Urban Climatology And Urban Thermal Climates,
ARSITEKTUR berperan dalam perubahannya
Comfort /Kenyamanan Kenyamanan Temperature Iklim Macro dipengaruhi Oleh kondisi Universal Alam semesta dan kondisi Dunia Global. Tropis Basah, Tropis kering dll kondisi Universal yang terbentuk karena posisi bumi dan matahari, demikian juga yang berlaku untuk negara Eropa, Amerika selatan dan Amerika utara, atau negara timur tengah yang sangat panas. Iklim Macro , Terbentuk secara Universal dalam ekosistem awal tanpa ada perubahan, meskipun tanpa intervensi manusia secara universal juga akan mengalami perubahan karena sudah menjadi kehendak NYA Anomali iklim adalah perbedaan contra linier terhadap stream line Iklim, suatu percepatan perubahan yang bisa linear dengan ekosistem atau berlawanan dengan ekosistemNYA
BUMI
Berotasi tanpa hambatan mengikuti kehendak alam’ Tanpa perubahan sebelum manusia terlibat dalam intervensinya kepada alam. Penduduk masih sedikit, saling menghargai dan saling memberi. Hidup dalam kebersamaan
Sudah disadari bahwa bumi berotasi begitu cepat, tetapi tidak memberikan efect perasaan angin karena terlalu cepatnya, angin yang dirasakan lebih lambat dari kecepatan rotasi bumi. Angin yang dirasakan hanya sebatas akibat perbedaan tekanan angin
Pertumbuhan penduduk dengan segala kebutuhannya merubah segalanya
PERUBAHAN NILAI PERMUKAAN BUMI
An urban climatologist studies the climate in and around cities. Urban areas are both affected by weather and climate, and exert an influence on the local scale weather and climate. The climate in and around cities and other built up areas is altered in part due to modifications humans make to the surface of the Earth during urbanization The surface is typically rougher and often drier in cities, as naturally vegetated surfaces are replaced by buildings and paved streets.
Peran Arsitektur Bagaimana
Buildings along streets form urban street "canyons" that cause the urban surface to take on a distinctly three-dimensional character.
These changes affect the absorption of solar radiation, the surface temperature, evaporation rates, storage of heat and the turbulence and wind climates of cities and can drastically alter the conditions of the near-surface atmosphere.
Human activities in cities also produce emissions of heat, water vapour and pollutants that directly impact the temperature, humidity, visibility and air quality in the atmosphere above cities.
On slightly larger scales, urbanization can also lead to changes in precipitation above and downwind of urban areas In fact, urbanization alters just about every element of climate and weather in the atmosphere above the city, and sometimes downwind of the city.
SCBD
Pertumbuhan kota, Pertumbuhan kota, SANGAT KURANG DALAM MEMIKIRKAN SANGAT KURANG DALAM MEMIKIRKAN MASALAH AIR, karena hampir semua MASALAH AIR, karena hampir semua pihak memandang dengan mata pihak memandang dengan mata telanjang (kacamata kuda), telanjang (kacamata kuda), bukan dengan mata hati bukan dengan mata hati demikian juga para perencana URBAN demikian juga para perencana URBAN DESIGN DESIGN Pertumbuhan bangunan baik karena urbanisasi, fasilitas hidup urbanis, aktifitas urbanis semua memberikan kontribusi besar dalam perubahan iklim. Dimulai dari iklim lingkungan, iklim kota dan menuju iklim Universal yang medorong Global Warming. Intensitas evaluasi terhadap ketatnya pemanfaatan GSB, GSJ, Building Coverage (BC), FAR sangat KURANG sehingga perubahan Urban Climatologie terabaikan. Pemilihan sistem transportasi kota ???
Diwilayah Jakarta Utara Tidak didapati satupun rumah penduduk yang Menggunakan air Sumur timba atau Pantek (boor 12m) Regulasi mana yang mengatur Tata-air diwilayah Reklamasi, baik pengelolaan sumber daya alam ataupun tarif dasar air yang digunakan Bagaimana dengan ecological food Printnya, termasuk Pembangunan Jakarta spt gambar sebelumnya
Perubahan permukaan kulit bumi adalah perubahan temperatur
TIDAK ADA diskusi tentang ECOLOGYCAL FOOD PRINT
Perubahan permukaan kulit bumi adalah perubahan temperatur. Pembangunan di wilayah pantai, daratan, pegunungan akan memberikan perubahan pada perubahan pola angin (efeknya adalah perubahan temperatur)
AIR dianggap SELALU ADA (tangung jawab TUHAN !!!) atau PEMERINTAH
LAHAN PERTANIAN IRIGASI TEKNIS, MASIH AKTIF dan PRODUKTIF Dilakukan Pengeringan dan pengurugan
PEMBANGUNAN HARUS BERJALAN TERUS haruskan memilih lahan produktif sehingga kontra produktif meskipun tetap produktif dalam kepentingan lain (KONFLIK KEPENTINGAN)
AIR pada LAHAN PERTANIAN IRIGASI TEKNIS, tergantikan oleh air pada kolam, perubahan permukaan lahan akan merubah siklus pergerakan air.
TATA RUANG AIR dalam kacamata URBAN DESIGN Bukan matahati melihat air, tetapi mata telanjang melihat air
What is the urban heat island?
