Kunci Matematika Kelas X New.docx

  • Uploaded by: Dea Alqarana
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Kunci Matematika Kelas X New.docx as PDF for free.

More details

  • Words: 16,877
  • Pages: 39
1 1

Uji Kompetensi 1.1

1

, ,

2 8 16 5

11

8

8

12

16 16 16

B. , 1,

A. 1. 54 x 20 – 640 : ( -8 ) = 1080 + 80

2

,

1

,

11 5

1, 12 , 8

= 1160

4

6

C. ,

2. 750 – 75 x ( -4 ) + 185 : 8

71

,

80

5 10 100

60

,

71

,

100 100 100

4 71 6 , , 5 100 10

= 750 + 300 + 23,125 = 1073,125

4 7 11

16 21 22

3 4

12 12 12

D. , ,

3. ( 300 + 1100 ) : ( -7 ) x 18 – 60

,

6

11 7 4

– 60

= 1400 : ( -7 ) x 18 = -200 x 18

– 60

= -3600

– 60

,

, ,

6

1

2. A. 5

= - 3660 4. 1.200 : ( -40 ) + 35 x 16 – 250

1

66

5

5

13 =

C.

1 =

D.

7 =

5. 8.000 : ( -50 ) – 2.800 + 60 x 9 = - 160 – 2.800 + 540

3

B.

= -30 + 560 – 250 = 280

16

=

3

4 3

7

15

8

8

3

52

7

7

= - 2420 3. A. B. 1. ( 48 – 2 ) x 21 x Rp 4.500,00 = 46 x 21 x Rp 4.500,00

B.

= Rp. 4.347.000,00 C.

2. 8 x 275 – 350 – 250 – 2 x 350 + 98 = 2.200 – 350 – 250 – 700 + 98

D.

= 998

3 2𝑎 16 3

+



14 10

+

8

=

2𝑎

11

3

3

3

−12

=

14

14

−10𝑎

𝑎

=

−6 7

−𝑎

=

10

4

=

2𝑎

5

− =

−9 9𝑎

5

10

3. 453.000 : 56 x 5 4. A.

= 8090 x 5

1 3

= 40.450

1

5

5

15

+ = 4

1

3

5

B. 1 + 3

4. ( 20 x 15 + 15 x 20 + 13 x 25 ) : 37 = ( 300 + 300 + 325 ) : 37 =

925

: 37 C.

5. Rp 100.000,00 x 5 – 75 x Rp 6.500,00 = Rp 500.000,00 – Rp 487.500

D.

5 6

1 1

1. A. , ,

1

2 8 16

8

,

2

,

1

8

24

Kunci jawaban Matematika kelas x

1

5



9 24

16

4

5

3

5

2𝑘



7 4𝑘

+

=5

1 6𝑘

=

48 15

11

=

7

5

15

+

15

1

15

35

8

3

83

15

=

=5

1 +3 = +

=

16 16 16

3

15

20

= E.

16

83

3

− =

= Rp 12.500,00

Uji Kompetensi 1.2

7

8

=

15

= +

=

= 25

3

+

24

=

35 15

+

48 15

8 15 30

12𝑘



21 12𝑘

+

2 12𝑘

11 12𝑘 Sagufindo Kinarya

F.

−6

+

6𝑎

5 −8𝑎

B. C. D.

E. F.

1 2 1 5 𝑥

1

6. A. B.

C.

D.

C.

51

5

81

𝑦

𝑧

𝑧

𝑥

31

42

x

1

:

3

21

105

5 10

3

11

4

2

4

4

2

3 3

3

3

1 : = ∶ 5

1

37

8

4

8

F.

7. A.

4𝑏 2 :

2𝑏

3𝑎2 2𝑎 5𝑏3

:

3𝑎2

=

7𝑏

5𝑏3

9

B.

=

4

34

x

82

2𝑏

2𝑎

7

=

11

C.

14

D.

=2 x

41

=

3

4

3

4

= =

4

11 10 4 77 6

(

3

4

+ x

1

1

6

3

3

1

7

1

4

9

4

(3 − 1) = × 2 7

9

7

3

9

4

4

4

11

3

42

+ )=

24

98 9

+

4

−1 19 62

+2

24

93

×

4 5

×

246 5

13

=

2

6

×

+

164

6

1539

5

5

12 10

+

=

5

4

=2( =2x

x

17

×

36 10

10

4

4

22

8

=2(

11

3

= 12

5

147

=

3

5

=9

24 9

884 150

+

21 24

=9

57 4

:

5

208 15

3

48 10

3 5

18 5

)

54

+

)

15

104

24 5

=4

4 5

1

3

3

5

=3 ×3 = =

102 3

×

18 51

36 3

= 12 cm2

15 13

= 13

15

L=pxl

1

3

4

4

=2(5 +2 ) 4

= 2 (7 4) 2

=

L=pxl

3

15

4

342

1

50

150

4

×

=

+

134

=5

153 34

B. k = 2 ( p x l )

6

Kunci jawaban Matematika kelas x

3

98

=2(3 +3 )

10𝑏2

3

3

8

9. A. k = 2 ( p + l )

21𝑎

4

11

9

=

= 18𝑏

3

x

7

17

34

1

10

1

1 (3 − 3 )

= +

3

=1 9

21

37

=

7𝑏

31

x

31

17

37

42

42

21

x

(3 x 2 ) + ( x 2 ) =

8

= 23

x5

513 905 5 = 392 + = = 25 36 36 36 36

11

=

2



=2

9

= 4𝑏 2 x

9

185

7

=6

7



1 2

25

=

1

1

4 :4 =

8. A.

102

3

2 :3 =

8

= × = =1

3

x

51

D.

6

3

x

3

=0

1

1

=

=1

51

2

3

37

6

81

x

x x3

5

8

3

(4 ) =

5

=

93

1

=1 x0

=1

51

x

51

37

=

= E.

24𝑎

=

3

2

B. 4 8 (1 3 + 3 3)

4

4

=

5

26

1

1

1

24𝑎



1𝑏 = 𝑏

x

2

24𝑎

−15

6

x1 x

𝑦

12𝑎

+

24𝑎

x1 =

8

−24

=

1

=

3

x

4

3

1

x

13

−65

= 5. A.



1

3

4

4

=5 ×2 =

21 4

×

11 4

Sagufindo Kinarya

7 8

231

=2x8

=

= 16 cm

= 14 16 cm2

76.400

x=

16

28.650

× 3 𝑑𝑜𝑙𝑎𝑟 = 7,9 𝑑𝑜𝑙𝑎𝑟

7

3

6. Timah putih 1

1

3

5

10. A. Matematika = 1 − − 15

=

15

7

5 15



= 37,5 kg 3

7. A. 1 cm

15

15

1 x=1:

15

=1×

× 21 orang

15 71

2100 𝑚 30 𝑚

8. A. 1 cm 1,5

30 m

cm

x=

: 4

x 4 3

1

× 30 𝑚 = 40𝑚

9. 4 cm

2. A. L1 : L2 = 6S12 : 6S22

6m

1,6 cm

= 6 . 32 : 6 . 42 =9

× 30 𝑚 = 45 𝑚

1

6

22

:

2100 m

B. 1 cm

= S12 : S22 12

30 m

1,5 cm

4

x=

: 16

B. V1 : V2 = S13 : S23 = 33 : 43

1,60,4 41

x

× 6 𝑚 = 2,4 𝑚

10. Ps = Pp : S

= 27 : 64 = 12 cm : 3. 300 ekor 240 ekor x=

300 240

× 1 𝑐𝑚 = 70 𝑐𝑚

× 213 orang

Uji Kompetensi 1. 3

=1

30 m 2100 m

x=

x

=

× 1 𝑐𝑚 = 20 𝑐𝑚

30 𝑚

x

= 45 orang

1. L1 : L2

6002 𝑚

B. 1 cm

x 7

600 m

x=

21 orang

12

30 m

x

7

= B.



= 4 × 50 kg

1 400

24 hari

400

= 12 cm ×

x

× 24 ℎ𝑎𝑟𝑖 = 30 ℎ𝑎𝑟𝑖

1

= 4800 cm = 48 m

4. 100 km

2 ,8 ℓ

x x=

2,814 0,2

5. 3 dolar x

ℓs = ℓp : S

0,2 ℓ

= 9 cm :

× 100 𝑘𝑚 = 1400 𝑘𝑚 = 9 cm ×

1 400 400

Rp 28.650,00

= 3600 cm

Rp 76.400,00

= 36 m

Kunci jawaban Matematika kelas x

3

1

Sagufindo Kinarya

11. A. B.

C. D.

3 51

Harga satuan

7 2

75

= 20.000 Laba

× 100% = 2%

100

× 100% =

68

=

12. A. 35 % =

35 100

12,5

B. 12,5 % =

=

C. 3%

B.

13 2 9

8

15

15.

9

115 100

=

23

=1

20

× 260 𝑘𝑚

Uji Kompetensi 1. 4

20

1. A. 34+7 = 311 B. (x + 1)8+6 = (x + 1)14

3

8

5

5

C. 2 (x3×4) = 2x12 𝑎

= 1,6

𝑎

D. ( 𝑏 )5+2 = ( 𝑏 )7 E. ( y3+2 )4 = ( y5 )4 = y5x4 = y20

= 0,73 75

242

90

804

3

= 1,54

25 6 × 100 % =

819

201

= 65 km

F. 14.

x

100

C. 1 = D.

x =

1

= 0,22

11

260 km

20 %

3

D. 115 % = 20

100

× 20.000 = 4000

3

20

=

100

% = 22 %

3

7

=

20

Harga jual = Rp 24.000,00

2

20. 80 %

13. A.

= Rp 2.800.000,00 : 140

× 1004 % = 28%

251

17

19. 7 kodi = 7 x 20 = 140 biji

× 10020 % = 60%

2

𝑎3𝑥4 𝑏 2𝑥4

1

𝑎4 𝑏 3

=

𝑎12 𝑏 8 𝑎4 𝑏 3

= a12-4 b8-3 = a8 b5

% = 37 % 2

2. A. B B. S

× 100% = 90%

C. S D. B

16. Potongan = Rp 11.500,00 – Rp 10.925,00

E. B

= Rp 575,00 % potongan =

575 11.500

F. B

× 100% = 5%

3. A. 6 x 103+5 = 6 x 108 B. 56 x 102 = 5,6 x 103

17. % untung = 100 % - 40 % - 15 % - 7,5 %

C. 960.000 = 9,6 x 105

= 37,5 % Untung =

37,5 100

D. 200 = 2 x 102

× 𝑅𝑝 2.750.000,00

E. 5 x 105-2 = 5 x 103 F. 18.600 = 1,86 x 104

= Rp 1.031.250,00 18. Bonus

1

4. A. ( 24 )4 = 2

15

= 100 × 𝑅𝑝 375.000 = 56.250

2

Gaji pokok

= 375.000

B. ( 33 )3 = 32 = 9

Gaji total

= 431.250

C. ( 82 )2 = 83 = 512

Kunci jawaban Matematika kelas x

3

4

Sagufindo Kinarya

1

1

3

4

F. X3 = 125

D. 4 x ( 43 ) - x ( 34 )

3

X = √125

= 4 x ( 4-1 ) x 3 =4x

=5

1

x3

4

=3 E. (

23

x

2

106

) = (( 2 x 3

102 )3)

6. A.

2 3

= ( 2 x 102 )2 = 4 x 104 1

F. 34 x ( 33 ) : 3 2

=3

B.

1 − 2

C.

3 1 4+2+2

E.

5. A. ( 25 )x = 2-4

1 2

1

𝑞

−3

𝑥

−2

3

𝑧

1 −1 2

=𝑧



1 2

7. A. √𝑎

5 x = -4

3

4

B. √𝑏

5

C. √𝑐 2

3

1

5

D. √𝑑 4

B. ( 3-1 )x -2 = 3-2 . 32 3-x+2 = 3

=𝑝

1 𝑝2



D. 𝑦 2

= 36

x=−

1

−1

1 2

8.

-x + 2 = −1

1

3 𝑥 103 𝑚 1 𝑑𝑒𝑡𝑖𝑘

=

3000 𝑚

5 = 𝑚⁄𝑗𝑎𝑚 3600 𝑗𝑎𝑚 6

2

9. 2,7 𝑥 10−23 𝑞 𝑥 4 𝑥 1028

1

32 = x

= 10,8 𝑥 10−23+28

C. x = 3 1

= 10,8 𝑥 105 𝑞

D. ( 52 )3x = 52 36x = 5 6x = x=

= 1,08 𝑥 106 𝑞

1 2

1

10. F =

2 1

𝑘 .𝑄.𝑞 𝑟2

𝑟2 =

12

𝑘 .𝑄 .𝑞 𝐹

4

E. ( 32 )x+3 = √(33 )𝑥 + 5 32x+6

=3

2x + 6 =

𝑟=√

3𝑥+15 4

3𝑥+15

= (𝑘

4

.

