Key Design..pdf

  • Uploaded by: DINESH
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Key Design..pdf as PDF for free.

More details

  • Words: 41,743
  • Pages: 292
Member sizes not clear

Cornières à ailes égales (suite)

t

u

Equal leg angles (continued)

v

r2

v

Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1



r1

t

r2

(Fortsetzung)

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

y

v

Gleichschenkliger Winkelstahl

h

zs

45o

ys

u2

u

b

Désignation Designation Bezeichnung

L 60 x 60 x 7*

Position des axes Position of axes Lage der Achsen

Dimensions Abmessungen

v

u1

z

Surface Oberfläche

G

h=b

t

r1

A

zs=ys

v

u1

u2

AL

AG

kg/m

mm

mm

mm

mm2

mm

mm

mm

mm

m2/m

m2/t

x102

x10

x10

x10

x10

6,26

60

7

8

7,98

1,73

4,24

2,45

2,13

0,233

37,22

L 60 x 60 x 8

-/

7,09

60

8

8

9,03

1,77

4,24

2,50

2,14

0,233

32,89

L 60 x 60 x 10*

8,69

60

10

8

11,1

1,85

4,24

2,61

2,17

0,233

26,83

L63 x 63 x 5*

4,82

63

5

9

6,14

1,71

4,45

2,42

2,21

0,244

50,71

L63 x 63 x 6*

5,72

63

6

9

7,29

1,75

4,45

2,48

2,21

0,244

42,70

L63 x 63 x 6,5*

6,17

63

6,5

9

7,85

1,78

4,45

2,51

2,22

0,244

39,62

L 65 x 65 x 4*

4,02

65

4

9

5,13

1,71

4,60

2,41

2,28

0,252

62,68

L 65 x 65 x 5* / L 65 x 65 x 6*

4,97

65

5

9

6,34

1,76

4,60

2,49

2,28

0,252

50,71

5,91

65

6

9

7,53

1,80

4,60

2,55

2,28

0,252

42,70

L 65 x 65 x 7 / L 65 x 65 x 8*

6,83

65

7

9

8,70

1,85

4,60

2,61

2,29

0,252

36,95

7,73

65

8

9

9,85

1,89

4,60

2,67

2,31

0,252

32,64

L 65 x 65 x 9*

8,62

65

9

9

11,0

1,93

4,60

2,73

2,32

0,252

29,28

L 65 x 65 x 10*

9,49

65

10

9

12,1

1,97

4,60

2,78

2,34

0,252

26,59

L 65 x 65 x 11*

10,3

65

11

9

13,2

2,00

4,60

2,83

2,35

0,252

24,39

-

L 70 x 70 x 5

5,37

70

5

9

6,84

1,88

4,95

2,66

2,46

0,272

50,73

-

6,38

70

6

9

8,13

1,93

4,95

2,73

2,46

0,272

42,68

-

7,38

70

7

9

9,40

1,97

4,95

2,79

2,47

0,272

36,91



8,37

70

8

10

10,7

2,01

4,95

2,84

2,47

0,271

32,41

L 70 x 70 x 9



9,32

70

9

9

11,9

2,05

4,95

2,90

2,50

0,272

29,20

L 70 x 70 x 10*

10,3

70

10

9

13,1

2,09

4,95

2,96

2,51

0,272

26,50

L 75 x 75 x 4* L 75 x 75 x 5*

4,65

75

4

9

5,93

1,96

5,30

2,76

2,63

0,292

62,82

5,76

75

5

9

7,34

2,01

5,30

2,84

2,63

0,292

50,75

L 75 x 75 x 6 * L 75 x 75 x 7* -/

6,85

75

6

9

8,73

2,05

5,30

2,90

2,64

0,292

42,66

7,93

75

7

9

10,1

2,10

5,30

2,96

2,65

0,292

36,88

L 75 x 75 x 8

-

8,99

75

8

9

11,4

2,14

5,30

3,02

2,66

0,292

32,53

L 75 x 75 x 9*

10,0

75

9

9

12,8

2,18

5,30

3,08

2,67

0,292

29,14

L 75 x 75 x 10*

11,1

75

10

9

14,1

2,22

5,30

3,13

2,69

0,292

26,43

L 70 x 70 x 6 L 70 x 70 x 7 L 70 x 70 x 8

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998  Profilé conforme à DIN 1028: 1994  Profilé conforme à CSN 42 5541: 1974.  Avec arêtes vives sur demande. 



* + -

  

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges.



* + -   

Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich.

L ly= lz

Wel.y= Wel.z

iy= iz

Iu

kg/m

mm

3

mm

x104

x103

4

iu

Iv

mm

4

mm

x10

x104

Pure compression

iv

lyz

mm

4

mm

mm

mm4

x10

x104

x10

x104

L 60 x 60 x 7

6,26

26,05

6,10

1,81

41,34

2,28

10,76

1,16

-15,23

1

1



L 60 x 60 x 8

7,09

29,15

6,89

1,80

46,19

2,26

12,11

1,16

-17,04

1

1



L 60 x 60 x 10

8,69

34,93

8,41

1,78

55,10

2,23

14,76

1,15

-20,17

1

1



L63 x 63 x 5

4,82

22,42

4,88

1,91

35,61

2,41

9,24

1,23

-13,18

4

4



L63 x 63 x 6

5,72

26,44

5,82

1,90

41,99

2,40

10,89

1,22

-15,55

1

4



L63 x 63 x 6,5

6,17

28,37

6,27

1,90

45,06

2,40

11,69

1,22

-16,68

1

4



L 65 x 65 x 4

4,02

20,09

4,19

1,98

31,86

2,49

8,32

1,27

-11,77

4

4



L 65 x 65 x 5

4,97

24,74

5,22

1,98

39,29

2,49

10,19

1,27

-14,55

4

4



L 65 x 65 x 6

5,91

29,19

6,21

1,97

46,36

2,48

12,01

1,26

-17,17

1

4



L 65 x 65 x 7

6,83

33,43

7,18

1,96

53,08

2,47

13,78

1,26

-19,65

1

1



L 65 x 65 x 8

7,73

37,49

8,13

1,95

59,46

2,46

15,52

1,26

-21,97

1

1



L 65 x 65 x 9

8,62

41,37

9,05

1,94

65,52

2,44

17,22

1,25

-24,15

1

1



L 65 x 65 x 10

9,49

45,08

9,94

1,93

71,26

2,43

18,91

1,25

-26,17

1

1



L 65 x 65 x 11

10,3

48,64

10,82

1,92

76,69

2,41

20,58

1,25

-28,06

1

1



L 70 x 70 x 5

5,37

31,24

6,10

2,14

49,61

2,69

12,86

1,37

-18,37

4

4



L 70 x 70 x 6

6,38

36,88

7,27

2,13

58,60

2,69

15,16

1,37

-21,72

4

4



L 70 x 70 x 7

7,38

42,30

8,41

2,12

67,19

2,67

17,41

1,36

-24,89

1

4



L 70 x 70 x 8

8,37

47,27

9,46

2,10

75,01

2,65

19,52

1,35

-27,75

1

1



L 70 x 70 x 9

9,32

52,47

10,60

2,10

83,18

2,65

21,76

1,35

-30,71

1

1



L 70 x 70 x 10

10,3

57,24

11,66

2,09

90,60

2,63

23,88

1,35

-33,36

1

1



L 75x75x4

4,65

31,43

5,67

2,30

49,85

2,90

13,01

1,48

-18,42

4

4



L 75x75x5

5,76

38,77

7,06

2,30

61,59

2,90

15,96

1,47

-22,82

4

4



L 75 x 75 x 6

6,85

45,83

8,41

2,29

72,84

2,89

18,82

1,47

-27,01

4

4



L 75 x 75 x 7

7,93

52,61

9,74

2,28

83,60

2,88

21,62

1,46

-30,99

1

4



L 75 x 75 x 8

8,99

59,13

11,03

2,27

93,91

2,86

24,35

1,46

-34,78

1

4



L 75 x 75 x 9

10,0

65,40

12,29

2,26

103,8

2,85

27,03

1,45

-38,36

1

1



L 75 x 75 x 10

11,1

71,43

13,52

2,25

113,2

2,83

29,68

1,45

-41,75

1

1



* * *

EN 10225:2009

G

axe v-v axis v-v Achse v-v

S355

axe u-u axis u-u Achse u-u

S235

axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z

EN 10025-4: 2004

Classification EN 1993-1-1: 2005

Valeurs statiques / Section properties / Statische Kennwerte*

Désignation Designation Bezeichnung

EN 10025-2: 2004

Notations pages 215-219 / Bezeichnungen Seiten 215-219

Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1

105

Cornières à ailes égales (suite)

t

u

Equal leg angles (continued)

v

r2

v

Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1



r1

t

r2

(Fortsetzung)

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

y

v

Gleichschenkliger Winkelstahl

h

zs

45o

ys

u2

u

b

Désignation Designation Bezeichnung

Position des axes Position of axes Lage der Achsen

Dimensions Abmessungen

v

u1

z

Surface Oberfläche

G

h=b

t

r1

A

zs=ys

v

u1

u2

AL

AG

kg/m

mm

mm

mm

mm2

mm

mm

mm

mm

m2/m

m2/t

x102

x10

x10

x10

x10

L 80 x 80 x 5*

6,17

80

5

10

7,86

2,12

5,66

3,00

2,81

0,311

50,49

L 80 x 80 x 6 L 80 x 80 x 7*



7,34

80

6

10

9,35

2,17

5,66

3,07

2,81

0,311

42,44

8,49

80

7

10

10,8

2,21

5,66

3,13

2,82

0,311

36,67

-

9,63

80

8

10

12,3

2,26

5,66

3,19

2,83

0,311

32,34

L 80 x 80 x 8

L 80 x 80 x 9*

10,8

80

9

10

13,7

2,30

5,66

3,25

2,84

0,311

28,96

-/ L 80 x 80 x 10 *

11,9

80

10

10

15,1

2,34

5,66

3,30

2,85

0,311

26,26

L 90 x 90 x 5*

6,97

90

5

11

8,88

2,35

6,36

3,33

3,16

0,351

50,29



8,28

90

6

10

10,5

2,42

6,36

3,42

3,16

0,351

42,44

-

9,61

90

7

11

12,2

2,45

6,36

3,47

3,16

0,351

36,48

-

10,9

90

8

11

13,9

2,50

6,36

3,53

3,17

0,351

32,15

-

12,2

90

9

11

15,5

2,54

6,36

3,59

3,18

0,351

28,77

L 90 x 90 x 10 * L 90 x 90 x 11*

13,4

90

10

11

17,1

2,58

6,36

3,65

3,19

0,351

26,07

14,7

90

11

11

18,7

2,62

6,36

3,70

3,21

0,351

23,86

L 90 x 90 x 16

20,7

90

16

11

26,4

2,81

6,36

3,97

3,29

0,351

16,93

L 100 x 100 x 6

9,26

100

6

12

11,8

2,64

7,07

3,74

3,51

0,390

42,09

L 100 x 100 x 7

10,7

100

7

12

13,7

2,69

7,07

3,81

3,51

0,390

36,33

12,2

100

8

12

15,5

2,74

7,07

3,87

3,52

0,390

32,00

L 90 x 90 x 6 L 90 x 90 x 7 L 90 x 90 x 8 L 90 x 90 x 9

-/



-

L 100 x 100 x 8 L 100 x 100 x 9

-

L 100 x 100 x 10 L 100 x 100 x 11

13,6

100

9

12

17,3

2,78

7,07

3,93

3,53

0,390

28,62

15,0

100

10

12

19,2

2,82

7,07

3,99

3,54

0,390

25,92

16,4

100

11

12

20,9

2,86

7,07

4,05

3,55

0,390

23,70

L 100 x 100 x 12

-

17,8

100

12

12

22,7

2,90

7,07

4,11

3,57

0,390

21,86

L 100 x 100 x 14*

20,6

100

14

12

26,2

2,98

7,07

4,22

3,60

0,390

18,95

L 100 x 100 x 16

23,2

100

16

12

29,6

3,06

7,07

4,32

3,63

0,390

16,77

L 110 x 110 x 6

10,2

110

6

12

13,0

2,89

7,78

4,09

3,87

0,430

42,12

L 110 x 110 x 7

11,8

110

7

12

15,1

2,94

7,78

4,16

3,87

0,430

36,34

13,4

110

8

12

17,1

2,99

7,78

4,22

3,87

0,430

31,98



L 110 x 110 x 8 L 110 x 110 x 9

15,0

110

9

12

19,1

3,03

7,78

4,28

3,88

0,430

28,59

L 110 x 110 x 10

16,6

110

10

13

21,2

3,06

7,78

4,33

3,88

0,429

25,79

L 110 x 110 x 11

18,2

110

11

13

23,2

3,11

7,78

4,39

3,89

0,429

23,58

L 110 x 110 x 12

19,7

110

12

13

25,1

3,15

7,78

4,45

3,91

0,429

21,73



Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998.  Profilé conforme à DIN 1028: 1994.  Profilé conforme à CSN 42 5541: 1974.  Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord. 