"Urban Heat Island" (UHI) refers to the tendency for a city or town to remain warmer than its surroundings, by as much as 10 deg. F or more.
This effect is caused mostly by the lack of vegetation and soil moisture, which would normally use the absorbed sunlight to evaporate water as part of photosynthesis (a process called "evapotranspiration"). This is also the reason why forests are cooler than deserts. Instead, the sunlight is absorbed by manmade structures -roads, parking lots, and buildings. With little or no water to evaporate, the sunlight's energy goes into raising the temperature of those surfaces and the air in contact with them. As the day progresses, a dome of warm air forms over the city as convection transports heat from the surface to higher in the atmosphere. After the sun sets, temperatures remain elevated above the vegetated areas around the city or town, and so the heat island effect persists during the night as well.
Irian Barat Lombok
Jawa Barat
Lombok
Dalam dunia arsitektur, iklim sangat memberikan pengaruh terhadap bentuk dan wujud yang dicapainya sebagai suatu bentuk adaptasi yang dilakukan oleh manusia. Iklim macro akan memberikan pengaruh pada iklim lokal (dimana iklim lokal sudah mengalami perubahan karena human made environment), ruang-ruang dalam bangunan membentuk iklim micronya masingmasing. Terjadinya perbedaan iklim micro karena kondisi ruang yang berbeda-beda yang dipengaruhi juga karena adanya panas radiasi, konveksi, konduksi bahkan kemungkinan evaporasi
Bright, shiny materials, such as radiant barriers, reflect radiation while dull, black materials absorb it. Good insulators are not necessarily good radiant barriers, and vice versa. An example of radiant barrier is the bright material you can put on the windshield of a car to protect it from overheating in summer. THermal radiation represents the transfer of heat by electromagnetic radiation. The sun, or an electric radiator, are perfect examples of radiating objects producing heat.
Thermal inertia, that we have defined in a previous article, represents the capacity of a material to store heat. A construction with high thermal can provide better comfort for less money comparing to one with low thermal inertia.
Two sides of thermal inertia in one house Most of construction materials have some sort of thermal inertia. Heavy materials such as clay blocks, bricks, stones or concrete, have high thermal inertia but are not very good for thermal insulation. On the contrary, thermal insulation materials, are good for thermal insulation but do not have much thermal inertia.
Figure 1. Psychrometric Chart
Psychrometric Chart and Air Characteristics A psychrometric chart presents physical and thermal properties of moist air in a graphical form. It can be very helpful in troubleshooting greenhouse or livestock building environmental problems and in determining solutions. Understanding psychrometric charts helps visualization of environmental control concepts such as why heated air can hold more moisture, and conversely, how allowing moist air to cool will result in condensation. The objective of this fact sheet is to explain characteristics of moist air and how they are used in a psychrometric chart. Three examples are used to illustrate typical chart use and interpretation. Properties of moist air are explained in the Definitions at the end for your reference during the following discussions. Psychrometric charts are available in various pressure and temperature ranges. Figure 1, at the top of the page, is for standard atmospheric pressure (14.7 psi) and temperatures of 30o to 120 oF which is adequate for most greenhouse or livestock housing applications. Psychrometric properties are also available as data tables, equations, and slide rulers.
A psychrometric chart contains a lot of information packed into an odd-shaped graph. If we dissect the components piece by piece, the usefulness of the chart will be clearer. Boundaries of the psychrometric chart are a dry-bulb temperature scale on the horizontal axis, a humidity ratio (moisture content) scale on the vertical axis, and an upper curved boundary which represents saturated air or 100 percent moisture holding capacity. The chart shows other important moist air properties as diagrammed in Figure 2: wet-bulb temperature; enthalpy; dewpoint or saturation temperature; relative humidity; and specific volume. See Definitions for explanation of these terms. Moist air can be described by finding the intersection of any two of these properties and from that point all the other properties can be read. The key is to determine which set of lines on the chart represent the air property of interest. Some practice with examples will help. Use Figures 2 and 3 with the psychrometric chart in Figure 1 to verify whether you can find each air property.
An understanding of the shape and use of the psychrometric chart will help in diagnosing air temperature and humidity problems. Note that cooler air (located along lower, left region of chart) will not hold as much moisture (as seen on the y-axis' humidity ratio) as warm air (located along right side of chart). A rule of thumb, inside typical greenhouses or animal buildings during winter conditions, is that a 10oF rise in air temperature can decrease relative humidity 20 percent. Use of a psychrometric chart will show that this is roughly true. For example, to decrease relative humidity in a winter greenhouse during a critical time period, we could heat the air.
Figure 2. Properties of moist air on a psychrometric chart. Wet-bulb temperature and enthalpy use the same chart line but
Figure 3. Diagram of Example 1. Verify these values on the psychrometric chart (Figure 1).
Figure 4. Diagram of Example 2. Outdoor air at 40oF,80 percent relative humidity (point A is heated to 65oF (point B) for use in ventilation. Exhaust air (point C) at 75oF and 70% relative humidity contains three times the moisture of the fresh air (point A and B).
Figure 5. Diagram of Example 3. Evaporative cooling process with hot dry air from points D to E and with hot humid air from points F to G. Notice greater evaporative cooling capacity with dry air.