𝑘 .𝑄 .𝑞 𝐹

𝑄 .𝑞 1 𝐹

)2

8x + 24 = 3x + 15 8x – 3x = 15 – 24 5x = -9 x=−

9 5

Kunci jawaban Matematika kelas x

5

Sagufindo Kinarya

Uji Kompetensi 1. 5

F. 3√7 5. A. 2√15 + 2√10

1. A. Bukan B. Bukan

B. √48 - 2√18 = 4√3 - 6√2

C. Ya

C. (√3 )2 + 2 (√3 ) (√2 + (√2 )2

D. Bukan

= 3 + 2√6 + 4

E. Bukan

= 7 + 2√6

F. Ya

D. √6 x 6√6 = 6 x 6 = 36 E. 5.2 - √6 + 5√6 - 3

2. A. √27 = 3√3

= 10 + 4√6 - 3

B. √28 = 2√7

= 7 + 4√6

C. √25 .3 = 5√3

F. (√5 )2 - 2(√5 ) (√3 ) + (√3 )2

D. √49 .3 = 7√3

= 5 – 2√15 + 3

E. 2√49 .2 = 2.7√2 = 14√2

= 8 - 2√15

F. √25 .2 = 5√2 G. √100 .2 = 10√2

× √7 2 = √7 7 √7 × √7 √3 × √2 √6 B. = 2 √2 × √2 1 × 1−√3 1−√3 1−√3 C. = = 1+√3 × 1−√3 1−3 −2

6. A.

H. √100 .3 = 10√3 I. 5√4 .2 = 5.2√2 = 10√2 J. 10√100.10 = 10.10√10 = 100√10 3. A. c2 = a2 + b2 =

22

+

32

D.

2

2+√2 2−√2

=4 + 9

=

= 13 c = √13 (betuk akar)

× 2+√2 22+2 .2√2+(√2) = 4−2 × 2+√2

4+4√2+2 2

=

6+4√2 2

2

= 3 + 2√2

× √5 1 1 = √5 = × 2,236 = 0,45 5 5 √5 × √5 20 × √2 20 B. = √2 = 10 × 1,41 = 14,1 2 √2 × √2 10 × √6 10 5 C. = √6 = √2 . √3 6 3 √6 × √6

B. bentuk akar

7. A.

C. bukan D. bukan E. bentuk akar D. bukan

1

5

= 3 × 1,41 × 1,732 4. A. √9. 2 + 8 = 310√2 + 8

= 4,07

× √3 6 = √3 = 2 × 1,732 = 3,46 3 × √3 3 3 × √5 5 2,236 E. = √5 = = 1,12 2√5 × √5 10 2 4 × √2 4 4 F. = √2 = × 1,41 = 0,56 5√2 × √2 10 10

B. 5√3 - 2 √16.3 = 5√3 - 2.4√3

D.

= 5√3 - 8√3 = -3√3 C. 2√5 D. 15√13 + 9√13 - 2√3 + 3√3 = 24√3 - √3 2

6

3

E. √ 4 . 6 + √ 64 . 3 + 2√−81 3

= 2√6 + 4√ 3 + 3.9 3

= 2√6 + 4√ 3 + 27 Kunci jawaban Matematika kelas x

6

Sagufindo Kinarya

1

8. A. sekawan = √3 -1

B. x = 3-3 = 27

(√3 + 1) (√3 - 1) = (√3 )2 – 12 = 3 – 2 = 2

C. x4 = 16

B. sekawan = √5 +2

x=2 D. x-3 = 0,125

(√5 - 2) (√5 + 2) = (√5 )2 – 22 = 5 – 4 = 1 C. Sekawan = √7 + 3 (√7 - 3) (√7 + 3) = (√7 )2 – 32 = 7– 9 = - 2

1 𝑥3 1

D. Sekawan = 3 +√2 (3 -√2 ) (3 +√2 ) = 9.

125

x-3 =

𝑥

32

– (√2

)2

=9–2=7

1000 125

=

=

1000 5

10

x=2

L =pxℓ

5

3. A. log 2 × 4 = log 10 = 1

= (2+√2 ) (2-√2 ) B.

= 22 – (√2 )2

5log

155 ×25 62

=4–2

= 5log 125

= 2 cm2

=3

d2 = p2 + ℓ2

C. 3log 72 x 7log 33

= (2 + √2)2(2-√2 )2

2 . 3 x 3log 7 x 7log 3

= (4 + 4√2 +2) + (4 - 4√2 +2)

= 6 x 3log 3

= 12

=6 x 1 =6

d = √12 = 2√3 cm

4. A. 25 = x + 6 32 x + 6

10. AC = √22 + 12

26 x

= √4 + 1 B.

= √5

9

1 2

= 2x – 1

3 = 2x – 1

AD = √𝐴𝐶 2 + 𝐶𝐷2

4 = 2x

2

= √(√5) + 12

2=x

= √5 + 1

C.

= √6

10log

𝑥 16

103 =

5.

1. A. 5 B. 3log

1 − 3 3 .3 2

10log

D. 2log

10-3

3 −− 3 2 .=

= 3log

1 − 33 2

𝑥 16

=

A. log 24 = log (23 x 3 ) = log 23 + log 3

1 − 32

= 3 ( 0, 301 ) + 0, 477

= -3 -

=3

16.000 = x

Uji Kompetensi 1.6

C.

×2

= 0, 903 + 0, 477 = 1, 380

3 2

B. Log 600 = log ( 2 x 3 x 100 ) = log 2 + log 3 + log 100

2. A. x = 42 = 16

= 0, 301 + 0, 477 + 2 Kunci jawaban Matematika kelas x

7

Sagufindo Kinarya

= log 3,981 – log 104

= 2, 778 1

= 0,6 – 4

1

C. Log 2 . 32 = log 2 + log 32 1

= 0, 301 +

2

= -3,4

x 0, 477

= 0, 301 + 0, 2385

9. A. 0,3856

= 0, 5395

B. 3,477 C. -0,6198 1 2

D. -1,28735

D. Log 23 . 32 + log 3 . 5

1

= log 23 + log 32 + log 3 + log 52 10.

1

= 3(0,301)+2(0,477)+ 0,477 + (0,699) 2

6.

=

7.

C. 1479,1

= 2, 6835

D. 0,22

=

=

50 =

𝑙𝑜𝑔2 50

Uji Kompetensi 1.7

𝑙𝑜𝑔2 6

2 log 2 .52 2 log 2 .3

2𝑙𝑜𝑔2+2 log 52

=

1. ( 32 )2x – 1 =

2 log 2+2 log 3

34x-2

1+2 .𝐵

15 =

3 log 6 3 log 15

3 log 2 .3

3 log 2+3 log 3

𝑃+𝑄

35

= 3-5

4x

= -3

x

=

2. (25 )

= 3 log 3+2 log 3

3 log 3 .5 1+𝑃

1

4x – 2 = -5

1+𝐴

6log

=

B. 17,5

= 0, 903 + 1, 431 + 0, 3495

6log

=

A. 2,5

−3

2𝑥−3 2

𝑥+1 4

= (27 )

10𝑥 − 15 7𝑥 + 7 = 2 4

1 +1 𝑝

= ( )× 𝑃 1+𝑄

×𝑃

40– 60 = 14 + 14

1+𝑃

40–14 = 14 + 60

𝑃+𝑃𝑄

26 = 74

8. A. log 39, 81 = log ( 3, 981 x 10 ) = log 3, 981 – log 10

𝑥=

= 0, 6 – 1 = - 0, 4

(B)

4

74 26

=

37 13

(E)

4

B. Log 398100 = log 3, 981 x 105

3. 3

2𝑥−1 3

= log 3, 981 + log 105

2𝑥−1

= 0, 6 + 5

3

= 5,6

= 3−3

= −3

2 -1= -27

C. Log 0, 03981 = log 3, 981 : 102

2=-26

= log 3, 981 – log 102 = 0,6 – 2

 = -13

= -1,4 D. Log 3,981 : 104 Kunci jawaban Matematika kelas x

8

Sagufindo Kinarya

2 4𝑥−2

4. ( ) 3

2 0

= 74 + 14√7 (E)

=( ) 3

4 -2 = 0

3

2

2

3

3

11. √54 + √16 − √250

1

 = 4 = 4 = 2 (C)

3

3

3

= 3√2 + 2√2 − 5√2 = 0 (E)

5. P = 3 ℓ

d2 = p2 + ℓ2

12. 7log 23.2log32.3log 7-1 )2

L = 72

= ( 3√24

P x ℓ = 72

= 216 + 24

3ℓ x ℓ = 72

= 240

3ℓ2

+ 24

= 3.2(-1).7log2.2log 3.3log 7 = - 6. 7log 7 = - 6.1

d = √240

= 72

ℓ2 = 24

= -6

= 4√15

(C)

ℓ = √24 13.

p = 3ℓ

log 98 log 6

= 3√24 = 6.

r4

r3

x

=

r4+3-1

:

r1

= r6 = 2

4

=

log2 2 . 3

1+2 .2 log 7 1+𝑏

1+

=

log2 2 + log2 72 log2 2 + log2 3

2 log7 2

1+𝑏

2 𝑎

×𝑎 1+𝑏 ×𝑎 1+

=

log 2 .72

=2

𝑎+2

(C)

𝑎(𝑏+1)

1

7. (5−3 )−3 + (23 )3 − (103 )3 = 52 + 24 -10

14.

log5 75

=

log5 5

= 25 + 16 + 10

=p+2 4

=

9.

×1 − √5 4 ( 1− √5 ) = 12 −5 − √5

1+√5 ×1

4 ( 1−√5) −4

= −1 + √5

15. 3log 3

(A)

125 5

log 25

3

2−√3×2+√3

(D) 10

: 3log

2

log 25 : 3log 5

3

2 ×2+√3

=

1

= 5log 3 + 2 . 5log 5

= 31 (D)

8.

log5 3 . 52

= 3log 25 = 2 (A)

log 5

2(2 + √3) 2

22 − (√3)

16. 3log

41 . 54 27 82

= 3log 27 = 3 ( C )

= 4 + 2√3 (B) 17. 2log 5 x 5log 6 – 2log 24 = 2log 6 – 2log 24

10. (3√7 + 5)(4√7 − 2)

= 2log

= 12.7 − 6√7 + 20√7 − 10

2

24 1

= log

= 84 + 14√7 − 10 Kunci jawaban Matematika kelas x

6

4

9

Sagufindo Kinarya

= 14.000.000 cm

= -2 (A)

= 140 km

(B)

3

log 81

18. 15log 81 = = = =

4 3

log 3 × 5

3

log 15

=

9 3 35 25. 21 . - 2. + 42 2 8

4 3

log 3+ 3log 5

=

4

9 2

3

1+ log 5 4 1 1+ 𝑃

=4

×𝑃 4𝑃 = ×𝑃 𝑃+1

(B)

-

9

3

+4

2

8

3 8

26. ( E )

19. H Jual = 115.000 x 100 = 11.500.000 H Beli =

= 10.500.000 _

27. ( B )

Untung

= 1.000.000

28. L = 𝜋 r 2

1.000.000

% untung =

10.500.000

= 9,5 %

20.

V1

: V2

S13

: S23

23

r2 =

x 100 %

(E)

𝜋

r =√

. 24 . 24

1: 8

(D)

6010 366

= 3 √2 + 4√2 - 4√2 + 5√2 - 6 √2 = 2 √2

x 12

2

orang

=

2 10

= 24

= - 13

x 120 dm

(D)

33. P = 8 . ( 4-2 )1/2 . ( 64 )-1/3 = 8 . 4-1 . ( 43 )-1/3

x 120 dm

= 82 .

(C)

=

24. ∝s = ∝p : s = 7 cm :

( B )

32. 3 + 4√3 - 4 √3 - 16

= 20 orang ( E ) 2+3+5

( B )

31. 3 √2 + 2√4 . 2 - √16 . 2 + √25 . 2 – √36 . 2

(B)

36 hari  x

2

( D)

𝑔

x 800 gr

250

22. 60 hari  12 orang

23.

𝐿

= 7 √15

= 1200 gr

x=

𝐿 𝑔

30. √735 = √15 .49

375 gr  x 375

(D)

𝜋

= 2𝜋 √

21. 250 gr  800 gr

x=

𝐿

29. T = √4𝜋 2 .

: 43

12. 12. 12 : 2 4

𝐿

1

41

.

1 4

(D)

2

34. ( α2 + b2 )- ½ =

2.000.000

= 7 cm x 2.000.000 Kunci jawaban Matematika kelas x

1

1

= 10

1 √α2 + 𝑏2

1 (𝛼 2 + 𝑏2 )1/2

( C) Sagufindo Kinarya

35. 1 mol 1 2

6,02 . 1

mol

=

1023

x 60,2 . 1022

20

= 3,01 x 1022 7

24

36. (

)

3 .5

=

228 37 . 57

:(

312

x

212 . 53

x

=22 . 1013

23 . 3 52

9

5

. 3o

= 2.

(D)

3

44. 2. 4 − 3. 2 +

)

(D)

35 8

18 9 35 − + 4 2 8

510

36−36+35

215 . 35

8

= 228 – 12 15 . 312 – 7 – 5 . 510 – 3 – 7 = 21

. 26 . 108

27

= 23+6-7 . 105+8 ( E )

3

4

3 x( 4 ) 2 .5

105 . 23

=

35 8

3

= 4 8 (D)

45. E

. 5o Uji kompetensi 2.1

37. alog b . blog c . clog d = alog d

(A)

1. membilang = sesuatu yang eksak banyak siswa dalam suatu kelas

×3 − √5 4 ( 3− √5 ) 38. = 3+√5 ×3 − √5 9−5 4

)2

= ( 3 - √5

=

– 2 . 3√5 +

32

mengukur = pendekatan panjang , luas (√5)2

= 9 – 6√5 + 5

2. tiga cara :

= 14 – 6√5

1. pembulatan ke satuan terdekat

(D)

2. pembulatan ke angka desimal 39. log 23 . 3 . 53 = 2 log 2 + log 3 + 3 log 5 = 2 A + B + 3C

40. log ( x – 5 ) = log x-5 =

3. pembulatan ke banyaknya angka yang signifikan (berarti)

(D)

𝑥

3. A. 10, 84

5

B. 5, 42

𝑥

C. 157, 22

5

D. 1072 , 12

5x – 25 = x 4x =

25 4

=6

41. V = a

4. A. 0,1246 B. 0,008543

1

C. 172, 5

(B)

4

D. 1,281 5. A. 3 angka signifikan

d = s√3 3

S3 = a

B. 4 angka signifikan

= √𝑎 . √3 6

3

= √27𝑎2

S = √𝑎

C. 6 angka signifikan

(C)

D. 5 angka signifikan 42.

100.000 2.500.000

x 100% = 4 %

(C)

6. A. 17 B. 171

43.