* + -

  

x

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.



* + -   

x

Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.

L Wel.y= Wel.z

iy= iz

Iu

kg/m

mm

mm

3

x104

x103

4

iu

Iv

mm

mm

4

iv

lyz

mm

mm

4

mm

mm4

x10

x104

x10

x104

x10

x104

L 80 x 80 x 5

6,17

47,14

8,02

2,45

74,83

3,09

19,45

1,57

-27,69

4

4

-



L 80 x 80 x 6

7,34

55,82

9,57

2,44

88,69

3,08

22,96

1,57

-32,87

4

4

-



L 80 x 80 x 7

8,49

64,19

11,09

2,44

102,0

3,07

26,38

1,56

-37,81

1

4

-



L 80 x 80 x 8

9,63

72,25

12,58

2,43

114,8

3,06

29,72

1,56

-42,52

1

4

-



L 80 x 80 x 9

10,8

80,01

14,03

2,42

127,0

3,05

33,01

1,55

-47,01

1

1

-



L 80 x 80 x 10

11,9

87,50

15,45

2,41

138,8

3,03

36,24

1,55

-51,27

1

1

-



L 90 x 90 x 5

6,97

67,67

10,18

2,76

107,3

3,48

27,98

1,78

-39,68

4

4

-



L 90 x 90 x 6

8,28

80,72

12,26

2,77

128,3

3,49

33,16

1,77

-47,57

4

4

-



L 90 x 90 x 7

9,61

92,55

14,13

2,75

147,1

3,47

38,03

1,76

-54,52

4

4

-



L 90 x 90 x 8

10,9

104,4

16,05

2,74

165,9

3,46

42,89

1,76

-61,50

1

4

-



L 90 x 90 x 9

12,2

115,8

17,93

2,73

184,0

3,44

47,65

1,75

-68,19

1

4

-



L 90 x 90 x 10

13,4

126,9

19,77

2,72

201,5

3,43

52,33

1,75

-74,59

1

1

-



L 90 x 90 x 11

14,7

137,6

21,57

2,71

218,3

3,42

56,94

1,74

-80,70

1

1

-



L 90 x 90 x 16

20,7

186,4

30,11

2,66

293,5

3,34

79,40

1,74

-107,0

1

1

-



L 100 x 100 x 6

9,26

111,1

15,09

3,07

176,3

3,87

45,80

1,97

-65,25

4

4

-



L 100 x 100 x 7

10,7

128,2

17,54

3,06

203,7

3,86

52,72

1,96

-75,48

4

4

-



L 100 x 100 x 8

12,2

144,8

19,94

3,06

230,2

3,85

59,49

1,96

-85,35

4

4

-



L 100 x 100 x 9

13,6

161,0

22,30

3,05

255,9

3,84

66,13

1,95

-94,86

1

4

-



L 100 x 100 x 10

15,0

176,7

24,62

3,04

280,7

3,83

72,66

1,95

-104,0

1

4

-



L 100 x 100 x 11

16,4

191,9

26,89

3,03

304,7

3,81

79,09

1,94

-112,8

1

1

-



L 100 x 100 x 12

17,8

206,7

29,12

3,02

327,9

3,80

85,44

1,94

-121,3

1

1

-



L 100 x 100 x 14

20,6

235,0

33,48

3,00

372,1

3,77

97,92

1,93

-137,1

1

1

-



L 100 x 100 x 16

23,2

261,7

37,70

2,97

413,3

3,74

110,2

1,93

-151,5

1

1

-



L 110 x 110 x 6

10,2

149,5

18,43

3,39

237,3

4,27

61,60

2,18

-87,87

4

4

-



L 110 x 110 x 7

11,8

172,7

21,43

3,39

274,4

4,27

70,94

2,17

-101,7

4

4

-



L 110 x 110 x 8

13,4

195,3

24,37

3,38

310,5

4,26

80,11

2,16

-115,2

4

4

-



L 110 x 110 x 9

15,0

217,3

27,26

3,37

345,5

4,25

89,10

2,16

-128,2

4

4

-

 

L 110 x 110 x 10

16,6

238,0

29,99

3,35

378,2

4,23

97,74

2,15

-140,2

1

4

-

L 110 x 110 x 11

18,2

258,8

32,79

3,34

411,2

4,21

106,4

2,14

-152,4

1

4

-



L 110 x 110 x 12

19,7

279,1

35,54

3,33

443,2

4,20

115,0

2,14

-164,1

1

1

-



* * *

EN 10225:2009

ly= lz

Pure compression

S460

G

axe v-v axis v-v Achse v-v

S355

axe u-u axis u-u Achse u-u

S235

axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z

EN 10025-4: 2004

Classification EN 1993-1-1: 2005

Valeurs statiques / Section properties / Statische Kennwerte*

Désignation Designation Bezeichnung

EN 10025-2: 2004

Notations pages 215-219 / Bezeichnungen Seiten 215-219

Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1

107

Cornières à ailes égales (suite)

t

u

Equal leg angles (continued)

v

r2

v

Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1



r1

t

r2

(Fortsetzung)

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

y

v

Gleichschenkliger Winkelstahl

h

zs

45o

ys

u2

u

b

Désignation Designation Bezeichnung

Position des axes Position of axes Lage der Achsen

Dimensions Abmessungen

v

u1

z

Surface Oberfläche

G

h=b

t

r1

A

zs=ys

v

u1

u2

AL

AG

kg/m

mm

mm

mm

mm2

mm

mm

mm

mm

m2/m

m2/t

x102

x10

x10

x10

x10

x

12,9

120

7

13

16,5

3,18

8,49

4,49

4,22

0,469

36,22

/x

14,7

120

8

13

18,7

3,23

8,49

4,56

4,22

0,469

31,87

x

16,5

120

9

13

21,0

3,27

8,49

4,62

4,23

0,469

28,48

-/x

18,2

120

10

13

23,2

3,31

8,49

4,69

4,24

0,469

25,76

/x

19,9

120

11

13

25,4

3,36

8,49

4,75

4,25

0,469

23,54

-/x

21,6

120

12

13

27,5

3,40

8,49

4,80

4,26

0,469

21,69

L 120 x 120 x 13

x

23,3

120

13

13

29,7

3,44

8,49

4,86

4,28

0,469

20,12

L 120 x 120 x 14

25,0

120

14

13

31,8

3,48

8,49

4,92

4,29

0,469

18,77

L 120 x 120 x 15 /x L 120 x 120 x 16*

26,6

120

15

13

33,9

3,51

8,49

4,97

4,31

0,469

17,60

28,3

120

16

13

36,0

3,55

8,49

5,02

4,32

0,469

16,58

L 130 x 130 x 8 L 130 x 130 x 9*

16,0

130

8

14

20,4

3,46

9,19

4,90

4,57

0,508

31,77

17,9

130

9

14

22,8

3,51

9,19

4,96

4,57

0,508

28,38

L 130 x 130 x 10

19,8

130

10

14

25,2

3,55

9,19

5,03

4,58

0,508

25,67

L 130 x 130 x 11

21,7

130

11

14

27,6

3,60

9,19

5,09

4,59

0,508

23,45

L 130 x 130 x 12

23,5

130

12

14

30,0

3,64

9,19

5,15

4,60

0,508

21,59

L 130 x 130 x 13

25,4

130

13

14

32,3

3,68

9,19

5,20

4,62

0,508

20,02

L 130 x 130 x 14



27,2

130

14

14

34,7

3,72

9,19

5,26

4,63

0,508

18,68

L 130 x 130 x 15 L 130 x 130 x 16*

29,0

130

15

14

37,0

3,76

9,19

5,32

4,65

0,508

17,51

30,8

130

16

14

39,3

3,80

9,19

5,37

4,66

0,508

16,49

L 140 x 140 x 9

L 120 x 120 x 7 L 120 x 120 x 8 L 120 x 120 x 9

L 120 x 120 x 10 L 120 x 120 x 11 L 120 x 120 x 12

x

-

19,3

140

9

15

24,6

3,75

9,90

5,30

4,92

0,547

28,30

L 140 x 140 x 10

21,4

140

10

15

27,2

3,79

9,90

5,37

4,93

0,547

25,59

L 140 x 140 x 11

23,4

140

11

15

29,8

3,84

9,90

5,43

4,94

0,547

23,36



25,4

140

12

15

32,4

3,88

9,90

5,49

4,95

0,547

21,51



27,5

140

13

15

35,0

3,92

9,90

5,55

4,96

0,547

19,94

L 140 x 140 x 14



29,4

140

14

15

37,5

3,96

9,90

5,61

4,97

0,547

18,60

L 140 x 140 x 15 L 140 x 140 x 16*

31,4

140

15

15

40,0

4,00

9,90

5,66

4,99

0,547

17,43

33,3

140

16

15

42,5

4,04

9,90

5,72

5,00

0,547

16,41

+/-/x

23,0

150

10

16

29,3

4,03

10,61

5,71

5,28

0,586

25,51

+/-/x

27,3

150

12

16

34,8

4,12

10,61

5,83

5,29

0,586

21,44

+/x

29,5

150

13

16

37,6

4,17

10,61

5,89

5,30

0,586

19,87

+//x

31,6

150

14

16

40,3

4,21

10,61

5,95

5,32

0,586

18,53

+/-/x

33,8

150

15

16

43,0

4,25

10,61

6,01

5,33

0,586

17,36

+/x

35,9

150

16

16

45,7

4,29

10,61

6,06

5,34

0,586

16,34



L 140 x 140 x 12 L 140 x 140 x 13

L 150 x 150 x 10

L 150 x 150 x 12 L 150 x 150 x 13 L 150 x 150 x 14 L 150 x 150 x 15 L 150 x 150 x 16

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998  Profilé conforme à DIN 1028: 1994  Profilé conforme à CSN 42 5541: 1974  Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord. 



* + -

  

x

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.



* + -   

x

Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.

