 23 = l 21 1 0 0 u 22 u 23 a33 l 31 l 32 1 0 0 u 33 u12 u13 u11 = l 21u11 l 21u12 + u 22 l 21u13 + u 23 l 31u11 l 31u12 + l 32 u 22 l 31u13 + l 32 u 23 + u 33
DOOLITTLE METHOD u11 = a11 u12 = a12 u13 = a13 a 21 u11
a 21 = l 21u11
→
l 21 =
a 22 = l 21u12 + u 22
→
u 22 = a 22 − l 21u12
a 23 = l 21u13 + u 23
→
u 23 = a 23 − l 21u13
a31 = l31u11
→
l31 =
a31 u11
a32 = l31u12 + l32 u 22
→
l 32 =
a32 − l31u12 u 22
a33 = l31u13 + l32 u 23 + u 33
→
u 33 = a33 − l 31u13 − l 32 u 23
EXAMPLE 1 Solve the following system of linear equations using Doolittle Method.
3x1 − x 2 + 2 x3 = 12 x1 + 2 x 2 + 3x3 = 11 2 x1 − 2 x 2 − x3 = 2
SOLUTION 1 Step 1: Convert the system of linear equations into the matrix form,
[ A]{ x} = { b}.
3 − 1 2 x1 12 1 2 3 x = 11 2 2 − 2 − 1 x3 2
SOLUTION 1 Step 2: Decompose [A] into [L] and [U] using Doolittle formula. u11 = 3 u12 = −1 u13 = 2 1 = l 21 ( 3) 2 = ( 0.3333)( − 1) + u 22
→
1 = 0.3333 3 = 2.3333
l 21 =
3 = ( 0.3333)( 2 ) + u 23
→
u 22
→
u 23 = 2.3334
2 = l31 ( 3)
→
l 31 =
− 2 = ( 0.6667 )( − 1) + l32 ( 2.3333)
→
− 1 = ( 0.6667 )( 2 ) − ( 0.5714 )( 2.3334 ) + u 33 →
2 = 0.6667 3 − 1.3333 l32 = = −0.5714 2.3333 u 33 = −1.0001
SOLUTION 1 Step 2: Decompose [A] into [L] and [U] using Doolittle formula.
3 − 1 2 1 2 = [ L][U ] 3 2 − 2 − 1 0 0 3 −1 2 1 = 0.3333 1 0 0 2.3333 2.3334 0.6667 − 0.5714 1 0 0 − 1.0001
SOLUTION 1 Step 3: Solve [ L ]{ y} = { b} using forward substitution. 0 0 y1 12 1 0.3333 y = 11 1 0 2 0.6667 − 0.5714 1 y 3 2 y1 = 12 0.3333(12 ) + y 2 = 11
→
y 2 = 7.0004
0.6667(12 ) − 0.5714( 7.0004 ) + y 3 = 2
→
y 3 = −2.0004
SOLUTION 1 Step 4: Solve [U ]{ x} = { y} using backward substitution. 3 0 0
−1
x1 12 2.3333 2.3334 x 2 = 7.0004 0 − 1.0001 x3 − 2.0004 2
− 1.0001x3 = −2.0004
→
x3 = 2.0002
2.3333 x 2 + 2.3334( 2.0002 ) = 7.0004 3 x1 − 0.9999 + 2( 2.0002 ) = 12
→
→
x 2 = 0.9999
x1 = 2.9998
EXAMPLE 4 1) Solve the following system using Gauss Elimination Method with partial pivoting
2 x1 + 5 x2 + 8 x3 = 36 4 x1 + 8 x2 − 12 x3 = −16 x1 + 8 x2 + x3 = 20
Exercise 1 Solve the following system using Doolittle and Cholesky methods. The exact solution is given and compare the true error between the methods. 5 x1 + 3x2 + x3 = 9 3 x1 + 6 x2 + 2 x3 = 11 x1 + 2 x2 + 7 x3 = 10
x1 = 1 x2 = 1 x = 1 3