105 27

10 3

26 . 104

( ) .( 5

23

C. 1708

2

)

Kunci jawaban Matematika kelas x

D. 17085 11

Sagufindo Kinarya

14. A. SM = ½ x 0,01 = 0,005 ≈ 0,01 kg 7. A. 45,1 SR =

B. 503

0,05

5

=

7,25

725

C. 0,1 % kesalahan =

D. 0,6

1

=

145

1 145

x 100% = 0,69

B. SM = ½ x 1 = 0,50 kg 8. A. membilang jumlah murid kelas X-1

SR =

B. mengukur panjang meja memakai penggaris

0,50 98

5

=

=

980

% kesalahan =

B. 10

SR =

C. 5,124 D. 199

0,5

1 196

100

5

=

1

1 200

200 x 100% = 0,50 %

D. SM = ½ x 0,1 = 0,05 menit

B. 1,71

SR =

0,05 9,5

5

=

950

=

C. 1,71 % kesalahan =

D. 1,714

11. Salah mutlak = ½ x satuan ukur terkecil Salah relatif =

𝑠𝑎𝑙𝑎ℎ 𝑚𝑢𝑡𝑙𝑎𝑘

SR =

ℎ𝑎𝑠𝑖𝑙 𝑝𝑒𝑛𝑔𝑢𝑘𝑢𝑟𝑎𝑛

1 km

749,5

B. 53,2 jam 0,1 jam 0,5 53,25

53,15

C. 8,01 detik 0,01

0,005 8,015

7,995

D. 45 cm

0,5

44,5

45,5

SR =

Salah relatif =

=

45,08

5 45080

=

8919

=

SR = 1

9016

25,10

=

89190

2510

=

1

37,05

=

x 100% = 0,53 %

1

=

154

1 154

x 100% = 0,65 %

0,05 3

=

5 30

1

= 1 6

6

x 100% = 16,67 %

0,005 90,05

=

5 90050

=

1 18010

1 18010

x 100% = 0,006 %

D. SM = 0,1 x ½ = 0,05 menit

17838

SR =

=

1 502

5 37050

Kunci jawaban Matematika kelas x

=

0,05 8,6

=

5 860

% kesalahan =

D. SM = 0,01 x ½ = 0,005 0,005

190

≈ 0,01 %

5

5

770

% kesalahan =

C. SM = ½ x 0,1 = 0,05 0,05

1

C. SM = 0,01 x ½ = 0,005 m

B. SM = ½ x 1 = 0,5 0,5

77

5

=

% kesalahan =

13. A. salah mutlak = ½ x 0,01 = 0,005 0,005

190

B. SM = ½ x 1 = 0,5 liter

0,5 750,5

1 cm

0,5

% kesalahan =

12. Pengukuran terkecil SM atas bawah A. 750 km

1

15. A. SM = ½ x 1 = 0,5 ton

persentase kesalahan = salah relatif x 100%

SR =

x 100% = 0,51

=

1000

% kesalahan =

10. A. 1,7

SR =

196

C. SM = ½ x 1 = 0,50 gr

9. A. 0,0018

SR =

1

=

1 172

1

172

x 100% = 0,58 %

1 7410

12

Sagufindo Kinarya

Uji kompetensi 2.2

 SM = 0,005

C. pengukuran 1 = 5,51 gr

pengukuran 2 = 10,41 gr  SM = 0,005 ------------------------------- + ----------------- + = 15,92 gr SM = 0,01

1. A. Pengukuran terbesar = 17,5 gr Pengukuran terkecil = 16,5 gr

Batas-batas pengukuran = 15,92 ± 0,01

B. pengukuran terbesar = 89,5 cm

Pengukuran terbesar =15,92+0,01=15,93

pengukuran terkecil = 88,5 cm

Pengukuran terkecil = `5,92–0,01=15,91

C. Pengukuran terbesar = 90,65 detik Pengukuran terkecil = 90,55 detik

7. A. pengukuran 1 = 15 kg

 SM = 0,5 kg

pengukuran 2 = 10 kg  SM = 0,5 kg ------------------------------- - --------------- + 5 kg SM = 1 kg

D. Pengukuran terbesar = 48,485 gr Pengukuran terkecil = 48,475 gr

Batas-batas pengukuran = ( 5 ± 1) kg

2. A. 8,8 – 8,3 = 0,5 cm

Pengkuran terbesar = 5 + 1 = 6 kg

B. 9,90 – 9,87 = 0,03 gr

Pengukuran terkecil = 5 – 1 = 4 kg

C. 77,8 – 77,4 = 0,4 kg

B. pengukuran 1 = 8,5 cm  SM = 0,05 cm

D. 7 – 5 = 2 km

pengukuran 2 = 5,4 cm  SM = 0,05 cm ------------------------------- + ------------------ + 3,1 cm SM = 0,1 cm

3. A. ( 12,5 ± 4,5 ) m B. ( 45,5 ± 0,05 ) kg

Batas-batas pengukuran = (3,1 ± 0,1) cm

C. ( 8,676 ± 0,06 ) mm

Pengukuran terbesar = 3,1 + 0,1= 3,2 cm

D. ( 0,6 ± 0,05 ) cm

Pengukuran terkecil = 3,1 – 0,1 = 3 cm

4. SM = ½ x 1 cm = 0,5 cm

C. pengukuran 1 =20,50 gr  SM =0,005 gr

batas atas

= 167 + 0,5 = 167,5 cm

batas bawah

= 167 – 0,5 = 166,5 cm

pengukuran 2 =17,59 gr  SM =0,005 gr ------------------------------- + ----------------- + = 2,91 gr SM = 0,01 gr

5. A. pengukuran terbesar = 15,4 + 0,1 = 15,5

Batas-batas pegukuran = (2,91±0,01) gr

pengukuran terkecil = 15,4 - 0,1 = 15,3 8. Keliling maksimum yang mungkin

toleransi = 15,5 – 15,3

K = 2 ( 12,5 + 15,5 )

= 0,2

= 56 cm

B. Toleransi = 75,17 – 75,13 = 0,04

Keliling minimum yang mungkin

C. Toleransi = 103,9 – 103,7 = 0,2

K = 2 ( 11,5 + 14,5 ) 6. A. pengukuran 1 = 8 kg

 SM = 0,5 kg

= 52 cm

 SM = 0,5 kg + + 23 kg SM = 1 kg Batas pengukuran = ( 23 ± 1) kg pengukuran 2 = 15 kg

9. Luas maksimum yang mungkin L = 10,5 x 7,5 = 78,75 cm2

Pengkuran terbesar = 23 + 1 = 24 kg

Luas minimum yang mungkin

Pengukuran terkecil = 23 – 1 = 22 kg

L = 9,5 x 6,5

= 61,75 cm2

B. pengukuran 1 = 15,1 cm  SM = 0,05 10. Keliling maksimum

pengukuran 2 = 22,2 cm  SM = 0,05 + + 37,3 cm SM = 0,1

K = 4 x 5,1

Keliling minimum

Pengkuran terbesar = 27,3+0,1= 27,4 cm

K = 4 x 4,9

Pengukuran terkecil = 27,3 - 0,1=27,2 cm Kunci jawaban Matematika kelas x

= 20,4 m

= 19,6 m

Luas maksimum 13

Sagufindo Kinarya

= 26,01 m2

L = 5,1 x 5,1

15. √30,25 = 5,5

Luas minimum

√20,25 = 4,5

L = 4,9 x 4,9

= 24,01

m2

5,5 + 4,5 = 5(D) 2

Uji Kompetensi 2.3

16. pengukuran 1 = 10 cm

 SM = 0,5 cm

pengukuran 2 = 6 cm

 SM = 0,5 cm

------------------------------ 1. C

------------------- +

= 4 cm

2. D

SM = 1 cm

P. max sisa = 4 cm + 1cm = 5 cm

(E)

3. B 4. A

17. D atau E

5. SR =

6. % =

0,005 3,75

0,05 28,2

=

5 3750

=

1 750

(D)

19. SM = ½ x 0,1 = 0,05

(A)

20. pengukuran 1 = 5,5 m  SM = 0,05 pengukuran 2 = 3,8 m  SM = 0,05 ------------------------------ ------------------- + = 1,7 m SM = 0,1 m

x 100%

= 0,177%

18. T = 7,6 – 6,8 = 0,8 (C)

(C)

Selisih minimum = 1,7 – 0,1 = 1,6 m

(E)

7. D 8. Toleransi = 375,72 – 375,48 = 0,24 ( C )

21. 24

0,5

7

0,5

9. A

25 +

0,5 +

10. 8, 95

56

1,5

8,87 0,08

56 ± 1,5 ( A ) (C) 1

11. Salah Mutlak = 2 × 0,01 = 0,005 ( D ) 12. pengukuran 1 = 5,7 m

 SM = 0,05 m

pengukuran 2 = 3,1 m  SM = 0,05 m ------------------------------ ------------------- + = 2,6 m SM = 0,1 m

0,5

8

0,5

8

0,5

8

0,5

32

2,0

32 ± 2,0 ( C ) 23. 3,2

Batas pengukuran terbesar = 2,6 + 0,1 = 2,7 m

22. 8

(C)

0,5

5,4 +

0,5 +

8,6

0,1

4,3 13. 125

0,5

245

0,5

143 +

0,5 +

513

1,5

4,3 ± 0,1 ( D ) 24. L max = 17,5 x 13,5 = 236,25 Lmin = 16,5 x 12,5 = 206,25

(D)

25. 25,5 x 15,5 = 395,25 ( D )

513 – 1,5 = 511,5 ( A ) 14. 8,45 x 6,45 = 54, 5025 ( B )

Kunci jawaban Matematika kelas x

14

Sagufindo Kinarya

1

Uji kompetansi 3.1

< 𝑥

2

∴ HP = { 1,2,3,… }

= 5𝑥 – 3

1. A. 4 + 10

=5𝑥 -4𝑥

10 + 3

3. A. 3 𝑥 + 2 𝑥 ≤ 7 𝑥 + 10

13 = 𝑥

3 – 5 + 6 ≤ 7 𝑥 + 10

∴ HP = { 13 } B. 4 + 4 𝑥

– 10 ≤ 7 𝑥 – 5 𝑥

=2𝑥 -6

– 10 ≤ 2 𝑥

4𝑥-2𝑥 = -6–4

– 10 ≤ 𝑥

2 𝑥 = - 10

∴ HP = { - 4 , - 3 , - 2 ,… }

𝑥 =-5 B.

∴ HP = { - 5 } C. 6 𝑥 - 3 + 1= 4 𝑥 – 2

1−2𝑥

−3<0

2−𝑥 1−2𝑥

6𝑥-4𝑥 =-2+3–1



2−𝑥

3(2−𝑥)

1−2𝑥−6+3𝑥

2𝑥 =0

2−𝑥

𝑥 =0

−5+𝑥

∴ HP = { 0 }

2−𝑥

D. 5 (2 𝑥 - 1) = 2 (𝑥 + 1) 10 𝑥 - 5

=2𝑥 +2

10 𝑥 - 2

=2+5

<0

<0

( -5 + x ) ( 2 – x ) < 0 √

x=5

+

7

2

8

∴ HP = {

7 8

}

6 𝑥 + 72

= 3 𝑥 – 27

6𝑥 -3𝑥

= – 27 – 72

3𝑥

= – 99

𝑥

= – 33

C.

4. A.

2𝑥−8

2 3

9𝑥+9−4𝑥+16

6𝑥−24

1

∈𝑅}

− >0

3(2𝑥−8)

>0

>0

(5𝑥 + 25)(6𝑥 − 24) > 0

2

x = -5

∴ HP = { 6,7,8,… }

+

B. 3 + 10 𝑥 -5 < 18 𝑥 – 6

8

3𝑥+3

,𝑥

3(3𝑥+3)−2(2𝑥−8)

2 𝑥 > 11

4

< x

Hp = { | 𝑥 > 3

3𝑥–𝑥 >5+6

4

<0

4

3

2. A. 3 𝑥 - 6 > 𝑥 + 5

3–5+6

3−𝑥

3–x<0

= { – 33 }

𝑥 > 5

5

Hp = { | 𝑥 < 2 atau 𝑥 > 5 }

E. 6 (𝑥 + 12) = 3 (𝑥 - 9)

∴ HP

x=2

-

8𝑥 =7 𝑥 =

<0

2−𝑥

-5

< 18 𝑥 – 10 𝑥

x=4 4

Hp = { | 𝑥 < -5 atau 𝑥 > 4 , 𝑥 ∈ 𝑅 }

< 8𝑥 < 𝑥

Kunci jawaban Matematika kelas x

15

Sagufindo Kinarya

B. 3 (7 - 4𝑥) ≤ 𝑥 + 1

HP = {

21 – 12𝑥 ≤ 𝑥 + 1 21 – 1 20

,1 }

( 2x – 1 ) ( x – 1 ) = 0

≤ 13𝑥

x=1 √ x=2

20 ≤ 𝑥 13 7 1 13 ≤ 𝑥

HP = { 1, 2 } G.