L Wel.y= Wel.z

iy= iz

Iu

kg/m

mm

mm

3

x104

x103

4

iu

Iv

mm

mm

4

iv

lyz

mm

mm

4

mm

mm4

x10

x104

x10

x104

x10

x104

EN 10225:2009

ly= lz

Pure compression

S460

G

axe v-v axis v-v Achse v-v

S355

axe u-u axis u-u Achse u-u

S235

axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z

EN 10025-4: 2004

Classification EN 1993-1-1: 2005

Valeurs statiques / Section properties / Statische Kennwerte*

Désignation Designation Bezeichnung

EN 10025-2: 2004

Notations pages 215-219 / Bezeichnungen Seiten 215-219

L 120 x 120 x 7

12,9

225,6

25,57

3,70

358,4

4,66

92,80

2,37

-132,8

4

4

4







L 120 x 120 x 8

14,7

255,4

29,11

3,69

406,0

4,65

104,8

2,37

-150,6

4

4

4







L 120 x 120 x 9

16,5

284,5

32,59

3,68

452,4

4,64

116,7

2,36

-167,9

4

4

4







L 120 x 120 x 10

18,2

312,9

36,03

3,67

497,6

4,63

128,3

2,35

-184,6

4

4

4







L 120 x 120 x 11

19,9

340,6

39,41

3,66

541,5

4,62

139,8

2,35

-200,9

1

4

4







L 120 x 120 x 12

21,6

367,7

42,73

3,65

584,3

4,61

151,1

2,34

-216,6

1

4

4







L 120 x 120 x 13

23,3

394,0

46,01

3,64

625,8

4,59

162,2

2,34

-231,8

1

1

4







L 120 x 120 x 14

25,0

419,8

49,25

3,63

666,3

4,58

173,3

2,33

-246,5

1

1

4







L 120 x 120 x 15

26,6

444,9

52,43

3,62

705,6

4,56

184,2

2,33

-260,7

1

1

1







L 120 x 120 x 16

28,3

469,4

55,57

3,61

743,8

4,54

195,0

2,33

-274,4

1

1

1







L 130 x 130 x 8

16,0

326,7

34,26

4,00

519,2

5,05

134,3

2,57

-192,5

4

4

-



L 130 x 130 x 9

17,9

364,4

38,39

4,00

579,2

5,04

149,5

2,56

-214,9

4

4

-



L 130 x 130 x 10

19,8

401,1

42,47

3,99

637,8

5,03

164,5

2,55

-236,7

4

4

-



L 130 x 130 x 11

21,7

437,1

46,48

3,98

694,9

5,02

179,2

2,55

-257,9

4

4

-



L 130 x 130 x 12

23,5

472,2

50,44

3,97

750,6

5,00

193,7

2,54

-278,4

1

4

-



L 130 x 130 x 13

25,4

506,5

54,35

3,96

804,9

4,99

208,1

2,54

-298,4

1

4

-



L 130 x 130 x 14

27,2

540,1

58,20

3,95

857,8

4,98

222,3

2,53

-317,8

1

1

-



L 130 x 130 x 15

29,0

572,9

62,00

3,94

909,4

4,96

236,3

2,53

-336,5

1

1

-



L 130 x 130 x 16

30,8

605,0

65,75

3,93

959,7

4,94

250,3

2,53

-354,7

1

1

-



L 140 x 140 x 9

19,3

457,8

44,66

4,31

727,6

5,44

188,0

2,76

-269,8

4

4

-





L 140 x 140 x 10

21,4

504,4

49,43

4,30

802,0

5,43

206,9

2,76

-297,6

4

4

-





L 140 x 140 x 11

23,4

550,1

54,14

4,29

874,7

5,41

225,5

2,75

-324,6

4

4

-





L 140 x 140 x 12

25,4

594,8

58,78

4,28

945,7

5,40

243,9

2,74

-350,9

4

4

-





L 140 x 140 x 13

27,5

638,5

63,37

4,27

1015

5,39

262,0

2,74

-376,5

1

4

-





L 140 x 140 x 14

29,4

681,4

67,89

4,26

1083

5,37

280,0

2,73

-401,4

1

4

-





L 140 x 140 x 15

31,4

723,3

72,36

4,25

1149

5,36

297,7

2,73

-425,6

1

2

-





L 140 x 140 x 16

33,3

764,4

76,77

4,24

1214

5,34

315,2

2,72

-449,2

1

1

-





L 150 x 150 x 10

23,0

624,0

56,91

4,62

992,0

5,82

256,1

2,96

-368,0

4

4

4







L 150 x 150 x 12

27,3

736,9

67,75

4,60

1172

5,80

302,1

2,94

-434,9

4

4

4







L 150 x 150 x 13

29,5

791,7

73,07

4,59

1259

5,79

324,6

2,94

-467,1

4

4

4







L 150 x 150 x 14

31,6

845,4

78,33

4,58

1344

5,77

346,9

2,93

-498,5

1

4

4







L 150 x 150 x 15

33,8

898,1

83,52

4,57

1427

5,76

369,0

2,93

-529,1

1

4

4







L 150 x 150 x 16

35,9

949,7

88,65

4,56

1509

5,74

390,8

2,92

-558,9

1

4

4







* * *

Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1

109

Cornières à ailes égales (suite)

t

u

Equal leg angles (continued)

v

r2

v

Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1



r1

t

r2

(Fortsetzung)

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

y

v

Gleichschenkliger Winkelstahl

h

zs

45o

ys

u2

u

b

Désignation Designation Bezeichnung

Position des axes Position of axes Lage der Achsen

Dimensions Abmessungen

v

u1

z

Surface Oberfläche

G

h=b

t

r1

A

zs=ys

v

u1

u2

AL

AG

kg/m

mm

mm

mm

mm2

mm

mm

mm

mm

m2/m

m2/t

x102

x10

x10

x10

x10

L 150 x 150 x 18+/x

40,1

150

18

16

51,0

4,37

10,61

6,17

5,37

0,586

14,63

L 150 x 150 x 20+/x

44,2

150

20

16

56,3

4,44

10,61

6,28

5,41

0,586

13,27

L 160 x 160 x 14+

33,9

160

14

17

43,2

4,45

11,31

6,29

5,66

0,625

18,46

L 160 x 160 x 15

36,2

160

15

17

46,1

4,49

11,31

6,35

5,67

0,625

17,30

L 160 x 160 x 16+

38,4

160

16

17

49,0

4,53

11,31

6,41

5,69

0,625

16,28

L 160 x 160 x 17

40,7

160

17

17

51,8

4,57

11,31

6,46

5,70

0,625

15,37

L 160 x 160 x 18

42,9

160

18

17

54,7

4,61

11,31

6,52

5,71

0,625

14,57

L 160 x 160 x 19

45,1

160

19

17

57,5

4,65

11,31

6,58

5,73

0,625

13,86

L 180 x 180 x 13+/x

35,7

180

13

18

45,5

4,90

12,73

6,93

6,35

0,705

19,74

L 180 x 180 x 14+/x

38,3

180

14

18

48,8

4,94

12,73

6,99

6,36

0,705

18,40

L 180 x 180 x 15+/x

40,9

180

15

18

52,1

4,98

12,73

7,05

6,37

0,705

17,23

L 180 x 180 x 16

43,5

180

16

18

55,4

5,02

12,73

7,10

6,38

0,705

16,20

L 180 x 180 x 17+/x

46,0

180

17

18

58,7

5,06

12,73

7,16

6,40

0,705

15,30

L 180 x 180 x 18

48,6

180

18

18

61,9

5,10

12,73

7,22

6,41

0,705

14,50

L 180 x 180 x 19+/x

51,1

180

19

18

65,1

5,14

12,73

7,27

6,42

0,705

13,78

L 180 x 180 x 20+/x

53,7

180

20

18

68,3

5,18

12,73

7,33

6,44

0,705

13,13

L 200 x 200 x 13

39,8

200

13

18

50,7

5,40

14,14

7,63

7,06

0,785

19,73

L 200 x 200 x 15+/x

45,6

200

15

18

58,1

5,48

14,14

7,75

7,08

0,785

17,20

L 200 x 200 x 16

48,5

200

16

18

61,8

5,52

14,14

7,81

7,09

0,785

16,18

L 200 x 200 x 17+/x

51,4

200

17

18

65,5

5,56

14,14

7,87

7,10

0,785

15,27

L 200 x 200 x 18

54,2

200

18

18

69,1

5,60

14,14

7,93

7,12

0,785

14,46

L 200 x 200 x 19+/x

57,1

200

19

18

72,7

5,64

14,14

7,98

7,13

0,785

13,74

L 200 x 200 x 20

59,9

200

20

18

76,3

5,68

14,14

8,04

7,15

0,785

13,09

L 200 x 200 x 21+/x

62,8

200

21

18

79,9

5,72

14,14

8,09

7,16

0,785

12,50

L 200 x 200 x 22+/x

65,6

200

22

18

83,5

5,76

14,14

8,15

7,18

0,785

11,97

L 200 x 200 x 23+/x

68,3

200

23

18

87,1

5,80

14,14

8,20

7,19

0,785

11,48

L 200 x 200 x 24

71,1

200

24

18

90,6

5,84

14,14

8,26

7,21

0,785

11,03

L 200 x 200 x 25+/x

73,9

200

25

18

94,1

5,88

14,14

8,31

7,23

0,785

10,62

L 200 x 200 x 26+/x

76,6

200

26

18

97,6

5,91

14,14

8,36

7,25

0,785

10,24

L 200 x 200 x 28 x

82,0

200

28

18

105

5,99

14,14

8,47

7,28

0,785

9,56

+/-

+/

+/-/x

+/-/x

x

+/-/x

+/-/x

+/-/x

+/-/x

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998  Profilé conforme à DIN 1028: 1994  Profilé conforme à CSN 42 5541: 1974  Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord. 



* + -

  

x

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.



* + -   

x

Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.

L Notations pages 215-219 / Bezeichnungen Seiten 215-219

Classification EN 1993-1-1: 2005

Valeurs statiques / Section properties / Statische Kennwerte*

S235

S355

S420

S460

EN 10025-2: 2004

EN 10025-4: 2004

EN 10225:2009

Désignation Designation Bezeichnung

L 150 x 150 x 18

40,1

1050

98,74

4,54

1666

5,71

433,8

2,92

-616,1

1

1

1

1







L 150 x 150 x 20

44,2

1146

108,6

4,51

1817

5,68

476,2

2,91

-670,2

1

1

1

1







L 160 x 160 x 14

33,9

1034

89,50

4,89

1644

6,17

423,9

3,13

-609,9

2

4

4

-



L 160 x 160 x 15

36,2

1099

95,47

4,88

1747

6,16

450,9

3,13

-647,9

1

4

4

-



L 160 x 160 x 16

38,4

1163

101,4

4,87

1848

6,14

477,7

3,12

-685,0

1

4

4

-



L 160 x 160 x 17

40,7

1225

107,2

4,86

1947

6,13

504,2

3,12

-721,2

1

1

4

-



L 160 x 160 x 18

42,9

1287

113,0

4,85

2043

6,11

530,4

3,11

-756,5

1

1

4

-



L 160 x 160 x 19

45,1

1347

118,7

4,84

2138

6,10

556,5

3,11

-790,9

1

1

1

-



L 180 x 180 x 13

35,7

1396

106,5

5,54

2220

6,99

571,7

3,55

-824,4

4

4

4

4







L 180 x 180 x 14

38,3

1493

114,3

5,53

2375

6,98

611,4

3,54

-881,8

4

4

4

4







L 180 x 180 x 15

40,9

1589

122,0

5,52

2527

6,96

650,6

3,53

-938,0

4

4

4

4







L 180 x 180 x 16

43,5

1682

129,7

5,51

2675

6,95

689,4

3,53

-993,0

2

4

4

4







L 180 x 180 x 17

46,0

1775

137,2

5,50

2822

6,94

727,9

3,52

-1047

1

4

4

4







L 180 x 180 x 18

48,6

1866

144,7

5,49

2965

6,92

766,0

3,52

-1100

1

4

4

4







L 180 x 180 x 19

51,1

1955

152,1

5,48

3106

6,91

803,8

3,51

-1151

1

2

4

4







L 180 x 180 x 20

53,7

2043

159,4

5,47

3244

6,89

841,3

3,51

-1202

1

1

4

4







L 200 x 200 x 13

39,8

1939

132,8

6,19

3085

7,80

792,8

3,96

-1146

4

4

4

4







L 200 x 200 x 15

45,6

2209

152,2

6,17

3516

7,78

903,0

3,94

-1306

4

4

4

4







L 200 x 200 x 16

48,5

2341

161,7

6,16

3725

7,76

957,2

3,94

-1384

4

4

4

4







L 200 x 200 x 17

51,4

2472

171,2

6,14

3932

7,75

1011

3,93

-1461

4

4

4

4







L 200 x 200 x 18

54,2

2600

180,6

6,13

4135

7,74

1064

3,92

-1535

1

4

4

4







L 200 x 200 x 19

57,1

2726

189,9

6,12

4335

7,72

1117

3,92

-1609

1

4

4

4







L 200 x 200 x 20

59,9

2851

199,1

6,11

4532

7,70

1169

3,91

-1681

1

4

4

4







L 200 x 200 x 21

62,8

2973

208,2

6,10

4725

7,69

1221

3,91

-1752

1

4

4

4







L 200 x 200 x 22

65,6

3094

217,3

6,09

4915

7,67

1273

3,90

-1821

1

1

4

4







L 200 x 200 x 23

68,3

3213

226,3

6,08

5102

7,66

1324

3,90

-1889

1

1

2

4







L 200 x 200 x 24

71,1

3331

235,2

6,06

5286

7,64

1375

3,90

-1955

1

1

1

2







L 200 x 200 x 25

73,9

3446

244,0

6,05

5467

7,62

1426

3,89

-2020

1

1

1

1







L 200 x 200 x 26

76,6

3560

252,7

6,04

5644

7,61

1476

3,89

-2084

1

1

1

1







L 200 x 200 x 28

82,0

3784

270,0

6,02

5991

7,57

1576

3,88

-2207

1

1

1

1







* * *

axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z

axe u-u axis u-u Achse u-u

G

ly= lz

Wel.y= Wel.z

iy= iz

Iu

kg/m

mm

mm

3

x104

4

axe v-v axis v-v Achse v-v iu

Iv

mm

mm

4

x103

x10

Pure compression

iv

lyz

mm

mm

4

mm

mm4

x104

x10

x104

x10

x104

Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1

111

Cornières à ailes égales (suite)

r2

Dimensions: AM Standard Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

r2

u

v

v

t

Equal leg angles (continued)

Dimensions: AM Standard Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1

r1

t

r2

(Fortsetzung)