7 ∴ HP = { | 𝑥 ≥ 1 13

,𝑥

∈𝑅}

4+𝑥

=

4𝑥

3 𝑥+2

4x + 8 + x2 + 2x = 12x X2 + 2x + 4x – 12x + 8 = 0

C. 5 ( 2 𝑥 – 1 ) ≥ 3 ( 2 - 3 𝑥 )

X2 – 6x

≥ 6–9𝑥

+8=0

(x–4)(x–2)=0

10 𝑥 + 9𝑥 ≥ 6 + 5

x=4√ x=2

19 𝑥 ≥ 11

HP = { 2 , 4 }

11

𝑥 ≥

2

F. X2 – 2x + 1 – x + 1 = 0

≤ 𝑥 + 12 𝑥

10 𝑥 - 5

1

19

∴ HP = { | 𝑥 ≥

11 19

2. A. x2 – 4x

,𝑥

∈𝑅}

=0

X2 – 4x + 4 = 4 ( x – 2 )2

Uji Kompetensi 3.2 1. A. ( 𝑥 - 3 ) ( 𝑥 - 10 ) = 0

=4

x–2

= √4 = ±2

x1

=2+2=4

x2

= -2 + 2 = 0

HP = { 0 , 4 }

𝑥 = 3 √ 𝑥 = 10 ∴ HP = { 3 , 10 }

B. x2 + 3x

B. 3 𝑥 ( 3 – 𝑥 ) = 0

= 10 9

𝑥 =0√ 3=𝑥

(x+

∴ HP = { 0 , 3 } C. ( 𝑥 - 5 ) ( 𝑥 + 5 ) = 0

x+

3 2

)2 =

3 2

∴ HP = { - 5 , 5 }

x1

=

x2

=

D. 0 = 2 𝑥2 - 15𝑥 + 28 0 =(2𝑥 -7)(𝑥 -4) 2𝑥 = 7 √ 𝑥 = 4

49 4



𝑥 =5 √ 𝑥 =-5

𝑥=

9

X2 + 3x + 4 = 10 + 4

7 2

7 2

3

4

2

2

− = =2 7

3

−10

2

2

2

− − =

= −5

HP = { -5 , 2 }

7 2

∴ HP = { 3

1 2

C. x2 – 2x ,4}

=3

X2 – 2x + 1= 3 + 1 ( x – 1 )2 = 4 x–1

=±2

( 2x – 1 )( x – 1 ) = 0

x1

=2+1=3

2x = 1 √ x = 1

x2

= -2 + 1 = -1

E. 2 x2 – 3x + 1 – x + 1 = 0

x =

HP = { -1 , 3 }

1 2

Kunci jawaban Matematika kelas x

16

Sagufindo Kinarya

D. X2 + 1 = 1

3. A. a = 1 , b = 7 , c = 3

X2 = 1 -1

−𝑏±√𝑏 2 −4𝑎𝑐

X1,2 =

X2 = 0

2𝑎

X = ±√0 =

X1 = 0 X2 = 0

= E.

2𝑥 2 +6𝑥=1

X2 + 3x + (x+

9 4

3 2 ) 2

=

x2

=

HP = { −

2

4

7 = 𝑥 2 − 2𝑥 2

4 √11 2

√11 2

3

− = 2

−√11 2

,

√11−3 2

3

−√11−3

2

2

− = √11−3 2

15+√305 8

X2 =

15−√305 8

}

C. a = 2 , b = 1 , c = -6

HP = {

G.

𝑥 2 +2𝑥=3

2 .2

= =

𝑥2 = =

−3√2 2

X2 =

−3√2+2 2

−1±7 4 4

−1−7

6

3

4

2

= =

=

4

−8 4

= −2

D. 7x2 + 13x – 2 = 0 −13±√132 −4 .7 .(−2)

x1,2 =

2 .7

:2 =

2

𝑥 + 2𝑥 + 1 = 3 + 1 ( x + 1 ) = ±2

=

X1 = 2 – 1 = 1 X2 = -2 – 1 = -3

X1 =

HP = { -3, 1 } X2 = Kunci jawaban Matematika kelas x

−1±√49 4

−1±7

X1 =

+1

−3√2+2 3√2+2 , } 2 2

2𝑥 2 +4𝑥=6

−1±√12 −4 .2 .(−6)

x1,2 =

3

= 𝑥1

15±√305 8

X1 =

± √2 = 𝑥 − 1 2

3√2+2 2

2 .4

=

:2

+ 1 = 𝑥1

−(−15)±√(−15)2 −4 .4 .(−5)

X1,2 =

= (𝑥 − 1)2

3√2 2

2

4x2 – 15x – 5 = 0

+ 1 = 𝑥 − 2𝑥 + 1

4

−7−√37

B. 4x2 = 15x += 5

2

18

−7±√37 2 2

X2 =

11

√11−3 2

7=2𝑥 2 −4𝑥

2

9



2

x1

7

1

2 .1

−7±√37

X1 =

= +

=

3

x+

F.

:2

1 𝑥 2 +3𝑥= 2

−7±√72 −4 .1 .3

17

−13±√225 14 −13±15 14

−13±15 14 −13−15 14

= =

2 14

=

−28 14

1 7

= −2 Sagufindo Kinarya

E. a = 1 , b = -2q , c = -q2

= = =

X2 =

−𝑝−√𝑝 𝑝−1

−(−2𝑞)±√(−2𝑞)2 −4 .1 .(−𝑞) 2 .1

4. ( 2x – 2 )2 = x2 + ( x + 2 )2

2𝑞±√4𝑞2 +4𝑞

4x2 – 8x + 4 = x2 + x2 + 4x + 4

2

4x2 – x2 – x2 – 8x – 4x + 4 – 4 = 0

2𝑞±2√𝑞2 −𝑞

2x2 – 12x = 0

2

2x ( x – 6 ) = 0

= 𝑞 ± √𝑞 2 + 𝑞

x=0

X1 = q + √𝑞 2 + 𝑞 √𝑞 2

X2 = q -

√ x=6

sisi 1 = x = 6

+𝑞

sisi 2 = x + 2 = 6 + 2 = 8 sisi 3 = 2x – 2 = 2 . 6 – 2 = 10

F.

2𝑥−1+1(𝑥+1)

=

𝑥+1 2𝑥−1+𝑥+1 3𝑥

=

𝑥+1

5. A. a = 2 , b = 1 , c = 0

4

D = b2 – 4ac

𝑥

=

𝑥+1

𝑥

4

= 12 – 4 . 2 . 0

𝑥

= 1 > 0 memiliki 2 akar nyata yang

4

berlainan.

X2 + x = 12x

B. a = 1 , b = 2 , c = -3

X2 + x – 12x = 0 X2

D = b2 – 4ac

– 11x = 0

= 22 – 4 . 1 (-3)

a = 1 , b = -11 , c = 0 x1,2 = = X1 = X2 =

= 4 + 12

−(−11)±√(−1)2 −4 .1 .0

= 16 > 0 memiliki 2 akar nyata

2 .1

yang berlainan .

11+11

C. a = 4 , b = -12 , c = 9

2

11+11 2 11−11 2

=

22 2

D = ( -12 )2 – 4 . 4 . 9

= 11

= 144 – 144

0

= 0 = 0 memiliki 2 akar nyata yang

= =0 2

sama D. a = 2 , b = -3 , c = 4

G. a = ( p – 1 )

D = b2 – 4ac

b = 2p

= (-3)2 – 4 . 2 . 4

c=p x1,2 =

=

= = X1 =

= 9 – 32

−2𝑝±√(2𝑝)2 −4(𝑝−1)𝑝

= -23 < 0 tidak memiliki akar nyata

2 .(𝑝−1) −2𝑝±√4𝑝2 −4𝑝2 +4𝑝

6. A. a = 1 , b = m + 1 , c = 9

2 .(𝑝−1)

D=0

−𝑝±2√𝑝

b2 – 4ac = 0

2 .(𝑝−1)

( m + 1 )2 – 4 . 1 . 9 = 0

−𝑝±√𝑝

M2 + 2m + 1 – 36 = 0

𝑝−1

(m+7)(m–5)=0 m = -7 √ m = 5

−𝑝+√𝑝 𝑝−1

Kunci jawaban Matematika kelas x

18

Sagufindo Kinarya

B. a = m – 1 , b = 4 , c = -5

= -11 < 0 sehingga tidak memiliki akar

D=0

nyata ( imajiner )

b2 – 4ac = 0 42 – 4( m – 1 ).(-5) = 0 16 + 20m – 20 = 0

Uji Kompetensi 3.3

20 m = 0 4

m=

20

=

1

1. a = 1 , b = -3 , c = 2

5

−𝑏

A. 𝛼 + 𝛽 = 7. a = p , b = 2 , c = p b2 – 4ac > 0

C.

22 – 4 . p . p > 0 4–

𝑐

B. 𝛼 . 𝛽 =

D>0

4p2

2 1

𝛼+ 𝛽

=

𝛽

=3

= =2

𝑎

1

1

=

𝛼 .𝛽

3 2

= 32 − 2 . 2

( 2p + 2p )(2 – 2p) > 0 √

𝛼

+

−(−3)

D. 𝛼 2 + 𝛽 2 = (𝛼 + 𝛽)2 − 2𝛼𝛽

>0

P = -1

1

𝑎

=

=9−4

p=1

=5 E. 𝛼 2 𝛽 + 𝛼𝛽 2 = 𝛼𝛽(𝛼 + 𝛽)

8. a = 1 , b = 2p – 1 , c = p2 – 2p + 3

= 2 .3

D<0

=6

– 4ac < 0 ( 2p –1)2 – 4 .1(p2 – 2p + 3) < 0

F.

4p2 – 4p + 1 – 4p2 + 8p – 12 < 0 4p – 11 < 0 4p p

<

𝛽

=

< 11

11

+

𝛽 𝛼

𝛼 2 +𝛽 2

=

𝛼𝛽

5 2

2. a = 3 , b = 5 , c = -2

4

<2

p

𝛼

𝛼+ 𝛽=

D = b2 – 4ac

3 4

𝛼. 𝛽=

= 52 – 4 . 3(-2) 9. a = p , b = - (2p – 3) , c = p + n

+ 4pn = 0 B.

-12p – 4pn + 9 = 0

2 𝛼

+

2 𝛽

=

9 = p ( 12 + 4n ) 12+4𝑛

=p

D=

3

– 4ac

= 32 – 4 . 1 . 5

√49 3

=

7 3

2(𝛼+𝛽) 𝛼𝛽

=

=

=

𝛼𝛽

2 .−

10. a = 1 , b = 3 , c = 5 b2

−2

2𝛼+2𝛽

=

9 = 12p + 4pn 9

√𝐷 𝑎

A. 𝛼 − 𝛽 =

( -(2p – 3))2 – 4 . p ( p + n ) = 0 – 12p + 9 –

=

= 49

b2 – 4ac = 0 4p2

𝑎

𝑎

=

= 25 + 24

D=0

4p2

𝑐

−𝑏

−2 3

−10 3

5 3

×−

3 2

=5

= 9 – 20 Kunci jawaban Matematika kelas x

19

Sagufindo Kinarya

−5 3

3. X2 + 3x – m = 0

1 1 2 12 12𝑥 2 +𝑥−1=0

𝑥 2 + 𝑥− =0

a = 1 , b = 3 , c = -m −𝑏

𝛼+𝛽 =

𝑎

=

−3 1

= −3

× 12

D. 𝛼 + 𝛽 = 2 − √3 + 2 + √3 = 4

𝛼 + 3𝛽 = 5

𝛼 . 𝛽 = (2 − √3)(2 + √3)