Abmessungen: AM Standard Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

r3

y zs

45o

ys

r2

u2

u

b

v

Gleichschenkliger Winkelstahl



h

Désignation Designation Bezeichnung

Position des axes Position of axes Lage der Achsen

Dimensions Abmessungen

u1

v

z

Surface Oberfläche

G

h=b

t

r1

r2

r3

A

zs=ys

v

u1

u2

AL

AG

kg/m

mm

mm

mm

mm

mm

mm2

mm

mm

mm

mm

m2/m

m2/t

x102

x10

x10

x10

x10

L 250 x 250 x 17+

64,4

250

17

18

9

3

82,1

6,79

17,68

9,60

9,28

0,98

15,14

L 250 x 250 x 18+

68,1

250

18

18

9

3

86,7

6,83

17,68

9,66

9,29

0,98

14,33

L 250 x 250 x 19+

71,7

250

19

18

9

3

91,4

6,87

17,68

9,72

9,30

0,98

13,60

L 250 x 250 x 20+

75,3

250

20

18

9

3

96,0

6,91

17,68

9,78

9,31

0,98

12,95

L 250 x 250 x 21+

78,9

250

21

18

9

3

100,6

6,96

17,68

9,84

9,33

0,98

12,36

L 250 x 250 x 22+

82,5

250

22

18

9

3

105,1

7,00

17,68

9,89

9,34

0,98

11,82

L 250 x 250 x 23+

86,1

250

23

18

9

3

109,7

7,03

17,68

9,95

9,36

0,98

11,33

L 250 x 250 x 24+

89,7

250

24

18

9

3

114,2

7,07

17,68

10,00

9,37

0,98

10,88

L 250 x 250 x 25+

93,2

250

25

18

9

3

118,7

7,11

17,68

10,06

9,39

0,98

10,47

L 250 x 250 x 26+

96,7

250

26

18

9

3

123,2

7,15

17,68

10,11

9,40

0,98

10,09

L 250 x 250 x 27+

101

250

27

18

9

3

127,7

7,19

17,68

10,17

9,42

0,98

9,66

+

104

250

28

18

9

3

132,1

7,23

17,68

10,22

9,44

0,98

9,40

+

107

250

29

18

9

3

136,6

7,27

17,68

10,28

9,45

0,98

9,10

+

111

250

30

18

9

3

141,0

7,30

17,68

10,33

9,47

0,98

8,81

+

114

250

31

18

9

3

145,4

7,34

17,68

10,38

9,49

0,98

8,55

+

118

250

32

18

9

3

149,7

7,38

17,68

10,44

9,50

0,98

8,30

+

121

250

33

18

9

3

154,1

7,42

17,68

10,49

9,52

0,98

8,06

+

124

250

34

18

9

3

158,4

7,45

17,68

10,54

9,54

0,98

7,84

+/-

128

250

35

18

9

3

162,7

7,49

17,68

10,59

9,56

0,98

7,64

*

112

300

25

18

12

15

142,7

8,35

21,21

11,80

11,18

1,17

10,40

*

116

300

26

18

12

15

148,2

8,39

21,21

11,86

11,19

1,17

10,01

*

121

300

27

18

12

15

153,7

8,43

21,21

11,92

11,21

1,17

9,66

*

125

300

28

18

12

15

159,1

8,47

21,21

11,97

11,22

1,17

9,33

*

129

300

29

18

12

15

164,6

8,50

21,21

12,03

11,24

1,17

9,02

*

133

300

30

18

12

15

170,0

8,54

21,21

12,08

11,25

1,17

8,73

*

138

300

31

18

12

15

175,4

8,58

21,21

12,14

11,27

1,17

8,46

*

142

300

32

18

12

15

180,7

8,62

21,21

12,19

11,29

1,17

8,21

*

146

300

33

18

12

15

186,1

8,66

21,21

12,24

11,30

1,17

7,98

*

150

300

34

18

12

15

191,4

8,70

21,21

12,30

11,32

1,17

7,75

*

154

300

35

18

12

15

196,7

8,73

21,21

12,35

11,34

1,17

7,55

L 250 x 250 x 28 L 250 x 250 x 29 L 250 x 250 x 30 L 250 x 250 x 31

L 250 x 250 x 32 L 250 x 250 x 33 L 250 x 250 x 34 L 250 x 250 x 35

L 300 x 300 x 25 L 300 x 300 x 26 L 300 x 300 x 27 L 300 x 300 x 28 L 300 x 300 x 29 L 300 x 300 x 30 L 300 x 300 x 31 L 300 x 300 x 32 L 300 x 300 x 33

L 300 x 300 x 34 L 300 x 300 x 35

Autres dimensions sur demande. Les rayons r1, r2, r3



peuvent être inférieur en fonction du procédé de laminage. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 20t par profilé et qualité ou suivant accord.





* +

Other dimensions on request. The r1, r2, r3 radius may be smaller depending on the rolling process. Minimum tonnage and delivery conditions upon agreement. Minimum order: 20t per section and grade or upon agreement.



* +

Andere Abmessungen auf Anfrage. Die Radien r1, r2, r3 können je nach Walzprozess kleiner sein. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 20t pro Profil und Güte oder nach Vereinbarung.

L Wel.y= Wel.z

iy= iz

Iu

kg/m

mm

mm

3

x104

x103

4

iu

Iv

mm

mm

4

iv

lyz

mm

mm

4

mm

mm4

x10

x104

x10

x104

x10

x104

L 250 x 250 x 17

64,4

4893

268,7

7,72

7789

9,74

1997

4,93

-2896

4

4

4





L 250 x 250 x 18

68,1

5156

283,8

7,71

8208

9,73

2104

4,93

-3052

4

4

4





L 250 x 250 x 19

71,7

5417

298,9

7,70

8622

9,71

2212

4,92

-3205

4

4

4





L 250 x 250 x 20

75,3

5674

313,8

7,69

9031

9,70

2318

4,91

-3357

4

4

4





L 250 x 250 x 21

78,9

5929

328,6

7,68

9435

9,69

2423

4,91

-3506

4

4

4





L 250 x 250 x 22

82,5

6180

343,3

7,67

9833

9,67

2528

4,90

-3652

2

4

4





L 250 x 250 x 23

86,1

6429

357,8

7,66

10230

9,66

2632

4,90

-3797

1

4

4





L 250 x 250 x 24

89,7

6674

372,3

7,64

10610

9,64

2735

4,89

-3939

1

4

4





L 250 x 250 x 25

93,2

6917

386,7

7,63

11000

9,63

2837

4,89

-4079

1

4

4





L 250 x 250 x 26

96,7

7156

400,9

7,62

11370

9,61

2939

4,88

-4217

1

4

4





L 250 x 250 x 27

101

7393

415,1

7,61

11750

9,59

3040

4,88

-4353

1

2

4





L 250 x 250 x 28

104

7627

429,2

7,60

12110

9,57

3141

4,88

-4486

1

1

4





L 250 x 250 x 29

107

7858

443,1

7,59

12480

9,56

3241

4,87

-4618

1

1

2





L 250 x 250 x 30

111

8087

457,0

7,57

12830

9,54

3340

4,87

-4747

1

1

1





L 250 x 250 x 31

114

8313

470,8

7,56

13190

9,53

3439

4,86

-4874

1

1

-



L 250 x 250 x 32

118

8536

484,4

7,55

13540

9,51

3538

4,86

-4998

1

1

-



L 250 x 250 x 33

121

8757

498,0

7,54

13880

9,49

3636

4,86

-5121

1

1

-



L 250 x 250 x 34

124

8975

511,5

7,53

14220

9,47

3734

4,86

-5241

1

1

-



L 250 x 250 x 35

128

9191

524,9

7,52

14550

9,46

3832

4,85

-5359

1

1

-



L 300 x 300 x 25

112

12150

561,1

9,23

19370

11,65

4930

5,88

-7220

4

4

4





L 300 x 300 x 26

116

12590

582,5

9,22

20060

11,63

5115

5,87

-7475

2

4

4





L 300 x 300 x 27

121

13020

603,5

9,20

20750

11,62

5294

5,87

-7726

2

4

4





L 300 x 300 x 28

125

13450

624,6

9,19

21420

11,60

5475

5,87

-7975

1

4

4





L 300 x 300 x 29

129

13870

645,2

9,18

22090

11,59

5650

5,86

-8220

1

4

4





L 300 x 300 x 30

133

14290

666,0

9,17

22750

11,57

5828

5,86

-8462

1

4

4





L 300 x 300 x 31

138

14700

686,3

9,16

23400

11,55

5999

5,85

-8701

1

4

-



L 300 x 300 x 32

142

15120

707,2

9,15

24050

11,54

6184

5,85

-8936

1

2

-



L 300 x 300 x 33

146

15520

727,2

9,13

24690

11,52

6351

5,84

-9169

1

2

-



L 300 x 300 x 34

150

15930

747,7

9,12

25320

11,50

6532

5,84

-9398

1

1

-



L 300 x 300 x 35

154

16320

767,4

9,11

25950

11,49

6696

5,83

-9624

1

1

-



EN 10225:2009

ly= lz

Pure compression

S420

G

axe v-v axis v-v Achse v-v

S355

axe u-u axis u-u Achse u-u

S235

axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z

EN 10025-4: 2004

Classification EN 1993-1-1: 2005

Valeurs statiques / Section properties / Statische Kennwerte

Désignation Designation Bezeichnung

EN 10025-2: 2004

Notations pages 215-219 / Bezeichnungen Seiten 215-219

113

Cornières à ailes inégales

r2

u3

v

Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1

v1

t

Unequal leg angles

u

h

Ungleichschenkliger Winkelstahl

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

y

r2

t

u

v2

r1



zs ys

b

u1

Désignation Designation Bezeichnung

Position des axes Position of axes Lage der Achsen

Dimensions Abmessungen

v

z

u2

Surface Oberfläche

G

h

b

t

r1

A

zs

ys

v1

v2

u1

u2

u3

AL

AG

kg/m

mm

mm

mm

mm

mm2

mm

mm

mm

mm

mm

mm

mm

m2/m

m2/t

x102

x10

x10

x10

x10

x10

x10

x10

L 100 x 65 x 7-

8,77

100

65

7

10

11,2

3,23

1,51

6,83

4,90

2,64

3,44

1,66

0,321

36,66

L 100 x 65 x 8-

9,94

100

65

8

10

12,7

3,27

1,55

6,81

4,92

2,69

3,43

1,69

0,321

32,32

L 100 x 65 x 9♣

11,1

100

65

9

10

14,1

3,32

1,59

6,78

4,94

2,74

3,42

1,72

0,321

28,94

L 100 x 65 x 10-

12,3

100

65

10

10

15,6

3,36

1,63

6,76

4,96

2,79

3,41

1,75

0,321

26,23

L 100 x 65 x 12

14,5

100

65

12

10

18,5

3,44

1,71

6,72

4,99

2,88

3,40

1,81

0,321

22,17

L 110 x 70 x 10/*

13,4

110

70

10

10

17,1

3,69

1,72

7,43

5,38

2,96

3,73

1,84

0,351

26,17

L 110 x 70 x 12/*

15,9

110

70

12

10

20,3

3,77

1,79

7,38

5,42

3,05

3,72

1,90

0,351

22,09

L 120 x 80 x 8-

12,2

120

80

8

11

15,5

3,83

1,87

8,23

5,97

3,25

4,19

2,09

0,391

32,12

L 120 x 80 x 10-

15,0

120

80

10

11

19,1

3,92

1,95

8,19

6,01

3,35

4,17

2,15

0,391

26,01

L 120 x 80 x 12-

17,8

120

80

12

11

22,7

4,00

2,03

8,14

6,04

3,45

4,16

2,20

0,391

21,93

L 130 x 90 x 10

16,6

130

90

10

11

21,2

4,16

2,19

8,93

6,67

3,75

4,62

2,49

0,431

25,96

L 130 x 90 x 12♣

19,7

130

90

12

11

25,1

4,24

2,26

8,90

6,69

3,84

4,59

2,51

0,430

21,80

L 130 x 90 x 14

22,8

130

90

14

11

29,0

4,33

2,34

8,85

6,73

3,95

4,61

2,60

0,431

18,94

L 140 x 90 x 8

14,0

140

90

8

11

17,9

4,49

2,03

9,56

6,81

3,58

4,83

2,27

0,451

32,08

L 140 x 90 x 10

17,4

140

90

10

11

22,1

4,58

2,11

9,52

6,85

3,69

4,81

2,33

0,451

25,94

L 140 x 90 x 12

20,6

140

90

12

11

26,3

4,66

2,19

9,47

6,89

3,79

4,79

2,39

0,451

21,83

L 140 x 90 x 14

23,8

140

90

14

11

30,4

4,74

2,27

9,43

6,92

3,88

4,78

2,45

0,451

18,90

L 150 x 90 x 10+/-/x

18,2

150

90

10

12

23,2

5,00

2,04

10,10

7,07

3,61

4,97

2,20

0,470

25,84

L 150 x 90 x 11+/x

19,9

150

90

11

12

25,3

5,04

2,08

10,07

7,09

3,66

4,95

2,23

0,470

23,61

L 150 x 90 x 12+/-/x

21,6

150

90

12

12

27,5

5,08

2,12

10,05

7,11

3,71

4,94

2,26

0,470

21,75

L 150 x 100 x 10+/-/x

19,0

150

100

10

12

24,2

4,81

2,34

10,27

7,48

4,08

5,25

2,64

0,490

25,83

L 150 x 100 x 12+/-/x

22,5

150

100

12

12

28,7

4,90

2,42

10,23

7,52

4,18

5,23

2,70

0,490

21,72

L 150 x 100 x 14+/♣/x

26,1

150

100

14

12

33,2

4,98

2,50

10,19

7,55

4,28

5,22

2,75

0,490

18,79

L 200 x 100 x 10+/-/x

23,0

200

100

10

15

29,2

6,93

2,01

13,15

8,74

3,72

5,94

2,09

0,587

25,58

L 200 x 100 x 12+/-/x

27,3

200

100

12

15

34,8

7,03

2,10

13,08

8,81

3,82

5,89

2,17

0,587

21,49

L 200 x 100 x 14+/♣/x

31,6

200

100

14

15

40,3

7,12

2,18

13,01

8,86

3,91

5,85

2,24

0,587

18,57

L 200 x 100 x 15+/-/x

33,7

200

100

15

15

43,0

7,16

2,22

12,98

8,89

3,95

5,84

2,27

0,587

17,40

L 200 x 100 x 16+/x

35,9

200

100

16

15

45,7

7,20

2,26

12,95

8,92

3,99

5,82

2,31

0,587

16,37

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 ♣ Profilé conforme à DIN 1029: 1994  Profilé conforme à CSN 42 5545: 1977. x Profilé disponible en S460M suivant accord. 



* +

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. - Section in accordance with EN 10056-1: 1998. ♣ Section in accordance with DIN 1029: 1994  Section in accordance with CSN 42 5545: 1977. x Section available in S460M upon agreement.



Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. + Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. - Profil gemäß EN 10056-1: 1998. ♣ Profil gemäß DIN 1029: 1994  Profil gemäß CSN 42 5545: 1977. x Profil in S460M nach Vereinbarung. *

L iy

lz

mm

3

kg/m

Wel.z

iz

Iu

mm

3

mm

mm

x104

x103

x10

iu

Iv

mm

4

mm

x104

x103

mm

x10

x104

Pure compression

α

iv

lyz

mm

4

mm

mm

mm

x10

x104

x10

x104

EN 10225:2009

Wel.y

axe v-v axis v-v Achse v-v

S355

ly

axe u-u axis u-u Achse u-u

S235

G

axe z-z axis z-z Achse z-z

L 100 x 65 x 7

8,77

112,5

16,61

3,17

37,58

7,53

1,83

128,2

3,39

21,89

1,40

-37,7

22,59

4

4



L 100 x 65 x 8

9,94

126,8

18,85

3,16

42,23

8,54

1,83

144,4

3,38

24,66

1,40

-42,4

22,53

3

4



L 100 x 65 x 9

11,1

140,6

21,05

3,15

46,70

9,52

1,82

160,0

3,36

27,37

1,39

-46,8

22,44

1

3



L 100 x 65 x 10

12,3

154,0

23,20

3,14

50,98

10,48

1,81

175,0

3,35

30,03

1,39

-51,0

22,35

1

2



L 100 x 65 x 12

14,5

179,6

27,38

3,12

59,07

12,33

1,79

203,4

3,32

35,23

1,38

-58,7

22,11

1

1



L 110 x 70 x 10

13,4

206,6

28,27

3,48

65,07

12,31

1,95

233,2

3,69

38,54

1,50

-66,8

21,67

1

3



L 110 x 70 x 12

15,9

241,5

33,40

3,45

75,54

14,51

1,93

271,8

3,66

45,22

1,49

-77,1

21,46

1

2



L 120 x 80 x 8

12,2

225,7

27,63

3,82

80,76

13,17

2,28

260,0

4,10

46,39

1,73

-78,5

23,65

4

4



L 120 x 80 x 10

15,0

275,5

34,10

3,80

98,11

16,21

2,26

317,0

4,07

56,60

1,72

-95,3

23,53

2

4



L 120 x 80 x 12

17,8

322,8

40,37

3,77

114,3

19,14

2,24

370,7

4,04

66,45

1,71

-110,8 23,37

1

2



L 130 x 90 x 10

16,6

359,7

40,70

4,12

141,8

20,82

2,59

421,5

4,46

79,92

1,94

-131,6 25,19

3

4



L 130 x 90 x 12

19,7

420,4

47,97

4,09

164,5

24,42

2,56

491,6

4,42

93,31

1,93

-152,6 25,02

1

3



L 130 x 90 x 14

22,8

481,4

55,50

4,07

187,9

28,24

2,55

561,9

4,40

107,4

1,93

-173,5 24,89

1

2



L 140 x 90 x 8

14,0

360,0

37,86

4,49

118,2

16,96

2,57

409,3

4,78

68,90

1,96

-119,8 22,38

4

4



L 140 x 90 x 10

17,4

440,9

46,81

4,46

144,1

20,91

2,55

500,8

4,76

84,19

1,95

-146,2 22,28

3

4



L 140 x 90 x 12

20,6

518,1

55,50

4,44

168,4

24,72

2,53

587,6

4,73

98,93

1,94

-170,6 22,15

2

4



L 140 x 90 x 14

23,8

591,9

63,96

4,41

191,3

28,41

2,51

670,0

4,70

113,3

1,93

-193,3 21,99

1

3



L 150 x 90 x 10

18,2

533,1

53,29

4,80

146,1

20,98

2,51

591,3

5,05

87,93

1,95

-160,9 19,87

4

4

4

  

L 150 x 90 x 11

19,9

580,7

58,30

4,79

158,7

22,91

2,50

643,7

5,04

95,70

1,94

-174,7 19,81

3

4

4

  

L 150 x 90 x 12

21,6

627,3

63,25

4,77

170,9

24,82

2,49

694,8

5,03

103,4

1,94

-188,1 19,75

3

4

4

  

L 150 x 100 x 10

19,0

552,6

54,23

4,78

198,5

25,92

2,87

637,3

5,14

113,8

2,17

-192,8 23,72

4

4

4

  

L 150 x 100 x 12

22,5

650,5

64,38

4,76

232,6

30,69

2,85

749,3

5,11

133,9

2,16

-225,9 23,61

3

4

4

  

L 150 x 100 x 14

26,1

744,4

74,27

4,74

264,9

35,32

2,82

855,9

5,08

153,4

2,15

-256,8 23,48

1

3

4

  

L 200 x 100 x 10

23,0

1219

93,24

6,46

210,3

26,33

2,68

1294

6,65

134,5

2,14

-286,8 14,82

4

4

4

  

L 200 x 100 x 12

27,3

1440

111,0

6,43

247,2

31,28

2,67

1529

6,63

158,5

2,13

-337,3 14,74

4

4

4

  

L 200 x 100 x 14

31,6

1654

128,4

6,41

282,2

36,08

2,65

1755

6,60

181,7

2,12

-384,8 14,65

3

4

4

  

L 200 x 100 x 15

33,7

1758

137,0

6,40

299,1

38,44

2,64

1865

6,59

193,1

2,12

-407,4 14,59

3

4

4

  

L 200 x 100 x 16

35,9

1861

145,4

6,38

315,6

40,76

2,63

1972

6,57

204,3

211

-429,3 14,53

3

4

4

  

* * *

4

4

4

˚

S460

axe y-y axis y-y Achse y-y

EN 10025-4: 2004

Classification EN 1993-1-1: 2005

Valeurs statiques / Section properties / Statische Kennwerte*

Désignation Designation Bezeichnung

EN 10025-2: 2004

Notations pages 215-219 / Bezeichnungen Seiten 215-219

Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1

115

Dimensions de construction - cornières à ailes égales Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

r2

Dimensions for detailing - equal leg angles

t

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1

h

Konstruktionsmaße - gleichschenkliger Winkelstahl

r1

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

Désignation Designation Bezeichnung

t

r2

e

b

e

Dimensions de construction Dimensions for detailing Konstruktionsmaße

Dimensions Abmessungen G

h=b

t

r1

A

kg/m

mm

mm

mm

mm2

Ø

emin

emax

Anet

mm

mm

mm2

x102

x102

L 60 x 60 x 4

3,70

60

4

8

4,71

M 12

34

40,5

4,15

L 60 x 60 x 5-/

4,57

60

5

8

5,82

M 12

35

40,5

5,12

L 60 x 60 x 6-/

5,42

60

6

8

6,91

M 12

36

40,5

6,07

L 60 x 60 x 7*

6.26

60

7

8

7,98

M12

28

37

7,00

L 60 x 60 x 8-/

7,09

60

8

8

9,03

M 12

29

37

7,91

L 60 x 60 x 10*

8,69

60

10

8

11,1

M12

31

37

9,67

L63 x 63 x 5*

4,82

63

5

9

6,14

M 16

30

34

5,24

L63 x 63 x 6*

5,72

63

6

9

7,29

M 16

31

34

6,21

L63 x 63 x 6,5*

6,17

63

6,5

9

7,85

M 16

32

34

6,68

L 65 x 65 x 4*

4,02

65

4

9

5,13

M 16

29

36

4,41

L 65 x 65 x 5*

4,97

65

5

9

6,34

M 16

30

36

5,44

L 65 x 65 x 6*/

5,91

65

6

9

7,53

M 16

31

36

6,45

L 65 x 65 x 7-

6,83

65

7

9

8,70

M 16

32

36

7,44

L 65 x 65 x 8*/

7,73

65

8

9

9,85

M 16

33

36

8,41

L 65 x 65 x 9*

8,62

65

9

9

11,0

M 16

34

36

9,36

L 65 x 65 x 10*

9,49

65

10

9

12,1

M 16

35

36

10,3

L 65 x 65 x 11*

10,3

65

11

9

13,2

M 16

36

36

11,2

L 70 x 70 x 5

5,37

70

5

9

6,84

M 16

30

41

5,94

L 70 x 70 x 6-

6,38

70

6

9

8,13

M 16

31

41

7,05

L 70 x 70 x 7-

7,38

70

7

9

9,40

M 16

32

41

8,14

L 70 x 70 x 8

8,37

70

8

10

10,7

M 16

34

41

9,23

L 70 x 70 x 9

9,32

70

9

9

11,9

M 16

34

41

10,3

L 70 x 70 x 10*

10,3

70

10

9

13,1

M 16

35

41

11,3

L 75 x 75 x 4*

4,65

75

4

9

5,93

M 16

29

46

5,21

L 75 x 75 x 5*

5,76

75

5

9

7,34

M 16

30

46

6,44

L 75 x 75 x 6-/*

6,85

75

6

9

8,73

M 16

31

46

7,65

L 75 x 75 x 7*

7,93

75

7

9

10,1

M 16

32

46

8,84

L 75 x 75 x 8-

8,99

75

8

9

11,4

M 16

33

46

10,0

L 75 x 75 x 9*

10,0

75

9

9

12,8

M 16

34

46

11,2

L 75 x 75 x 10*

11,1

75

10

9

14,1

M 16

35

46

12,3

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998  Profilé conforme à DIN 1028: 1994  Profilé conforme à CSN 42 5541: 1974.  Avec arêtes vives sur demande. 



* + -

  

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges.



* + -   

Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich.

L Notations pages 215-219 / Bezeichnungen Seiten 215-219

Désignation Designation Bezeichnung

Dimensions de construction Dimensions for detailing Konstruktionsmaße

Dimensions Abmessungen G

h=b

t

r1

A

kg/m

mm

mm

mm

mm2

Ø

emin

emax

Anet

mm

mm

mm2

x102

x102

L 80 x 80 x 5*

6,17

80

5

10

7,86

M 16

31

51

6,96

L 80 x 80 x 6

7,34

80

6

10

9,35

M 16

32

51

8,27 9,56

L 80 x 80 x 7*

8,49

80

7

10

10,8

M 16

33

51

L 80 x 80 x 8-

9,63

80

8

10

12,3

M 16

34

51

10,8

L 80 x 80 x 9*

10,8

80

9

10

13,7

M 16

35

51

12,1

L 80 x 80 x 10-/*

11,9

80

10

10

15,1

M 16

36

51

13,3

L 90 x 90 x 5*

6,97

90

5

10

8,88

M20

35

55

7,78

L 90 x 90 x 6

8,28

90

6

10

10,5

M 20

36

55

9,23

L 90 x 90 x 7-

9,61

90

7

11

12,2

M 20

38

55

10,7

L 90 x 90 x 8-

10,9

90

8

11

13,9

M 20

39

55

12,1

L 90 x 90 x 9-

12,2

90

9

11

15,5

M 20

40

55

13,5

L 90 x 90 x 10-/*

13,4

90

10

11

17,1

M 20

41

55

14,9

L 90 x 90 x 11*

14,7

90

11

11

18,7

M 20

42

55

16,3

L 90 x 90 x 16

20,7

90

16

11

26,4

M 20

47

55

22,8

L 100 x 100 x 6

9,26

100

6

12

11,8

M 24

41

59

10,2

L 100 x 100 x 7

10,7

100

7

12

13,7

M 24

42

59

11,8

L 100 x 100 x 8-

12,2

100

8

12

15,5

M 24

43

59

13,4

L 100 x 100 x 9

13,6

100

9

12

17,3

M 24

44

59

15,0

L 100 x 100 x 10-

15,0

100

10

12

19,2

M 24

45

59

16,60

L 100 x 100 x 11

16,4

100

11

12

20,9

M 24

46

59

18,1

L 100 x 100 x 12-

17,8

100

12

12

22,7

M 24

47

59

19,6

L 100 x 100 x 14*

20,6

100

14

12

26,2

M 24

49

59

22,6

L 100 x 100 x 16

23,2

100

16

12

29,6

M24

52

59

25,4

L 110 x 110 x 6

10,2

110

6

12

13,0

M 27

45

62

11,2

L 110 x 110 x 7

11,8

110

7

12

15,1

M 27

45

62

13,0

L 110 x 110 x 8

13,4

110

8

12

17,1

M 27

46

62

14,7

L 110 x 110 x 9

15,0

110

9

12

19,1

M 27

47

62

16,4

L 110 x 110 x 10

16,6

110

10

13

21,2

M 27

49

62

18,2

L 110 x 110 x 11

18,2

110

11

13

23,2

M27

50

62

19,9

L 110 x 110 x 12

19,7

110

12

13

25,1

M 27

51

62

21,5

117

Dimensions de construction - cornières à ailes égales (suite) Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