𝛼 + 𝛽 = −3

=4−3

2𝛽 = 8

=1

𝛽=4

𝑥 2 − (𝛼 + 𝛽)𝑥 + 𝛼 . 𝛽 = 0

𝛼 + 𝛽 = −3

𝑥 2 − 4𝑥 + 1 = 0

𝛼 + 4 = −3 𝛼 = −7

-7 . 4 =

3

𝑎

1

7

3

3

=2 =

1

2

3

3

𝛼 .𝛽 = 2 . =

𝑐

𝛼 .𝛽 =

1

E. 𝛼 + 𝛽 = 2 +

𝑥 2 − (𝛼 + 𝛽)𝑥 + 𝛼 . 𝛽 = 0

−𝑚 1

7

2

𝑥 2 + 3𝑥+ 3= 0

-28 = -m

3𝑥 2 − 7𝑥+2= 0

28 = m

×3

6. A. a = 1 , b = -4 , c = 2 4.

X2

– 6x +2p – 1 = 0

𝛼+𝛽 =

a = 1 , b = -6 , c = 2p – 1 D = b2 – 4ac

𝛼 .𝛽 =

= (-6)2 – 4 . 1 (2p – 1)2

𝑎

−(−4) 1

=4

2

= =2 1

X1 . x2 = 3𝛼 .3𝛽 = 9𝛼𝛽 = 9 .2 = 18

= 40 – 8p

4=

𝑐

𝑎

=

X1 + x2 = 3𝛼 + 3𝛽 = 3(𝛼 + 𝛽) = 3 .4 = 12

= 36 – 8p + 4

X2 – ( x1 + x2 ) x + x1 . x2 = 0

√𝐷 𝑎

𝛼− 𝛽=

−𝑏

X2 – 12

x + 18 = 0

B. X1 + x2 = 3𝛼 − 1 + 𝛽 − 1 = 𝛼 + 𝛽 − 2 =

√40−8𝑝

4−2= 2

1

x1. x2 =3(𝛼 − 1)(𝛽 − 1) = 𝛼𝛽 − 𝛼 − 𝛽 + 1

4 = √40 − 8𝑝

= 𝛼𝛽 − (𝛼 + 𝛽) + 1

16 = 40 – 8p

=2–4+1

8p = 40 – 16

= -1

8p = 24

x2 – ( x1 + x2 ) x + x1 . x2 = 0

P=3

x2 – 2 – 1 = 0

5. A. ( x – 2 )(x – 5 ) = 0 7. a = 1 , b =-2 , c = -3

X2 – 5x – 2x + 10 = 0

𝑥1 + 𝑥2 =

X2 – 7x + 10 = 0 B. ( x + 3 )(x – 7 ) = 0 X2

X1 . x2 =

– 7x + 3x – 21 = 0

𝑐 𝑎

=

X2 – 4x – 21 = 0 1

𝛼+𝛽 =

1

C. ( x – 4 )(x – 3 ) = 0 1

1

−𝑏 𝑎 −3 1

𝑥1 𝑥2

=

−(−2) 1

=2

= −3 𝑥2

+𝑥 = 1

𝑥12 +𝑥

22

𝑥1 𝑥2

1

X2 + 3x – 4x + 12 = 0 Kunci jawaban Matematika kelas x

20

Sagufindo Kinarya

=

= = =

(𝑥1 +𝑥2 )2 −2𝑥1 𝑥2

𝑥 2 − (𝑥1 + 𝑥2 )𝑥 + 𝑥1 . 𝑥2 = 0

𝑥1 𝑥2

7 𝑥 2 − (− ) 𝑥 + (−1) = 0 2 7 𝑥2 + 2 𝑥 − 1 =0 ×2 2𝑥 2 + 7𝑥 − 2 =0

22 −2(−3) (−3) 4 +6

c. 𝑥1 + 𝑥2 = 𝑥 2 + 𝛽+∝ + 𝛽 2

−3 −10 3

= −3

1

=∝3 + 𝛽 3

3

= (∝ +𝛽)3 − 3 ∝ 𝛽(∝ +𝛽) 1 3

1

= (2) − 3. (−2) (2)

2

8. 2𝑥 − 𝑥-4= 0

1 +3 8 25 = 8

a = 2, b = -1, c = -4

=

−𝑏 1 = 𝑎 2 𝑐 −4 ∝. 𝛽 = = = −2 𝑎 2 ∝ +𝛽 =

𝑥1 . 𝑥2 = (∝2 + 𝛽)(∝ +𝛽 2 ) =∝3 +∝2 𝛽 2 +∝ 𝛽 + 𝛽 3

a. 𝑥1 =∝ +1 𝑑𝑎𝑛 𝑥2 = 𝛽 + 1

=∝3 + 𝛽 3 + (∝ 𝛽)2 +∝ 𝛽

𝑥1 + 𝑥2 =∝ +1 + 𝛽 + 1

25 + (−2)2 + (−2) 8 25 = +4−2 8 25 = +2 8 41 = 8

=∝+𝛽+2

=

1

=2+ 2 5

=2 𝑥1 . 𝑥2 = (∝ +1)(𝛽 + 1) =∝ 𝛽+∝ + 𝛽 + 1 = −2 + =−

1 + 1 2

𝑥 2 − (𝑥1 + 𝑥2 )𝑥 + 𝑥1 . 𝑥2 = 0

1 2

25 41 𝑥2 − 8 𝑥 + 8 = 0 ×8 8𝑥 2 − 25𝑥 + 41 = 0

𝑥 2 − (𝑥1 + 𝑥2 ) + 𝑥1 . 𝑥2 = 0 5 1 2 2 2𝑥 2 −5𝑥−1=0

𝑥 2 − 𝑥+(− )=0

×2

9. X2 – x + 2 = 3a + 1 X2 – x – 3a + 2 – 1 = 0 X2 – x – 3a + 1 = 0

b. 𝑥1 =∝ −2 𝑑𝑎𝑛 𝑥2 = 𝛽 − 2

a = 1 , b = -1 , c = -3a + 1

𝑥1 + 𝑥2 = 𝛼 − 2 + 𝛽 − 2 = ∝ +𝛽 − 2

berkebalikan

1 −4 2 7 =− 2 𝑥1 . 𝑥2 = (∝ −2)(𝛽 − 2) =

x1 . x2 = 1 𝑐 𝑎

=1

−3𝑎+1 1

=1

−3𝑎 + 1 = 1

=∝ 𝛽 − 2 ∝ −2𝛽 + 4

1 − 1 = 3𝑎

=∝ 𝛽 − 2(∝ +𝛽) + 4

0 = 3a

1 = (−2) − 2. + 4 2

0=a

= −4 -1 + 4 = −1 Kunci jawaban Matematika kelas x

21

Sagufindo Kinarya

10. a = p – 2

5. x2 – 2x – 8 < 0 ( x – 4 )( x + 2 ) < 0

b = -2 c = 2 + 2a

x=4

misal

x1 = a



x = -2

+

0

x2 = 2b ( x – x1)(x – x2 ) = 0

+



4

HP = { x | -2 < x < 4 , x ∈ R }

( x – b )( x – 2b ) = 0 6. 3x2 – x2 – 9x + 4 ≤ 0

X2 – 2bx – bx + 2b2 = 0

2x2 – 9x + 4 ≤ 0

X2 – 3bx + 2b2 = 0

( 2x – 1 ) ( x – 4 ) ≤ 0 2x = 1

1.

x=4

1

x=2

Uji Kompetensi 3.4 1 2 𝑥 −2𝑥>0 2 𝑥 2 − 4𝑥>0



+

×2

+

1



4

2

1

HP = { x | 2 ≤ x ≤ 4 , x ∈ R }

𝑥 (𝑥 − 4) > 0 √

x=0

-

x=4

+

0



+

7.

4

3𝑥−2 𝑥

−3<0

3𝑥−2−3𝑥

HP = { x | x < 0 atau x > 4 , x ∈ R }

𝑥 −2

2. ( 2x + 3 ) ( x – 2 ) ≤ 0

𝑥

<0

<0

2x = -3 √ x = 2 x=

−3

+

2

+

−3



2

HP = { x |

−3 2

0

+ HP = { x | x > 0 , x ∈ R }

2 8.

≤ 𝑥 0 atau x ≤ 2 , x ∈ R }

𝑥−1 𝑥−2



𝑥−3 𝑥−4

≥0

(𝑥−1)(𝑥−4)−(𝑥−3)(𝑥−2)

3.

– 2x – 15 ≥ 0

(𝑥−2)(𝑥−4)

( x – 5 )( x + 3 ) ≥ 0

(𝑥 2 −5𝑥+4)−(𝑥 2 −5𝑥+6)

X2

x=5



+

x = -3 √

-3

(𝑥−2)(𝑥−4)

+

𝑥 2 −5𝑥+4−𝑥 2 +5𝑥−6 (𝑥−2)(𝑥−4)

5

HP = { x | x ≤ -3 atau x ≥ 5 , x ∈ R }

−2 (𝑥−2)(−4)

4. 6 + x – x2 < 0

-



≥0

≥0

-

x = -2

+ -2

≥0

𝑥 = 2,𝑥 −4

( 3 – x )( 2 + x ) < 0 x=3

≥0





-

+ 2

4

HP = { x | 2 < 𝑥 < 4 , x ∈ R }

3

HP = { x | x < -2 atau x > 3 , x ∈ R } Kunci jawaban Matematika kelas x

22

Sagufindo Kinarya

5=y L ≥ 136

9. K = 0

HP = { ( 2,5) }

2 ( p + l ) = 50

p x l ≥ 136

p + l = 25

p( 25 – p ) ≥ 136

l = 25 – p

25p – p2 ≥ 136 0≥

p2

3. 5x + y = 2

– 25p + 136

0 ≥ ( p – 8 )(p – 17 ) p = 8 √ p = 17

-

+ 8

5x + y = 5

17x + y = -8

5 (−

-12x

= 10



x

=−

-

10

=−

12

25 6

5

y

6

17

7x – 3y = 21

L 2 = s2

X2 + ( 576 – 48x + x2 ) > 20

11

2x2 – 48x + 576 – 20 > 0 2x2 – 48x + 556 > 0

3y =

X2 – 24x + 278 > 0 )

y= =

Uji Kompetensi 3.5

x + 2y = -2

x + 2y = -2

6

4 + 2y = -2

2x

=8

2y = -6

x

=4

y = -3

25

6 1 6

44x

= 84

x

= 44

84

21

11



147 11

84 11 11

:3

28

11

=2

6 11

5. 11x + 3y = -7

x5

55x + 15y = -35

2x + 5y = 21

x3

6x +15y = 63 49x x

= -98 = -2

2x + 5y = 21

HP = { ( 4,-3) }

2 (-2) + 5y = 21 2. 3x – y = 1

x2

x – 2y = -8

-4 + 5y = 21

6x – 2y = 2

5y = 21 + 4

x – 2y = -8 5x x

5y = 25

= 10

y=5

=2

HP = { ( -2,5 ) }

x – 2y = -8 2 – 2y = -8 2 + 8 = 2y 10 = 2y Kunci jawaban Matematika kelas x

23

10

= 11 = 1 11

231

84

6

55

35x +15y = 105

+ 3𝑦 = 21 3y =

+

x5

21

147

1. 3x + 2y = 6

30

=

9x – 15y = -21

7 . 11 + 3𝑦 = 21

L1 + L2 > 20

)(x

+y=5

x3

= (24 – x )2 = 576 – 48x + x2

(x

)+y=5

=9 4. 3x – 5y = -7

= x2

6

=

HP = { p | 0 < 𝑝 ≤ 8 atau 17 ≤ p < 25 }

10. L1 = s2

5

Sagufindo Kinarya

8. x – 4 = 0

6. 1 dan 2 2x + 5y + 3z = 6

2x + 5y + 3z= 6

6 x – 6y + 2z = 18 : 2 3x – 3y + z = 9

x=4 x2 – y2 = 16

x3

2x + 5y + 3z = 6

42 – y2 = 16

9x – 9y + 3z = 27

16 – 16 = y2

−7𝑥+14𝑦

=21

−𝑥+2𝑦

= −3

𝑥+𝑦

0 = y2

:7

0=y

=0

3𝑦

HP = { (4,0) }

= −3

y = -1

9. 4x2 – y = 0

x+y=0

4 . 22 – y = 0

x–1=0

4.4

=y

x =1

16 = y

2x + 5y + 3z

=6

HP = { (2,16) }

2 . 1 + 5 (-1) + 3z = 6 2–5

+ 3z = 6

10. x2 + y2 = 7

3z = 9

(√3 )2 + y2 = 7

z =3

3 + y2 = 7

HP = { (1,-1,3) }

Y2 = 4 y = ±√4

7. 1 dan 2 x+y+z=6

= ±2

x 3 3x + 3y + 3z= -3

x + 2y + 3z = 18

HP = { (√3, 2), (√3, −2) }

x + 2y + 3z = -2 2x + y

= -1

1 dan 3 Uji Kompetensi 3.6

x + y + z = -1

1. 3x – 2x < -7

3x – 2y – z = 2 4x – y

x < -7

=1

(B)

3

2

2. 123 . 4 (8𝑥 − 20) + 3,12 ≤ 124 . 3 (6𝑥 + 15) −

4 dan 5 2x + y = -1

4.12

4x – y = 1

9(8𝑥 − 20) + 36

≤ 8(6𝑥 + 15) − 48

6x

=0

72𝑥 − 180 + 36

≤ 48𝑥 + 120 − 48

x

=0

72𝑥 − 48𝑥

≤ 120 = 48 + 180 − 36

2x + y = -1

24𝑥

2 . 0 + y = -1

≤ 216

𝑥

y = -1

3.

x + y + z = -1 0 + (-1) + z = -1

2−3𝑥 >4 5

2−3𝑥 >20

≤9(C)

×5

−18 > 3𝑥

z = -1 + 1

−6 > 𝑥 ( B )

=0 HP = { (0,-1,0) } Kunci jawaban Matematika kelas x

24

Sagufindo Kinarya

2

8. x1 + x2 = 1 – √3 + 1 + √3 = 2

4. 3. 3 (6𝑥 − 12) ≥ 3.2 (6𝑥 + 2) 12𝑥 − 24 ≥ 36𝑥 + 12

x1 . x2 = ( 1 – √3 )( 1 + √3) = 1 − 3 = −2

−24 − 12 ≥ 36𝑥 − 12𝑥

x2 – ( x1 + x2 ) x + x1 . x2 = 0

2



2x

2

=0 (B)