r2

Dimensions for detailing - equal leg angles(continued)

t h

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1

r1

Konstruktionsmaße - gleichschenkliger Winkelstahl (Fortsetzung)

t

r2

e

b

e

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

Désignation Designation Bezeichnung

Dimensions de construction Dimensions for detailing Konstruktionsmaße

Dimensions Abmessungen G

h=b

t

r1

A

kg/m

mm

mm

mm

mm2

Ø

emin

emax

Anet

mm

mm

mm2

x102

x102

L 120 x 120 x 7x

12,9

120

7

13

16,5

M 27

46

72

14,4

L 120 x 120 x 8/x

14,7

120

8

13

18,7

M 27

48

72

16,3

L 120 x 120 x 9x

16,5

120

9

13

21,0

M 27

48

72

18,3

L 120 x 120 x 10-/x

18,2

120

10

13

23,2

M 27

49

72

20,2

L 120 x 120 x 11/x

19,9

120

11

13

25,4

M 27

50

72

22,1

L 120 x 120 x 12-/x

21,6

120

12

13

27,5

M 27

51

72

23,9

L 120 x 120 x 13x

23,3

120

13

13

29,7

M 27

52

72

25,8

L 120 x 120 x 14

25,0

120

14

13

31,8

M 27

53

72

27,6

L 120 x 120 x 15x

26,6

120

15

13

33,9

M 27

54

72

29,4

L 120 x 120 x 16*/x

28,3

120

16

13

36,0

M 27

56

72

31,2

L 130 x 130 x 8

16,0

130

8

14

20,4

M 27

48

82

18,0

L 130 x 130 x 9*

17,9

130

9

14

22,8

M 27

49

82

20,1

L 130 x 130 x 10

19,8

130

10

14

25,2

M 27

50

82

22,2

L 130 x 130 x 11

21,7

130

11

14

27,6

M 27

51

82

24,3

L 130 x 130 x 12

23,5

130

12

14

30,0

M 27

52

82

26,4

L 130 x 130 x 13x

25,4

130

13

14

32,3

M 27

53

82

28,4

L 130 x 130 x 14

27,2

130

14

14

34,7

M 27

54

82

30,5

L 130 x 130 x 15

29,0

130

15

14

37,0

M 27

57

82

32,5

L 130 x 130 x 16*

30,8

130

16

14

39,3

M 27

27

82

34,5 21,9

L 140 x 140 x 9

19,3

140

9

15

24,6

M27

50

92

L 140 x 140 x 10

21,4

140

10

15

27,2

M27

51

92

24,2

L 140 x 140 x 11

23,4

140

11

15

29,8

M27

52

92

26,5

L 140 x 140 x 12 

25,4

140

12

15

32,4

M27

53

92

28,8

L 140 x 140 x 13

27,5

140

13

15

35,0

M27

54

92

31,1

L 140 x 140 x 14 

29,4

140

14

15

37,5

M27

55

92

33,3

L 140 x 140 x 15

31,4

140

15

15

40,0

M27

56

92

35,5

L 140 x 140 x 16*

33,3

140

16

15

42,5

M27

58

92

37,7

L 150 x 150 x 10+/-/x

23,0

150

10

16

29,3

M 27

52

102

26,3

L 150 x 150 x 12+/-/x

27,3

150

12

16

34,8

M 27

54

102

31,2

L 150 x 150 x 13+/x

29,5

150

13

16

37,6

M 27

55

102

33,7

L 150 x 150 x 14+//x

31,6

150

14

16

40,3

M 27

56

102

36,1

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998  Profilé conforme à DIN 1028: 1994  Profilé conforme à CSN 42 5541: 1974.  Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord. 



* + -

  

x

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.



* + -   

x

Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.

L Notations pages 215-219 / Bezeichnungen Seiten 215-219

Désignation Designation Bezeichnung

Dimensions de construction Dimensions for detailing Konstruktionsmaße

Dimensions Abmessungen G

h=b

t

r1

A

kg/m

mm

mm

mm

mm2

Ø

emin

emax

Anet

mm

mm

mm2

x102

x102

L 150 x 150 x 15+/-/x

33,8

150

15

16

43,0

M 27

57

102

38,5

L 150 x 150 x 16+/x

35,9

150

16

16

45,7

M 27

58

102

40,9

L 150 x 150 x 18+/x

40,1

150

18

16

51,0

M 27

61

102

45,6

L 150 x 150 x 20+/x

44,2

150

20

16

56,3

M 27

63

102

50,3

L 160 x 160 x 14+

33,9

160

14

17

43,2

M 27

57

111

39,0

L 160 x 160 x 15+/-

36,2

160

15

17

46,1

M 27

58

111

41,6

L 160 x 160 x 16+

38,4

160

16

17

49,0

M 27

60

111

44,2

L 160 x 160 x 17+/

40,7

160

17

17

51,8

M 27

61

111

46,7

L 160 x 160 x 18

42,9

160

18

17

54,7

M 27

62

111

49,3

L 160 x 160 x 19

45,1

160

19

17

57,5

M 27

63

111

51,8

L 180 x 180 x 13+/x

35,7

180

13

18

45,5

M 27

57

131

41,6

L 180 x 180 x 14+/x

38,3

180

14

18

48,8

M 27

58

131

44,6

L 180 x 180 x 15+/x

40,9

180

15

18

52,1

M 27

59

131

47,6

L 180 x 180 x 16+/-/x

43,5

180

16

18

55,4

M 27

61

131

50,6

L 180 x 180 x 17+/x

46,0

180

17

18

58,7

M 27

62

131

53,6

L 180 x 180 x 18+/-/x

48,6

180

18

18

61,9

M 27

63

131

56,5

L 180 x 180 x 19+/x

51,1

180

19

18

65,1

M 27

64

131

59,4

L 180 x 180 x 20+/x

53,7

180

20

18

68,3

M 27

65

131

62,3

L 200 x 200 x 13x

39,8

200

13

18

50,7

M 27

57

151

46,8

L 200 x 200 x 15+/x

45,6

200

15

18

58,1

M 27

59

151

53,6

L 200 x 200 x 16+/-/x

48,5

200

16

18

61,8

M 27

61

151

57,0

L 200 x 200 x 17+/x

51,4

200

17

18

65,5

M 27

62

151

60,4

L 200 x 200 x 18+/-/x

54,2

200

18

18

69,1

M 27

63

151

63,7

L 200 x 200 x 19+/x

57,1

200

19

18

72,7

M 27

64

151

67,0

L 200 x 200 x 20+/-/x

59,9

200

20

18

76,3

M 27

65

151

70,3

L 200 x 200 x 21+/x

62,8

200

21

18

79,9

M 27

66

151

73,6

L 200 x 200 x 22+/x

65,6

200

22

18

83,5

M 27

67

151

76,9

L 200 x 200 x 23+/x

68,3

200

23

18

87,1

M 27

68

151

80,2

L 200 x 200 x 24+/-/x

71,1

200

24

18

90,6

M 27

69

151

83,4

L 200 x 200 x 25+/x

73,9

200

25

18

94,1

M 27

70

151

86,6

L 200 x 200 x 26+/x

76,6

200

26

18

97,6

M 27

71

151

89,8

L 200 x 200 x 28x

82,0

200

28

18

105

M 27

73

151

96,1

119

Dimensions de construction - cornières à ailes égales (suite) Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

r2

u

t h

r3

t

r2

y zs ys

r2

b

45o

u2

u

Konstruktionsmaße - gleichschenkliger Winkelstahl (Fortsetzung)

r1

v

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1

u1

z

v

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

Désignation Designation Bezeichnung

v

v

Dimensions for detailing - equal leg angles(continued)

r2

Dimensions de construction Dimensions for detailing Konstruktionsmaße

Dimensions Abmessungen G

h=b

t

r1

r2

r3

A

kg/m

mm

mm

mm

mm

mm

mm2

Ø

emin

emax

Anet

mm

mm

mm2

x102

x102

L 250 x 250 x 17*

64,4

250

17

18

9,0

3

82,1

M27

62

201

77,0

L 250 x 250 x 18*

68,1

250

18

18

9,0

3

86,7

M 27

63

201

81,3

L 250 x 250 x 19*

71,7

250

19

18

9,0

3

91,4

M 27

64

201

85,7

L 250 x 250 x 20*

75,3

250

20

18

9,0

3

96,0

M 27

65

201

90,0

L 250 x 250 x 21*

78,9

250

21

18

9,0

3

100,6

M 27

66

201

94,3

L 250 x 250 x 22*

82,5

250

22

18

9,0

3

105,1

M 27

67

201

98,5

L 250 x 250 x 23*

86,1

250

23

18

9,0

3

109,7

M 27

68

201

103

L 250 x 250 x 24*

89,7

250

24

18

9,0

3

114,2

M 27

69

201

107

L 250 x 250 x 25*

93,2

250

25

18

9,0

3

118,7

M 27

70

201

111

L 250 x 250 x 26*

96,7

250

26

18

9,0

3

123,2

M 27

71

201

115

L 250 x 250 x 27*

101

250

27

18

9,0

3

127,7

M 27

72

201

120

L 250 x 250 x 28*/L 250 x 250 x 29*

104

250

28

18

9,0

3

137,1

M 27

73

201

124

107

250

29

18

9,0

3

136,6

M 27

74

201

128

L 250 x 250 x 30* L 250 x 250 x 31*

111

250

30

18

9,0

3

141,0

M 27

75

201

132

114

250

31

18

9,0

3

145,4

M 27

76

201

136

L 250 x 250 x 32* L 250 x 250 x 33*

118

250

32

18

9,0

3

149,7

M 27

77

201

140

121

250

33

18

9,0

3

154,1

M 27

78

201

144

L 250 x 250 x 34*

124

250

34

18

9,0

3

158,4

M 27

79

201

148

L 250 x 250 x 35*/-

128

250

35

18

9,0

3

162,7

M 27

80

201

152

L 300 x 300 x 25* L 300 x 300 x 26*

112

300

25

18

12,0

15

142,7

M 27

70

251

135

116

300

26

18

12,0

15

148,2

M 27

71

251

140

L 300 x 300 x 27* L 300 x 300 x 28*

121

300

27

18

12,0

15

153,7

M 27

72

251

146

125

300

28

18

12,0

15

159,1

M 27

73

251

151

L 300 x 300 x 29* L 300 x 300 x 30*

129

300

29

18

12,0

15

164,6

M 27

74

251

156

133

300

30

18

12,0

15

170,0

M 27

75

251

161

L 300 x 300 x 31* L 300 x 300 x 32*

138

300

31

18

12,0

15

175,4

M 27

76

251

166

142

300

32

18

12,0

15

180,7

M 27

77

251

171

L 300 x 300 x 33* L 300 x 300 x 34*

146

300

33

18

12,0

15

186,1

M 27

78

251

176

150

300

34

18

12,0

15

191,4

M 27

79

251

181

L 300 x 300 x 35*

154

300

35

18

12,0

15

196,7

M 27

80

251

186

Autres dimensions sur demande. Les rayons r1, r2, r3



peuvent être inférieur en fonction du procédé de laminage. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998  Profilé conforme à DIN 1028: 1994  Profilé conforme à CSN 42 5541: 1974.  Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord.





* + -   

x

Other dimensions on request. The r1, r2, r3 radius may be smaller depending on the rolling process. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.



* + -   

x

Andere Abmessungen auf Anfrage. Die Radien r1, r2, r3 können je nach Walzprozess kleiner sein. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.

Dimensions de construction - cornières à ailes inégales Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1

r2

Dimensions for detailing - unequal leg angles

t h

Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1

r1

Konstruktionsmaße - ungleichschenkliger Winkelstahl

t

ez

r2

b

ey

Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1

Notations pages 215-219 / Bezeichnungen Seiten 215-219

Désignation Designation Bezeichnung

Dimensions de construction /Dimensions for detailing /Konstruktionsmaße

Dimensions Abmessungen

aile longue / long leg / langer Schenkel

G

h

b

t

r1

A

kg/m

mm

mm

mm

mm

mm2

Øz

aile courte / short leg / kurzer Schenkel

ez,min

ez,max

Az,net

mm

mm

mm2

x102

Øy

ey,min

ey,max

Ay,net

mm

mm

mm2

x102

x102

L 100 x 65 x 7-

8,77

100

65

7

10

11,2

M 27

47

54

9,07

M 16

37

38

9,91

L 100 x 65 x 8-

9,94

100

65

8

10

12,7

M 27

48

54

10,3

M 16

38

38

11,2

L 100 x 65 x 9♣

11,1

100

65

9

10

14,1

M 27

49

54

11,4

M 16

39

38

12,5

L 100 x 65 x 10-

12,3

100

65

10

10

15,6

M 27

50

54

12,6

M 16

40

38

13,8

L 100 x 65 x 12

14,5

100

65

12

10

18,5

M 27

52

54

14,9

M 16

42

38

16,3

L 110 x 70 x 10/*

13,4

110

70

10

10

17,1

M 27

50

64

14,1

M 16

40

43

15,3

L 110 x 70 x 12/*

15,9

110

70

12

10

20,3

M 27

52

64

16,7

M 16

42

43

18,1

L 120 x 80 x 8-

12,2

120

80

8

11

15,5

M 27

48

72

13,1

M 16

38

50

14,0

L 120 x 80 x 10-

15,0

120

80

10

11

19,1

M 27

50

72

16,1

M 16

40

50

17,3

L 120 x 80 x 12-

17,8

120

80

12

11

22,7

M 27

52

72

19,1

M 16

42

50

20,5

L 130 x 90 x 10

16,6

130

90

10

11

21,2

M 27

50

84

18,2

M 24

50

51

18,6

L 130 x 90 x 12♣

19,7

130

90

12

11

25,1

M 27

52

83

21,5

M 24

52

51

22,0

L 130 x 90 x 14

22,8

130

90

14

11

29,0

M 27

54

84

24,8

M 24

54

51

25,4

L 140 x 90 x 8

14,0

140

90

8

11

17,9

M 27

48

93

15,5

M 24

48

51

15,8

L 140 x 90 x 10

17,4

140

90

10

11

22,1

M 27

50

93

19,1

M 24

50

51

19,5

L 140 x 90 x 12

20,6

140

90

12

11

26,3

M 27

52

93

22,7

M 24

52

51

23,2

L 140 x 90 x 14

23,8

140

90

14

11

30,4

M 27

54

93

26,2

M 24

54

51

26,7

L 150 x 90 x 10+/-/x

18,2

150

90

10

12

23,2

M 27

50

102

20,2

M 24

47

49

20,6

L 150 x 90 x 11+/x

19,9

150

90

11

12

25,3

M 27

51

102

22,0

M 24

48

49

22,5

L 150 x 90 x 12+/-/x

21,6

150

90

12

12

27,5

M 27

52

102

23,9

M 24

48

49

24,4

L 150 x 100 x 10+/-/x

19,0

150

100

10

12

24,2

M 27

50

102

21,2

M 24

47

58

21,6

L 150 x 100 x 12+/-/x

22,5

150

100

12

12

28,7

M 27

52

102

25,1

M 24

49

58

25,6

L 150 x 100 x 14+/♣/x

26,1

150

100

14

12

33,2

M 27

54

102

29,0

M 24

51

58

29,6

L 200 x 100 x 10+/-/x

23,0

200

100

10

15

29,2

M 27

54

150

26,2

M 24

48

57

26,6

L 200 x 100 x 12+/-/x

27,3

200

100

12

15

34,8

M 27

54

150

31,2

M 24

50

57

31,7

L 200 x 100 x 14+/♣/x

31,6

200

100

14

15

40,3

M 27

55

151

36,1

M 24

50

57

37,2

L 200 x 100 x 15+/-/x

33,7

200

100

15

15

43,0

M 27

56

151

38,5

M 24

50

57

39,9

L 200 x 100 x 16+/x

35,9

200

100

16

15

45,7

M 27

58

151

40,9

M 24

51

57

42,6

Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 ♣ Profilé conforme à DIN 1029: 1994  Profilé conforme à CSN 42 5545: 1977. x Profilé disponible en S460M suivant accord. 



* +

Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. - Section in accordance with EN 10056-1: 1998. ♣ Section in accordance with DIN 1029: 1994  Section in accordance with CSN 42 5545: 1977. x Section available in S460M upon agreement.



Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. + Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. - Profil gemäß EN 10056-1: 1998. ♣ Profil gemäß DIN 1029: 1994  Profil gemäß CSN 42 5545: 1977. x Profil in S460M nach Vereinbarung. *

121

HSS BIM Solutions Pvt Ltd (A unit of HSS group of companies)

BUILDING INFORMATION MODELING What is BIM? Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle; defined as existing from earliest conception to demolition. Building information modeling extends this beyond 3D, augmenting the three primary spatial dimensions (width, height and depth - X, Y and Z) with time as the fourth dimension and cost as the fifth. BIM therefore covers more than just geometry. It also covers spatial relationships, light analysis, geographic information,

BIM OUTPUTS

and quantities and properties of building components.

3D MODEL AND COLLISION DETECTION Clash detection enables the effective identification, inspection, and reporting of interferences in the composite project model. Clash detection can be used as a one-time sanity check for completed design work or as part of an ongoing project audit and quality control process.

ACCURATE BOQ BIM models can be used to accurate generate quantitytakeoffs and assist in the creation of cost estimates throughout the lifecycle of a project. Using BIM models in this manner enables the project team to see the cost effects of their design decisions and proposed changes during all phases of the project, and this feedback supports better design decision-making and can help curb excessive budget overruns due to project modifications.

HSS BIM Solutions Pvt Ltd

www.hssbim.com

BUILDING INFORMATION MODELING CONSTRUCTION SIMULATION The ability to forecast and anticipate problems before they occur is essential for effective project management. Traditional scheduling methods do not address the spatial aspect to the construction activities nor are they directly linked to a design or building model. Traditional bar charts or Critical Path Method network diagrams can be difficult to understand or interpret. Having the ability to watch the elementsof a design come together onscreen gives the design and construction team improved accuracy in construction

sequencing.

Week 8

Week 10

Week 12

MARKETING PRESENTATION

D

AS BUILT MODEL Tracking and maintaining life cycle information about the building structure (wall, floors, roof, etc.) as well as the equipment serving the building mechanical, electrical, plumbing, etc.) to plan and schedule a program of maintenance activities that will improve building performance, reduce repairs, and reduce overall maintenance costs.

OUR SERVICES BIM SOLUTION BIM Solutions has a compiled a list of services for the most pressing needs of companies in our industry across several disciplines. We also have the ability to make a customized match of our capabilities to the needs of your organization.

BIM IMPLEMENTATION We start out by assisting you in creating your firm's BIM Technology Implementation Plan, making sure we have the support of the Principals and upper management. The Technology Implementation Plan is our guide throughout the transition process and will help us assign the appropriate Expert Team Member(s) to meet your firm's goals.

BIM TRAINING We understand that making the shift to BIM requires a resource that is knowledgeable and available for consultation. We have mentors on-staff that are available to participate in on-site and online sessions to get you over hurdles.

BIM CONTENT CREATION Revit Families are pre-made, precision engineered reusable objects compiled with similar parameters and visual graphical representations that can be organized into the same class or group. These families are very useful for the firms who always search for custom or manufacturer specific content.

HSS BIM Solutions Pvt Ltd

www.hssbim.com

India HSS BIM Solutions Pvt Ltd

3rd Floor, Ganesh Tower, B-1 ,1st Avenue, 100 Ft Road, Ashok Nagar, Chennai - 600083, Tamil Nadu, India.

Tel : + 91 44 49181100(100 lines)

GROUP OF COMPANIES HSS ENGINEERING SDN BHD TOTAL ENGINEERING SERVICES

HSS INTEGRATED SDN BHD ENGINEERING CONSULTANCY SERVICES

Fax : + 91 44 49181199

HSS PROJECTS SDN BHD

Mob: + 91 9444918325 Mail: [email protected]

HSS PROJECT MANAGEMENT SDN BHD

TURNKEY CONTRACTORS

PROJECT / CONSTRUCTION MANAGEMENT

Malaysia BIM GLOBAL VENTURES SDN BHD

B-1 (1-4) Block B, Plaza Dwitasik, No. 21, Jalan 5/106, Bandar Sri Permaisuri, 56000 Kuala Lumpur,Malaysia Mail: [email protected] UAE ConsultantHSS P.O Box: 183921, Dubai, U.A.E. Mail: [email protected] Singapore HSS BIM Global Pte Ltd 77A, Boat Quay, Singapore 049865 Tel : +65 63272490 Fax: +65 63272465 Mail: [email protected]

Partner

HSS URUS HARTA SDN BHD FACILITIES MANAGEMENT

HSS INTESYS SDN BHD ENGINEERING IT SERVICES

HSS MEKANIKAL & ELEKTRIKAL SDN BHD

PREFACE This master thesis represent the final part of my study, master degree in structural and material technology with specialization in offshore structure engineering at the Faculty of science and material technology at University of Stavanger. The thesis was proposed by the Structural Department of Aker Solution in Stavanger. The work was carried out under the supervision of Mr. Sudath Siriwardane at the University of Stavanger in the spring 2015. The aim of this thesis was to do the whole process of designing, modeling, calculation and analyzing of an offshore module structure. This includes all relevant conditions, such as transport, offshore lifting, inplace and accidental dropped object scenario. I would like to take this opportunity to thank Mr. Christian Brun at Aker Solutions for providing the thesis, and also my internal supervisor Associate Professor Mr. Sudath Siriwardane at the faculty of Science and Material technology at University of Stavanger for his valuable support and guidance throughout the writing and working on this thesis. Finally I would like to thank my all family members, relatives, and friends and specially to thank my wife for her support and encouragement during all these five years study program at the University of Stavanger.

Gholam Sakhi Sakha

Stavanger

8-June-2015

Page 1

Table of Contents PREFACE .................................................................................................................................................. 1 1.0

INTRODUCTION ........................................................................................................................... 4

1.1

BACKGROUND OF THE THESIS ................................................................................................. 4

1.2

AIM OF THE THESIS.................................................................................................................. 5

1.3

ABBREVIATIONS....................................................................................................................... 7

2.0

SUMMARY ................................................................................................................................... 8

3.0

COMPUTER MODELING ............................................................................................................. 12

3.1

GENERAL ................................................................................................................................ 12

3.2

UNITS ..................................................................................................................................... 13

3.3

STAAD.ProV8i ........................................................................................................................ 13

3.4

MATHCAD 15.0 ...................................................................................................................... 13

4.0

DESIGN CONSIDERATION .......................................................................................................... 14

4.1

MATERIAL QUALITY AND PROPERTIES .................................................................................. 14

4.2

DESISGN BASIS AND ACCEPTANCE CRITERIA......................................................................... 15

4.3

LIMIT STATE ACCEPTANCE CRITERIA ..................................................................................... 15

4.4

DESIGN LOAD CATAGORIES ................................................................................................... 16

4.5

LOAD AND MATERIAL FACTORS ............................................................................................ 17

4.6

PERMENANT LOAD ................................................................................................................ 19

4.7

LIVE LOAD .............................................................................................................................. 21

4.8

ENVIRONMENTAL ACTION .................................................................................................... 24

4.8.1

WIND ACTION .................................................................................................................... 25

4.8.2

EARTHQUAKE ACTION ....................................................................................................... 27

4.9

ACCIDENTAL LOADS............................................................................................................... 29

4.9.1

Dropped object .................................................................................................................. 30

4.9.2

Explosion loads .................................................................................................................. 30

4.9.3

Fire loads ........................................................................................................................... 32

5.0

DESIGN CONSIDERATION TRANSPORT PHASE .......................................................................... 33

5.1

BARGE ACTION IN TRANSPORT ............................................................................................. 34

5.2

WIND ACTION IN TRANSPORT ............................................................................................... 34

6.0

GLOBAL STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION ................................................. 35

6.1

INPLACE CONDITION ............................................................................................................. 36

6.1.1

ULS INPLACE DESIGN CHECK ACCORDING TO EC3 ............................................................ 36

6.1.2

SLS DESIGN CHECK ............................................................................................................. 37 Page 2

6.2

LIFTING CONDITION............................................................................................................... 37

6.2.1 6.3 70 7.1 8.0

LIFTING DESIGN LOAD FACTOR ......................................................................................... 41 TRANSPORT CONDITION ....................................................................................................... 44

DESIGN CHECK OF PADEYES ...................................................................................................... 46 LOCAL ANALYSIS OF PADEYES ............................................................................................... 46 DESIGN CHECK OF CONNECTIONS ............................................................................................. 49

8.1

BOLTED CONNECTIONS ......................................................................................................... 49

8.2

WELDED CONNECTIONS ........................................................................................................ 50

9.0

CONCLUSIONS ........................................................................................................................... 51

10.0

REFRENCES ............................................................................................................................ 54

11.0

APPENDICES............................................................................................................................... 55

Page 3

1.0

INTRODUCTION

The analysis, design and construction of offshores structures is arguably one of the most demanding set of task faced by the engineering profession. Over and above the usual conditions and situations met by land based structures offshore structures have the added complication of being placed in an ocean environment where hydrodynamic interaction effects and dynamic response become major consideration in their design.