9. –

−363 ≥𝑥 242 −3



x2

−36 ≥ 24𝑥

3

10. 𝑥1 + 𝑥2 = 1 = 3

≥ 𝑥 (A) 𝑥1 . 𝑥2 =

5. 2 + 1 < 3𝑥 − 1 + 1 < 8 + 1

−4 = −4 1

𝑥12 + 𝑥22 = (𝑥1 + 𝑥2 )2 − 2𝑥1 𝑥2

3 < 3𝑥 < 9 :3 1<𝑥 <3

= 32 − 2(−4) =9+8

6. a = 1 , b = m +1 , c = 2m – 1

= 17

D<0

11. x2 + x – 2 ≥ 0

b2 – 4ac < 0 (m+

1)2

( x + 2 ) ( x -1 ) ≥ 0

– 4 .1( 2m – 1 ) < 0

m2

+ 2m + 1 – 8m + 4 < 0

m2

– 6m + 5 < 0

x = -2 √ x = 1 +

-

+

-2 √ 1

( m – 1 )( m – 5 ) < 0

X ≤ -2 atau x ≥ 1

(A)

m=1√m=5 12. 2c + 3k = 101.500 +

-



+

1

c + 2k = 53.500

5

2c + 4k = 107.000

HP = { m | 1 < m < 5 , m ∈ R }

2c + 3k = 101.500 k=

7. a = 2 , b = -1 , c = -5

𝑥1 + 𝑥2 = X1 . x2 =

𝑐 𝑎

=

−𝑏 𝑎

=

2

=

−(−1) 2

=

1

5.500

c + 11.000 = 53.500

2

c

−5

= 42.500

5.500 + 42.500 = 48.000 ( B )

2

+2=

-

c + 25.500 = 53.500

13. x – y = 5

𝛼 + 𝛽 = x1 + 1 + x2 + 1 = x1 + x2 + 2 1

x2

x

5

x=5+y

=5+y

=5+2

x2 – y2 = 45

2

=7

( 5 + y )2 – y2 = 45 25 + 10y + y2 – y2 = 45

𝛼 . 𝛽 = ( x1 + 1 )( x2 + 1 ) = x1x2 + x1 + x2 +1 =−

5 2

1

+ +1

10 y

= 45 – 25

10 y

= 20 y=2

2

HP = { ( 7,2 ) } ( A )

= -1 X2 – ( 𝛼 + 𝛽)𝑥 + 𝛼 . 𝛽 = 0 5

x2 – 2 + ( −1 ) 2𝑥 2 − 5𝑥 − 2 Kunci jawaban Matematika kelas x

=0 =0

×2

(D) 25

Sagufindo Kinarya

14. 4p + 3q =

853.000

x5

3x

= -9

3p + 5q = 1.022.000

x3

x

= -3

20 p + 15 q = 4.265.000

4x + 6y = 4 (-3) + 6(3)

9 p + 15q = 3.066.000

= -12 + 18

11 p

=6

= 1.199.000

p

=

109.000

(A) 18.

2𝑏+2𝑝=8.800 𝑏+𝑝=4.400

15. Ayah = x

:2

b = 600 + p

Anak = y

600 + p + p = 4.400

(x–2)=6(y–2) x–2

(E)

600 + 2p = 4.400

= 6y – 12

2p = 3.800

x = 6y – 10

p = 1900

( x + 18 ) = 2 ( y + 18 )

b = 600 + 1900

x + 18 = 2y + 36

= 2500 ( E )

x = 2y + 18 6y – 10 = 2y + 18 4y

19. 10x + 4y = 31.000

= 28

4x + 10y = 25.000

y

=7

x

= 6y – 10

20x + 8y = 62.000 20x + 50y= 125.000

= 6 . 7 – 10

-

-42y= - 63.000

= 42 – 10

y = 1500 ( A )

= 32

(B) 20. 3b + 2p = 10.500

16. 3x + 4y = 17

x 3 21x + 28y = 119

5x + 7y = 29

x 4 20x + 28y = 116 x

b = p + 1000 3 (p + 1000) + 2p = 10.500

=3

3p + 3000 + 2p = 10.500

3x + 4y = 17

5p

= 7.500

p

= 1.500

b

= 1.500 + 1.000

3 . 3 + 4y = 17 9 + 4y = 17 4y = 8

= 2.500 ( E )

y =2

21. 2x + y

HP = { ( 3,2 ) }

x + 3 z = 16

17. 2x - 5y = -21

2x + y

3x + 2y = -3

x2

=5

2x + 6z = 32

6x – 15y = -63 6x + 4y = - 6

=5

-

y – 6z = -27 -

5y - z

x5

= 10

-19y = -57 y=3

5y – 30z = -135

3x + 2.3 = -3 3x

5y - z

=-3–6

Kunci jawaban Matematika kelas x

26

=

10 -

29z = -145 Sagufindo Kinarya

26. x2 + 5x – m = 0

z=5 5y – 5 = 10

a = 9, b = 5, c = -m

5y

= 15

𝛼 .𝛽 = 3

y

=3

𝑐 𝑎

x + 3.5 = 16 x

=3

−𝑚 9

=1

=3

−𝑚 = 27

{(1, 3, 5)}

𝑚 = −27

(D)

27. akar – akar kembar

22. 6x2 – 11x – 10 < 0

D=0 b2 – 4ac = 0

( 2x – 5 ) ( 3x + 2 ) < 0 2x = 5 √ 3x = -2 x=

5

=0

144 – 16a

=0

−2

x=

2

( -12 )2 – 4.a.4

3

144 = 16a 9 =a

+

−2



3

{x|

−2 3

<x<

5

9x2 – 12x + 4 = 0

+ 5

( 3x – 2 )2

2

3x – 2 = 0 3x = 0

,x∈R}

2

=0

2

x=3

23. D

(C)

28. A

24. X2 + x – 12 < 0

29. 3x2 – 4x + 1 = 0

(x+4)(x–3)<0

( 3x – 1 ) ( x – 1 ) = 0

x = -4 √ x = 3

3x = 1 √ x= 1 +

-4

1

x=3

+ √

3

30. Akar khayal

(E) D<0 b2 – 4ac < 0

{ x | -4 < x < 3 , x ∈ R }

52 – 4(p – 2 ).(-2) < 0

{ -3, -2, -1, 0, 1, 2 }

25 + 8( p – 2 ) < 0

25. a = 1, b = 2 , c = -a

25 + 8p – 16 < 0

D=

b2

– 4ac

=

22

– 4 . 1 ( -a )

8p

< -9 p<

= 4 + 4a

−9 8

(A)

31. ( x – 7 )( x + 3 ) = 0

X1 – x2 = 8

X2 + 3x – 7x – 21 = 0

√𝐷 =8 𝑎

X2 – 4x – 21 = 0

√4+4𝑎 =8 1

32. ( x – √2 )( x – √8 ) = 0 X2 – √8 x – √2 x + √16 = 0

√4 + 4𝑎 = 8

X2 – 3 √2 x + 4 = 0

4 + 4𝑎 = 64

(E)

4a = 60 a = 15

(A)

Kunci jawaban Matematika kelas x

27

Sagufindo Kinarya

33. X2 + x – 6 = 0

A. Baris = 5

( x + 3 )( x – 2 ) = 0

Kolom = 4

X1 = -3 √ x2 = 2

B. 5, 7, 7, 5

𝛼 = -3 + 2 𝛽 = 2 + 2

C. 7, 7, 8, 6, 8

= -1

D. 4

=4

1 2 2. A = [5 6 9 1

(x+1)(x–4)=0 X2 – 3x – 4 = 0 ( A )

3 4 1 5 9 7 8] transposenya [2 6 1 ] 2 3 3 7 2 4

B = [1

2 3 4 5 6]

34. A 𝑐

Berkebalikan

=1

𝑎

−𝑏

35. Berlawanan

𝑎

=0 C = [ [1 2

36. a = b, b = c, c = -a x1,2 =

= =

−𝑏±√𝑏2 −4𝑎𝑐 2𝑎

1 2 3 4 5 6 1 2 3 4 5

−𝑐±√𝑐 2 −4𝑏(−𝑎) 2.𝑏

1 3

−𝑐±√𝑐 2 −4𝑎𝑏

(D)

2𝑏

D=

−𝑏

x1 + x2 = X1 . x2 =

𝑎 𝑐

=

𝑎

−𝑏

=

−𝑎

𝑐 −𝑎

=

=

−𝑐 𝑎

(E)

−𝑏

= 9x2 + 12x − 36

𝑎

=

∶3

3. – (A)

3 1 −2 4 6 ] + 3[ ]=[ −2 0 5 −3 −4 −6 12 [ ] 15 −9 0 14 =[ ] 11 −9 3 1 −2 4 3 B. ([ ]+[ ]) − ([ −2 0 5 −3 −2 2 1 [ ]) 1 0 1 5 5 2 =[ ]−[ ] 3 −3 −1 0 −4 3 = [ ] 4 −3 2 1 3 1 C. 3 [ ] −2 [ ] 1 0 −2 0

4. A. 2 [

3 1

1

(E)

40. E

Uji Kompetensi 4 . 1 5 7 7 5 6 8 7 3 8 7 8 2 6 4 6 1 7 6 8 0 Kunci jawaban Matematika kelas x

5 7 9 ] 6 8 1

7 2 4 3 3 −1 1. [ ]+[ ]=[ ] 4 −5 2 −1 2 −4 2𝑥 8 4𝑥 −10 6𝑥 −2 2. [ ]+[ ]=[ ] 3𝑥 −7 2𝑥 12 5𝑥 5

−1

( x1 + x2 )2 = ( − 3 )2 = 9

1 3 2 4

Uji Kompetensi 4 . 2

= 9x2 + x2 – x2 + 12x – 36

0 =3𝑥 2 +4𝑥−12

39. X1 + x2 =

[

𝑎

36 – 12x + x2 = 9x2 + x2 0

5 6

𝑏

38. ( 6 – x )2 = (3x)2 + x2

0

2 4

7 8 9 1

37. a = -a, b = b, c = c

1. P =

3 4 5]

8 3

28

2 ]+ 0

1 ]+ 0

Sagufindo Kinarya

6 3 0 = [ 7

3 6 2 ]− [ ] 0 −4 0 1 ] 0 4 2 −2 3. [−1] − [ 7 ] = [−8] 3 −6 9 4. –

2+0 6+0 2 0 1 3 ][ ]=[ ]= 1 + 6 3 + 12 1 3 2 4 2 6 [ ] 7 15 2 0 −2 4 BC= [ ][ ]= 1 3 1 5 −4 + 0 8 + 0 −4 8 [ ]= [ ] −2 + 3 4 + 15 1 19

4 −2 ] 3 1 4 2 B = [−3 −1] 0 −5 1 −7 2 −3 6. A. A = [ ]− [ ] 8 0 4 −1 2 −4 = [ ] 4 1 −2 −4 2 3 B. A = [ ]+ [ ] 7 5 1 4 0 −1 = [ ] 8 9

1 2 B. At = [ ] 3 4 2 1 Bt = [ ] 0 3 −2 1 Ct = [ ] 4 5 5 9 −2 4 C. ( AB )C = [ ][ ]= 8 12 1 5 −10 + 9 20 + 45 −1 65 [ ]= [ ] −16 + 12 32 + 60 −4 92 1 3 −4 8 D. A ( BC ) = [ ][ ]= 2 4 1 19 −4 + 3 8 + 57 −1 65 [ ]= [ ] −8 + 4 16 + 76 −4 92

= [

BA =[

5. A = [

7. 3 c = 4b C=

E. AB – BC = [5

4𝑏

8

−4 8 9 9 ]−[ ]=[ 1 19 7 12

1 ] −7

3

8. X + 2 – 4 = 3

F. A ( B – C ) = [

X–2=3 X

=3+2

7+y+1=y 9. 2x + 3 + 2 = 7 2x = 2 x =1 3+y+2=5 y =0 x+y=1+0=1 −10 3 −7 8 ]−[ ] 12 5 4 −6 −18 ] 18 −9 ] 9

I. AtBt = ( BA )t BtAt = ( AB )t 3 24 15 2. A. [ ] [8 5] = [ ] 4 32 20 4 3 2 −3 1 B. [ ] [−2 1] = 4 0 2 0 2 8+6+0 6−3+2 [ ] 16 + 0 + 0 12 + 0 + 4

Uji Kompetensi 4 . 3 1 3 2 ][ 2 4 1 5 9 [ ] 8 12

1. A. AB = [

2+3 0 ]=[ 4+4 13

Kunci jawaban Matematika kelas x

0 −2 4 ]−[ ]) 3 1 5

1 3 4 −4 =[ ][ ] 2 4 0 −2 4 + 0 −4 − 6 4 −10 =[ ]=[ ] 8 + 0 −8 − 8 8 −16 5 8 G. ( AB )t = [ ] 9 12 2+0 1+6 1 2 2 1 H. AtBt = ( )( )=[ ]= 6 + 0 3 + 12 3 4 0 3 2 7 [ ] 6 15 2+3 4+4 2 1 1 2 BtAt = [ ][ ]=[ ]= 0 + 9 0 + 12 0 3 3 4 5 8 [ ] 9 12

=5

9 3 10. 2p = [ 7 6 6 10 =[ 2 2 3 5 P=[ 1 1

1 3 2 ] ([ 2 4 1

0+9 ]= 0 + 12

29

Sagufindo Kinarya

B. D = 3 . 2 – 1 . 6 = 6 – 6 = 0

14 5 =[ ] 16 16 px + qy p q x 3. A = [ ] [ ] = [ rx + sy ] r s y 2 B= [ 5

3 −1 0 3 C. |1 2 3| 1 4 3 2 4

2x + 3y 3 x ] [y] = [ ] 5x + 7y 7

4. 2p – 6q = -16

D = ( 12 – 12 + 0 ) – ( 0 – 27 – 2 ) = 29

p – 3q = -8

x5

2 1 0 2 1 D. |−1 3 2| −1 3 4 2 5 4 2

-5p + 8q = -13 -5p + 8q = -13 3x + 3y + 3z= -3

D = ( 30 + 8 – 0 ) – ( 0 + 8 – 5 )

x + 2y + 3z = 18

= 38 – 3

-7q = -53 q=

= 35

53 7

p – 3q = -8 p–3. p-

159 7

53 7

2. A. = -8 −56

=

B.

7

p=

10 2.10−6.3 −3

0 2 ][ 1 5 3 1 ][ 7 0

3 2 ]=[ 7 5 0 2 ]=[ 1 5

3 ] 7 3 ] 7

C. D.

B. Ya E.

1 10 −6 ]= [ 2 −3 2

[

1

−2 2(−2)−5(−1) −5

[

5

−6 ]= 2

−3

[− 3

1

2

1 1 −2 ] = −6+5 [ 3 −5

]

1 ]= 3

−1 ] −3

[

7

1 0 2 AI=[ 5

1

2 5

103

5. A. I A = [

−1 2 3

1

3 2.3−1.5 −1

1 3 −5 ] = 1[ 2 −1

[

1

3 [ 5.3−2.7 −7

1 3 −2 ] = 1[ 5 −7

1

3 [ 3.3−5.2 −2

−5 ]= 3

1 −1

[

−5 3 ]=[ 2 −1 −2 3 ]=[ 5 −7

3 −2

−5 ] 2 −2 ] 5

−5 −3 ]=[ 3 2

5 ] −3

3. A. x ( x – 5 ) – 2 . 3 = 0

6. A.

X2 – 5x – 6 = 0

B. Tidak

(x–6)(x+1)=0 x = 6 √ x = -1

1+3 1+2 1 1 1 1 ][ ]=[ ]= 3+6 3+4 3 2 3 2 4 3 [ ] 9 7 4+9 4+6 4 3 1 1 P3 = [ ][ ]=[ ]= 9 + 21 9 + 14 9 7 3 2 13 10 [ ] 30 23 −1 2 −1 2 8. A2 = [ ][ ]= 1 3 1 3 1 + 2 −2 + 6 3 4 [ ]=[ ] −1 + 3 2 + 9 2 11 7. P2 = [

1 3 −1 1 3 B. | 3 8 2 | 3 8 −1 x −3 −1 x ( -24 + ( -6 ) – 3x ) – ( 8 + 2x – 27 ) = 0 -30 – 3x + 19 – 2x -11 = 5x − 3.5−2.7

=

−1 2 4 ] − 2[ ]−5=0 1 3 11 −2 4 4 ]−[ ]−5 =0 2 6 11 0 ]−5 =0 5

[

[

5 −7

11 5

−2 ]= 3

=𝑥 1

15−14

5 −7

[

−2 ] 3

5 −2 ] −7 +3

B. AA1=[3 2] [−2 1] = [15 − 14 7 5 −5 3

1 =[ 0 C. A1A=[ 5

−7

−6 + 6 ] 35 − 35 −14 + 15

0 ] 1 −2 3 ][ 3 7

2 15 − 14 ]=[ 5 −21 + 21

10 − 10 ] −14 + 15

1 0 =[ ] 0 1

Uji Kompetensi 4 . 4

D. AA-1 = A-1A = I

1. A. D = 4 ( -2 ) – 3 ( -2 ) = -8 + 6 = -2 Kunci jawaban Matematika kelas x

1

4. A. A-1 =

A2 – 2A – 5 = 0 3 [ 2 3 [ 2 5 [ 0

=0

30

Sagufindo Kinarya

3 1 9 5. A. [ ]A = [ ] 3 2 12 A=

2 6−3 −3 1

[

3 −1 −2 4 ][ ] 6 0 −4 2 1 −6 − 6 12 − 0 x = 2[ ] 8 + 12 −16 + 0 1 −12 12 x = 2[ ] 20 −16 −6 6 x=[ ] 10 −8 −4 6 2 3 B. [ ]x = [ ] −7 8 1 4 1 4 −3 −4 6 x = 8−3 [ ][ ] −1 2 −7 8 1 −16 + 21 24 − 24 x = 5[ ] 4 − 14 −6 + 16 1 0 x=[ ] −2 2 5 2 6 5 C. x [ ]=[ ] 3 1 1 0 6 5 1 0 −5 x =[ ] [ ] 1 0 0−5 −1 6 0 − 5 −30 + 30 1 =[ ] 0−0 −5 + 0 −5 1 0 =[ ] 0 1 2 1 −2 4 D. x [ ]=[ ] 8 5 0 6 −2 4 1 5 −1 x =[ ] 10−8 [ ] 0 6 −8 2 −10 − 32 2 + 8 1 =[ ] 0 − 48 0 + 12 2 −21 5 =[ ] −24 6 1

x = 6−4 [

−1 9 ][ ] 3 12

18 − 12 ] −27 + 36 1 6 = 3[ ] 9 2 =[ ] 3 1 4 6 18 B. A – [ ]=[ ] 2 5 1 7 6 18 1 4 A=[ ]+[ ] 2 5 1 7 7 22 =[ ] 3 12 −8 2 −5 x 6. A. [ ] [y] = [ ] −13 3 −8 x 1 −8 5 −8 [y] = −16+15 [ ][ ] −3 2 −13 1 64 − 65 = −1 [ ] 24 − 26 x 1 [y] = [ ] 2 1 2 x 11 B. [ ] [y] = [ ] 2 −1 2 x 1 −1 −2 11 [y] = −1−4 [ ][ ] −2 1 2 1 −11 − 4 = −5 [ ] −22 + 2 1 −15 = −5 [ ] −20 x 3 [y] = [ ] 4 1 2 5 1 2 7. A. |1 x =0 5 |1 x 3 −1 −2 3 −1 1

=3[

9. – −2 1 0 −2 1 10. | 1 −2 1| 1 −2 2 −3 0 2 −3 D=(0+2–0)–(0+6+0)

( -2x + 30 – 5 ) – ( 15x – 5 – 4 ) = 0

=2–6

-2x + 25 – 15x + 9 = 0 34

= -4

=0

−2 1 ]=0+3=3 −3 0 1 1 A12 = [ ] = −(0 − 2) = 2 2 0 1 −2 A13 = [ ] = −3 + 4 = 1 2 −3 1 0 A21 = [ ] = −(0 + 0) = 0 −3 0 −2 0 A22 = [ ]=0+0=0 2 0 −2 1 A23 = [ ] = −(6 − 2) = −4 2 −3 1 0 A31 = [ ]=1+0=1 −2 1 A11 = [

2=x 1 2 B. |1 x 1 4

−3 1 2 −3| 1 x x 1 4

=0

( x2 – 6 – 12 ) – ( -3x – 12 + 2x ) = 0 X2 – 18 + 3x + 12 – 2x = 0 X2 + x – 6 = 0 (x+3)(x–2)=0 x = -3 √ x = 2 2 8. A. [ 4

1 −2 4 ]x = [ ] 3 6 0

Kunci jawaban Matematika kelas x

31

Sagufindo Kinarya

−2 0 ] = −(−2 − 0) = 2 1 1 −2 1 A33 = [ ]= 4−1= 3 1 −2 3 0 1 [2 0 2] 𝐴𝑑𝑗 𝐴 A-1 = = 1 −4 3 |𝐴| −4 A32 = [

− = −

3 4 1 2 1

0 − 0 −

7. (

1 5 5 −2 −2 5 −2 [ ] = 1[ ]=[ ] −7 3 −7 3 −7 3 1 4 −6 8 9. 𝑥 = 20−18 [ ][ ] −3 5 6 1 32 − 36 = 2[ ] −24 + 30 1 −4 = 2[ ] 6 −2 =[ ] (B) 3

8.

1 4 1 2 3

[− 4 1 − 4]

x = A-1B

1. a = 2

1 −2 −2 5 2 = 2−6 [ ][ ] −3 −1 −3 −6 1 −10 + 6 −4 + 12 = −4 [ ] −15 + 3 −6 + 6 1 −4 8 =−4 [ ] −12 0 1 −2 =[ ] (D) 3 0 0 1 0 1 11. A2 = [ ][ ] −2 3 −2 3 0−2 0+3 =[ ] 0 − 6 −2 + 9 −2 3 =[ ] (C) −6 7 2 3 1 2 3 12. |0 −1 2| 0 −1 2 4 1 2 4

b = 2a = 2 . 2 = 4 (D)

−2 3 −7 −5 1 2. A + B = [ ]+[ ]=[ −1 5 3 4 −3

4 ] (A) 2

3. –a = 4 a = -4 2a = 3a = 3 (-4) = -12 b = -6 c = -b = - ( -12 ) = 12 x = 2c = 2 . 12 = 24 5x = 5 . 24 = 120 4. 2p – 1 = 11 2p p

= 12 =6

1

15−14

10. Ax = B

Uji Kompetensi 4 . 5

c = 2b = 2 . 4 = 8

−1 − 6 −3 − 6 5 )=[ ] −2 + 8 −6 + 8 −3 4 −19 =( )(B) −7 17

−2 3 1 )( 1 −4 2

2q + 3 = -9 2q

= -12

q

= -6

= ( -2 + 12 + 0 ) – ( -2 + 16 + 0 ) = 10 – 14 = -4 ( B )

2r + 1 = 5 2r

=4

r

=2

13. Matrik singular

D=0 -15x – 30 = 0 -30 = 15x

p + q + r = 6 + (-6) + 2 = 2 ( C )

-2 = x

2 −1 12 4 5 8 )−( ) + 2( ) 3 7 −8 9 −6 2 −3 −9 24 8 =( )+( ) 9 5 −16 18 21 −1 =( ) (A) −7 23 −7 −1 −2 6 11 −13 6. ( )+( )−( ) −5 −10 −9 12 −4 3 −20 18 =( ) (B) −10 −1 5. (

2 −4 ] −6 8 1 2 −4 = [ ] −8 −6 8

14. A-1 =

1

16−24

[

1

1

− 4 =[ 3

2

−1

4

x

15. [y] = Kunci jawaban Matematika kelas x

(E)

32

1 6−16

[

]

(D)

6 4 −3 ][ ] 4 1 2

Sagufindo Kinarya

−18 + 8 ] −10 −12 + 2 1 −10 = [ ] −10 −10 =

1

x 1 [y] = [ ] 1

x

a=4

[

6b = a + 8 6b = 4 + 8 6b = 12

(E)

b=2

3 −2 2 3 p ][ ][ ] 1 1 5 −2 q 6 − 10 9 + 4 p =[ ][ ] 2+5 3−2 q −4 13 p =[ ][ ] ( C ) 7 1 q

2c = 3a – b

16. [y] = [

17. A-1

=3.4–2 2c = 10 c=5 −1

4 2 2 1 21. 2 [ 2 ] + 3 [0] + k [1] = [−3] 1 3 3 −2 −2

Bt

=

−2 1 𝑎 −𝑏 [ ]=[ ] −8−3 −3 4 𝑥 𝑐 1 −2 1 𝑎 −𝑏 [ ]=[ ] −5 −3 4 𝑥 𝑐 1

2

[53 5

b=

− −

−2 12 2 2 [ 1 ] + [ 0 ] + k [1] = [−3] +1 9 3 −2 10 2 2 [ 1 ] + k [1] = [−3] +10 3 −2 10 2 2 k [1] = [−3] − [ 1 ] +10 3 −2 2 −8 k [1] = [ −4 ] 3 −18

1 5 4]

=[

5

1

𝑎 𝑥

−𝑏 ] 𝑐

(B)

5

k = -4

18. Det A = Det B

−1 − 6 −3 − 6 1 −3 −1 −3 22. [ ][ ]=[ ] −2 + 8 −6 + 8 2 4 2 2 −7 −9 =[ ] (B) 6 2 1 2 1 2 3 23. [ ] [3 4] = 4 5 6 5 6 1 + 6 + 15 2 + 8 + 18 22 28 [ ]=[ ] 49 64 4 + 15 + 30 8 + 20 + 36

2x2 – 9 = 10x + 3 2x2 – 10x – 9 – 3 = 0 2x2 – 10x – 12 = 0 X2 – 5x – 6 = 0 (x–6)(x+1)=0 x = 6 √ x = -1

(A)

3 4 1 3 4 19. |2 x 5| 2 x 3 2 3 3 2

(A) 1 4 −2 24. 𝐴−1 = 4−6 [ ] −3 1 −1 4 −2 = 2 [ ] (A) −3 1

Det = 0 ( 6x + 60 + 4 ) – ( 3x + 30 + 16 ) = 0 ( 6x + 64 ) – ( 3x + 46 ) = 0

=

25. 3+ 4y = 11

6x + 64 – 3x – 46 = 0

4y = 8

3x

y=2

= -18 x

20. 2A

(E)

= -6 ( E )

5+z+y=4

Bt

5+z+2=4

2a + 2 a + 4 5 a ]=[ ] a + 8 3a − b 3b c 2𝑎 + 2 𝑎 + 4 10 2a [ ]=[ ] 𝑎 + 8 3𝑎 − 𝑏 6b 2c

z

2[

3x – z + 2

= 14

3x – (-3) + 2 = 14 3x

2a = a + 4 Kunci jawaban Matematika kelas x

= -3

33

=9 Sagufindo Kinarya

x

=3

C. S

x + y + z = 3 + 2 + (-3) = 2 ( D )

D. B E. B

Uji Kompetensi 6 . 1 Uji Kompetensi 6 . 2 1. A. Pernyataan Benar

1. A. 1. 2 + 3 = 5

B. Bukan Pernyataan

2. 5 adalah bilangan ganjil

C. Pernyataan Benar

B. 1. Hari ini mendung

D. Pernyataan

2. Hari ini gerah

E. Pernyataan Salah

C. 1. 4 x 5 = 20

2. A. Ada siswa SMK tidak rajin belajar

2. 20 bilangan prima

B. Dua bilangan prima

D. 1. Mas Boi mencintai Iteung

C. Semua murid yang menganggap

2. Iteung tidak mencintai Mas Boi

matematika itu mudah.

E. 1. 3 bukan bentuk akar

D. Ada demonstran tidak memakai ikat

2. 3 = √3

kepala. E. Kuadrat setiap bilangan real tidak selalu

2. A. B ∧ S = S

tak negative.

B. B ∧ B = B

3. A. S

C. S ∧ S = S

B. S

D. B ∧ B = B

C. S

E. B ∧ S = S

D. B

3. A. Saya ingin belajar dan naik kelas

E. B 4. A.

B.

x2

B. Saya ingin belajar tetapi tidak naik kelas + 7x + 10 = 0

C. Saya tidak ingin belajar tetapi naik kelas

(x+5)(x+2)=0

D. Saya tidak ingin belajar atau naik kelas

x = -5 √ x = -2

E. Saya tidak ingin belajar dan naik kelas

2log

x=4

2x

= 11+ 3

= 16

2x

= 14

x= C. 32x-1

=

4. A. 2x – 3 = 11

24

33

x

2x – 1 = 3 2x

=4

x

=2

=7

B. X2 – 4x + 4 = 0 ( x – 2 )( x – 2 ) = 0 x=2√x=2

D. 3x + 7 = 31

C. 2 + x = 10

3x = 24

x=8

x=8

D. 3log x = 2

E. 4x – 12 ≤ 0

x = 32

≤0

=9

4x x

≤3

5. p q p ∧ q ∼p ∼q ∼( p∧ q ) ∼p∧∼q

5. A. B

B B

B

S

S

S

S

B. S

B S

S

S

B

B

S

Kunci jawaban Matematika kelas x

34

Sagufindo Kinarya

S B

S

B

S

B

S

D. p

q

r

∼q

∼q∧r

S S

S

B

B

B

B

B

B

B

S

S

B

B

B

S

S

S

B

6. A. S V B = B

B

S

B

B

B

B

B. B V B = B

B

S

S

B

S

B

C. B V S = B

S

B

B

S

S

S

D. S V S = S

S

B

S

S

S

S

S

S

B

B

B

B

S

S

S

B

S

S

7. A. 2x – 3 = 11 2x

= 14

p∧ (∼q v r )

9. A. ( p ∧ q ) v r

x=7 B. X2 – 4x + 4 = 0

B. ( p v r ) ∧ ( q v s )

( x – 2 )( x – 2 ) = 0

C. ( q v r ) v p

x=2

8. A. p

q

r

∼q

p∧∼q

B

B

B

S

S

B

B

B

S

S

S

S

B

S

B

B

B

B

B

S

S

B

B

B

S

B

B

S

S

B

S

B

S

S

S

S

S

S

B

B

S

B

S

S

S

B

S

S

B. p

q

r

∼q

∼q∧r

B

B

B

S

S

S

B

B

S

S

S

S

B

S

B

B

B

B

B

S

S

B

S

S

S

B

B

S

S

S

S

B

S

S

S

S

S

S

B

B

B

S

B. ~p

q

S

S

S

B

S

S

C. ~p

~q

C. p

q

r ∼p ∼q ∼pv∼q (∼pv∼q )∧ r

B

B

B

S

S

S

B

B

S

S

S

B

S

B

S

B

S

S

S

B

S

(p∧∼q) v r

10. A.

q

P

B.

P

𝑞 r

p

p∧ (∼q v r )

r

C.

q

s

Uji Kompetensi 6 . 3 1. A. p

q

2. A. S

B=B

S

B. S

S=B

S

S

C. B

B=B

B

B

B

D. B

B=B

S

B

B

S

E. S

B=B

B

B

S

B

B

F. S

S=B

B

S

B

S

B

S

S

S

B

B

B

B

B

3. A. p

S

S

S

B

B

B

S

B

Kunci jawaban Matematika kelas x

r

35

~p

p v ~p

S

B

Tautology Sagufindo Kinarya

S

B

B

B B B

S

S

B

B. p

q

pΛq p

B B S

S

S

B

B

B

B

B

B S B

B

B

B

B

S

S

S

B S S

B

B

S

S

B

S

B

S B B

S

S

B

S

S

S

B

S B S

S

S

B

C. p

q

pvq p

S S B

B

S

B

B

B

B

B

S S S

B

S

B

B

S

B

B

S

B

B

B

B B B S S

B

S

S

S

S

S

B

B B S S B

B

B

B

B S B S S

S

S

B

B S S S B

S

S

B

pvq

B. p q r ∼p ∼r ∼pvq q∧∼r ∼pvq

Taulogi

q

B

B

B

B

B

S B B B S

B

S

S

B

S

B

S

S

S B S B B

B

B

B

S

B

B

S

S

S S B B S

B

S

S

S

S

S

B

B

S S S B B

B

S

S

q ~(p

p

q (p v q)

(p

q) ~p ~q ~q

q)

q∧∼r

4. p

5. p q

pvq p

pΛq

~p

9. p q ∼p ∼q p

q ∼pv∼q ~q

~p p

B B

B

S

S

S

B

B B S

S

B

B

B

B

B S

S

B

S

B

S

B S S

B

S

S

S

S

S B

B

S

B

S

B

S B B

S

B

B

B

S

S S

B

S

B

B

B

S S B

B

B

B

B

B

~p

~q

p ∧ ∼q

p

q∧q

B

S

B

B

B

S

S

S

S

B

S

B

6. A. ~q

~p

B. p Λ ~q

p

A. p

q ≡ ∼p v ∼q

B. p

q ≡ ~q

C. p

q ≡ (p

~p q) ∧ (q

p)

7. A. Sx = 25 x=5

10. A. Ahmad tidak merokok atau ia batuk

B. X3 = 8

Jika Ahmad tidak batuk maka ia tidak

X=2

merokok

C. X – 1 = 3x – 9

B. Hujan tidak turun atau halaman basah

-1 + 9 = 3x – x

Jika halaman tidak basah maka hujan

8 = 2x

tidak turun

4 =x Uji Kompetensi 6 . 4 8. A. p q

r ∼q p∧∼q

Kunci jawaban Matematika kelas x

(p∧∼q)

r 36

Sagufindo Kinarya

q

1. A. Konvers = Jika Warman lari pagi maka hari libur

q ~(p

p ∧∼q

q

= jika hari tidak libur maka

B

B

B

S

S

S

Warman tidak lari pagi.

B

S

S

B

B

B

Kontraposisi = Jika Warman tidak lari

S

B

B

S

S

S

pagi maka hari tidak libur .

S

S

B

S

B

S

Invers

p

q) ~ q

3. p

Kesimpulan : ~( p

B. Konvers = Jika Dulkamdi lulus tes maka

q ) ≡ p ∧ ∼q

ia belajar. Invers

= Jika Dulkamdi tidak belajar

4. A. Besi bukan logam atau tidak keras

maka ia tidak lulus tes.

B. Kotak tidak dapat hidup di darat dan di

Kontraposisi = Jika Dulkamdi tidak lulus

darat

tes maka ia tidak belajar.

C. Guru tidak datang dan murid tidak

C. Konvers = Jika Rosi disenangi oleh guru

senang

maka ia berwajah cantik. Invers

D. Tuti tidak cantik atau tidak pemalu

= Jika Rosi tidak berwajah cantik

E. Tuti manis atau tidak cantik

maka ia tidak disenangi oleh

F. Ia tidak di rumah dan tidak masuk

guru.

sekolah

Kontraposisi = Jika Rosi tidak disenangi

G. Hujan turun dan air tidak meluap

oleh guru maka ia tidak

H. Ia tidak naik kelas dan ia diberi hadiah

berwajah cantik.

I. Ia tidak sehat jika dan hanya jika dia tertawa – tertawa

D. Konvers = Jika Rosiman seorang anggota DPR maka ia seorang anggota MPR. Invers

= Jika Rosiman bukan seorang

Uji Kompetensi 6 . 5

anggota MPR maka ia bukan anggota

1. A. p

DPR.

~q

Kontraposisi = Jika Rosiman bukan

∴~p

seorang anggota DPR maka ia

Ia tidak sakit

bukan seorang anggota MPR. 2. A. Konvers : ~q

∴~p ~p

Amir tidak belajar

p

C. p

Invers : ~(p Λ q)

~r

Kontraposisi : ~r

~(p Λ q)

C. Konvers : ~(~q Λ r) Invers : ~p

Invers : ~( p

p

uang

(p

q)

q)

r

Kunci jawaban Matematika kelas x

r Jika Ali tamat SMK mak ia dapat

~p

~(p

r

∴p

(~q Λ r)

Kontraposisi : r

q

q

Kontraposisi : (~q Λ r) D. Konvers : ~r

q

~q

q

Kontraposisi : q B. Konvers : r

B. p

p

Invers : ~p

q

2. A. Valid B. p

q

~p

tidak Valid

∴~q

q) 37

Sagufindo Kinarya

10. Ada orang tidak berdiri ketika tamu agung C. p

q

memasuki ruangan.

q

tidak Valid

11. Jika sungai tidak banyak ikan maka sungai

∴P 3. p

tidak dalam ( E )

q

p

12. ~( p ∧ ∼p )

r

∼p

( ∼p v q )

q

~r

~r

∴ ~𝑝

∼p

(C)

13. Jika ia seorang eropa maka ia seorang

Ia tidak rajin belajar

Belanda .

(E)

14. p ∧ ~(p Vr)

4. p

q

q

r

p

r

r

s

r

s

p

p∧~q∧~r p

p

s

~P

~q ∧ ~ r ( D )

p

15. Jika x ≤ 2 maka 2x + 1 ≤ 5

∴s

16. Air laut tenang dna nelayan tidak melaut

Kelelawar berkaki dua

mencari ikan

5. A.

q ≡ ∼q

17. p

B. p v q q

~p

r



(D)

p

r

C. p v q

r

p

r

∴p

r

Tidak Valid

19. p ∧ ∼q Perang terjadi dan ada orang tidak gelisah .

q

(E)

p

∴q

(B)

18. A

q

~p

∼p

20. –

Tidak Valid

∴q

21. B

D. –

22. C 23. E 24. p

q

Uji Kompetensi Materi Pokok 06

q

r

p

r

1. D

r

s

r

s

2.

q

∼p

B

B

S

S

B

S

B

B

S

S

B

S

S

B

S

B

B

S

B

S

B

S

S

B

B

B

B

B

p

∼q p q p

q ∧∼q {(p q) ∧∼q}

∼p

∴p

Jika Dinda rajin belajar maka ia bahagia . (B) 25. p

5.

∴∼ p ( B )

[ p v ( q Λ r ) ] Λ [ (~p Λ ~q ) v ~r ] p

q

p

q

∼q

3. C atau E 4.

s

q ∼q (p q) ∧∼q

{(p

q) ∧∼q}

B B

B

S

S

B

B S

S

B

S

B

S B B S

S

B

S S B B

B

B

(C) ∼p

26. p ∧ ∼q Nafila tidak rajin belajar dan ada temannya senang. ( D )

6. B 7. x2 = 25 dan x ≠ 5 (D) 8. E

27. p

q

∼q

q ∼q ∧ p ( p

B

B

S

B

S

B

S

B

S

B

p

q)v

9. E Kunci jawaban Matematika kelas x

38

Sagufindo Kinarya

S

B

S

B

S

S

S

B

B

S

∴p

r (A)

46. Ada peserta ujian nasional yang tidak lulus

( ∼q ∧ p )

(B)

B

47. p

q

B

∼q

B

∴∼ p ( B )

B

48. Jika hasil karya manusia tidak baik maka

28. p ∧ q , q B

S S

r , dan r

s

B

S

B

sumber daya manusia tidak baik. ( D ) 49. ∼q

( D ) atau ( E ) q ≡ ∼p v q

29. p

(D)

31. p

50. p

q

q

r

∴p

30. Saya lulus ujian tetapi saya tidak kuliah

∼p ( A )

r (A)

q

∼q ∴∼ p ( B ) 32. E 33. D 34. p

q

∼q ∴ ∼p

(C)

35. Jika ia diduga tidak bersalah maka ia bukan tersangka ( B ) 36. E 37. 3x + 2 = -1 3x = -3 x = -1

(A)

38. – 39. p

q

∼q ∴ ∼p 40.. p r p

(D) q

p

q

∼q

q

∼r

p

p

∼r

p ∴ ∼p

(A)

41. E 42. D 43. ∼(p ∧ q )=∼ p ∧∼ q (B) 44. B 45. p

q

q

r

Kunci jawaban Matematika kelas x

39

Sagufindo Kinarya

Related Documents


More Documents from ""