1.1

BACKGROUND OF THE THESIS

Norwegian offshore petroleum industries are in the period in which modifications of existing platforms are often the chosen solution for the realization of development needs. As fields will age well pressure often drops, and this can be compensated by the injection of water or gas. As part of modification work on “Black Gold PH” platform a new gas injection module shall be installed on the one side of existing platform. The offshore module needs to be protected from accidental dropped objects due to crane operations on the weather deck of platform. The new offshore module shall measure 10.0m, 5.50m, 9.50m (length, width, height).

Figure 1.1 “Black Gold PH” (source: design brief) Page 4

This thesis covers design and analysis of the offshore module structure. Design, modeling, analysis and calculation are done according to prevailing standards regulations and industry practices.

1.2

AIM OF THE THESIS

The main object of this thesis is design, analyses and calculation of an offshore module structure to ensure the required safety and serviceability requirements against different loads and load combination (i.e. dropped object impact load, explosion load, live load, dead load, wind load, barge acceleration load and earthquake load) by considering all phases such as transportation, installation and normal operation. The structure shall be designed for housing 12 gas injection pumps, each estimated of weigh around 1500kg. The 12 gas injection pumps must be installed on the first and second floor of module and each floor shall be housing for 6 pumps. Pumps shall be installed on onshore and the module shall be transported and lifted. Apart to above major objective, other goals of this thesis are, 

Learn to use FES (finite element software) Staad.ProV8i and Mathcad 14.0 programs for structural analysis, design and calculation.



Evaluation and implementation of relevant rules, standard and regulations for offshore construction and offshore activities in Norwegian continental shelf (NCF).



Design optimization of profile types to achieve economical design with respect to strength and weight considering, inplace, lift and transport condition.



Design of lifting accessories equipment and pad eyes.



Use of Microsoft word 2010 and Microsoft excel 2010 programs

Page 5

Figure 1.2 (3D) view offshore module structure (source: Staad.Pro)

Figure 1.3 offshore module with members number (source: Staad. Pro) Page 6

1.3

ABBREVIATIONS

ALS

Accidental Limit State

BLC

Basic Load Case

COG

Centre of Gravity

COGE

Centre of Gravity Envelope

EQ

Earthquake

FES

Finite Element Software

DAF

Dynamic Amplification Factor

DC

Design Class

DNV

Det Norske Veritas

DOP

Dropped Objects Protection

EC3

Euro Code 3

LC

Load Combination

MF

Material Factor

NS

Norwegian Standard

N-001

Norsok Standard N-001

N-003

Norsok Standard N-003

N-004

Norsok Standard N-004

NPD

Norwegian Petroleum Department

SI

System International

SKL

Skew Load Factor

SLS

Serviceability limit state

SWL

Still Water Level

UF

Utilization Factor

ULS

Ultimate Limit State

WLL

Working Limit Load

WCF

Weight Contingency Factor

Page 7

2.0

SUMMARY

This master thesis based on a design brief which is issued by Aker Solutions. In connection with modification work on “Black Gold PH” production platform, a new gas injection module shall be installed on the existing production platform. The module needs to be protected from accidental dropped objects due to crane activities on weather deck. The main objective of this thesis is design, modeling, structural analysis and calculation of an offshore module structure to ensure the required safety and serviceability requirements against different loads and load combination (i.e. dropped object impact load, explosion load, fire load, live load, dead load, wind load and earthquake) by considering all phases such as transportation, installation and normal operation. For this purpose a Design Brief was issued by Aker Solutions [ref./1/]. In addition to the main purpose of this thesis these goals were achieved: 

Learned to use Staad.ProV8i and Mathcad 14.0 programs for structural analysis, design and calculations.



Evaluation and implementation of relevant rules and regulations for offshore construction.



Optimize and selection of profile types to achieve optimal design with respect to strength and weight considering, inplace, lift and transport condition.



Design of lifting points and pad eyes.



Plastic analysis and design of dropped object protection (ALS).

The structural design and analyses were done in three phases First the offshore module structure had to be proven adequate for the normal operational conditional, including an accidental dropped object scenario, explosion scenario and fire action. Secondly it had to withstand the strain imposed by barge during transportation and finally it had to be lifted inplace. The analyses show that the designed offshore module structure has enough capacity to withstand all conditions with good safety margin. Analyses result show that the most critical condition is the accidental dropped object, with a resulting UF=1.00. Normal operating condition inplace with resulted in a utilization factor 0.984. Page 8

Transport condition resulted in a UF of 0.973. In lifting condition the highest utilization factor is 0.996. All utilization factors are well within the acceptable limit criteria, UF≤1.00. The members with highest utilization factors for all conditions are presented in the following tables. Inplace condition: Table 2.1 members with highest utilization ratios wind action ULS-a/b.

Table 2.2 members with highest utilization ratio earthquake action ULS-a/b

Table 2.3 members with highest utilization ratios earthquake action ALS

Page 9

Table 2.4 members with highest utilization ratios explosion action ALS

Table 2.5 members with highest utilization ratios fire action ALS

Transport condition:

Table 2.6 members with highest utilization ratios barge acceleration ULS-a

Page 10

Table 2.7 members with highest utilization ratios barge acceleration ULS-b

Lifting condition: Table 2.8 members with highest utilizations ratios ULS-a

The accidental dropped object UF= 1.00 refers to the deck beams on top of the structure.

Page 11

3.0

COMPUTER MODELING

3.1

GENERAL

The offshore module structure is analyzed and designed by use of the FES (finite element software) Staad.ProV8i.engineering program. The coordinate system used is such that y is pointing upwards, x is pointing horizontal (East) and z is pointing also horizontal (South). The modeling in Staad.ProV8i is done in the system lines which means that all profiles and plates are placed at the section centroid line and the connection between the profiles are as default full strength (rigid) connection. Loading orientation on the structural member usually influence the selection of section profile types of the structural members. Selection of section properties are based on the structural member responses during transverse- and axial loading. The designed model represented in this thesis is result of a long process and some profiles were replaced during modeling and designing of offshore module structure until achieved the suitable profiles to meet the design limit criteria specially profiles which are used on the top of offshore module must be designed and analyzed to withstand dropped object load. Profiles used for designing of module structure are standard profiles which are available in Staad.ProV8i.database. Finally the following cross sections have been used in this thesis.

1. TUB 250*250* 16 (mm) for top of module 2. TUB 300*300*16 (mm) for main columns to be connected to the platform 3. TUB

250*250*8 (mm) for columns at front view at two corners

4. TUB 120*120*10(mm) for columns at the middle of module 5. TUB 120*120*6 (mm) braces at east and west side of module 6. TUB 140*140*8 (mm) braces at north and south side of module 7. HE-A 140*133*5.5 (mm) longitudinal beams in all floor 8. HE-B 240*240*10 (mm) edge beams on first and second floor 9. HE-B 220*220*9 (mm) transvers beams on first and second floor

Page 12

3.2

UNITS

The fundamental units (database unites) that used in the analyses are the following SI unites or multiples of: Length:

meter (m)

Mass:

Kilo gram (kg)

Time:

seconds (s)

3.3

STAAD.ProV8i

Staad.Pro (structural analysis and design for professionals), is a finite element software developed by Bentley. The program is capable of analyzing advanced structures in almost every kind of material. It calculates stress, deformation and internal force. Different codes can be used to check the structure stability. Staad.Pro is the structural engineering professional’s choice for steel and concrete structures. This structural software enables structural modeling designing and analysis for a wide variety of steel and concrete structures including commercial, residential building, industrial structures, pipe-racks, bridges and towers [ref/16].

3.4

MATHCAD 15.0

Mathcad is the most comprehensive, yet practical, engineering calculation software available. Mathcad 14.0 is designed to help engineers achieve best practices within the overall Product Development process through increased productivity, collaboration enablement and process improvement [ref/17].

Page 13

4.0

DESIGN CONSIDERATION

GENERAL

All the analyses and calculations are based according to the regulations, specification and standards related to design of offshore structure and some of them listed as follow. NORSOK N-001

Structural design

NORSOK N-003

Action and action effect

NORSOK N-004

Design of steel structures

NORSOK R-002

Lifting equipment

EC3, NS-EN 1993-1-1

Design of steel structures: general rules and rules for building

EC3, NS-EN 1993-1-5

Design of steel structure: plated structural elements

EC3, NS-EN 1993-1-8

Design of steel structure: design of joints

4.1

MATERIAL QUALITY AND PROPERTIES

Table 4.1 steel quality [ref /13/] (table 3.1, EC3 NS EN 1993-1-1, design of steel structure) Steel class

fy

fu

S355

355 Mpa

490 Mpa

S420

420 Mpa

520 Mpa

All standards profiles have steel quality of S355. Plates and welded profiles have steel quality of S420. Material properties: Design Brief [ref /1/] kg/m3

Density

ρ = 7850

Young’s modulus

E = 210000 N/mm2

Poisson ratio

ʋ = 0.3

Shear modulus

G = 81000

Page 14

N/mm2

Details of bolts Bolt class

Fyb

fub

8.8

640 Mpa

800 Mpa

Bolt details are taken from table 3.1 EC3 1-8, [ref. /5/]

4.2

DESISGN BASIS AND ACCEPTANCE CRITERIA

The following categories of limit states have been considered in this thesis according to the structural design brief: SLS- serviceability limit state ULS- Ultimate Limit State ALS- Accident Limit State The initial design of offshore module structure is done considering the ALS dropped object scenario (impact effect of dropped object, overall plastic collapse and local damage to plastic deformation), by means of theoretical approach. Staad.ProV8i was used to analyze the other ULS and ALS conditions.

4.3

LIMIT STATE ACCEPTANCE CRITERIA 1. SLS- which is determined on the basis of criteria applicable to functional capability or to durability properties under normal operations and deformation for ordinary live load shall not exceed L/200. 2. ULS- utilizations factor shall not exceed 1.00, which is determined on the basis of criteria applicable to functional capability or properties under normal operations. 3. ALS- accidental condition does not specify any limit for deformations other than the structure shall not collapse. The limit state is that the offshore module structure must withstand and absorb the impact energy without damaging the instrument unit that has been installed on the first and second floor of the module. Page 15

4.4

DESIGN LOAD CATAGORIES

Fixed offshore platform are unique structure since they extend to the ocean floor and their main function is to hold industrial equipment that services oil and gas production and drilling. Robust design of offshore structure depends on accurate specification of the applied load and the strength of the construction material used. Most loads that laterally affect the platform, such as wind and waves are variable, so the location of the platform determines the metocean data. In general, the loads that act on the platform are:        

Gravity loads Live loads Wind loads Wave loads Current loads Earthquakes load Installation loads Accidental loads

Four kinds of basic loads have been evaluated in this analysis and design. These are: -

Permanent loads

-

Variable loads

-

Environmental loads

-

Accidental loads

Table 4.4 load categories

P

Permanents loads

Self-weight of structure

L

Live loads

Variable operating loads

E

Environmental loads

Wind and earthquake

A

Accidental loads

Dropped object load

Page 16

4.5

LOAD AND MATERIAL FACTORS

The design factors applied to different actions for different limit state and analyses are

according to NORSOK N-001 [ref/2/] and are listed in the table 4.5.

Table 4.5 load and material factor Limit state ULS-a ULS-b ALS

Loading condition Ordinary Extreme

P 1.30 1.00 1.00

L 1.30 1.00 1.00

E 0.70 1.30 -

A 1.00

Material coefficient 1.15 1.15 1.00

Combination action Environmental action intensities for ULS and ALS combination based on annual exceedance probabilities. Earthquake actions are combined with other environmental actions according to the NORSOK N-003 [ref /3/]. Table 4.5.1 combination of environmental actions Limit state ULS ALS

Wind 10

Earthquake

-2

10-2 10-4

All the load cases have been considered for design and analyses of new offshore module structure listed in following tables. Table 4.5.2 all dead load cases from different directions for in place design phase

Page 17

Table 4.5.3 all live load cases from different directions in inplace

Table 4.5.4 all live load cases from different directions for transport design phase

Page 18

4.6

PERMENANT LOAD

Permanents loads are gravity loads that will not vary in magnitude, position or direction during the period considered. Examples are: -

Mass of structure Mass of permanent ballast and equipment Cabling Dry weight of piping Fireproofing/insulation

Permanent loads are used in this thesis are the self-weight of the module structure, the outfitting steel structure, and the dead weight of equipment which are the dry weight of 12 gas injection pumps each estimated to weight around 1500 kg with a 20% contingency has been used. All permanent loads will be multiplied with weight contingency factor of 1.10.

Basic Load case 1, 11, 21 structural self-weight: The self-weight of the module structure is generated by Staad.ProV8i automatically, based on the cross sections and the steel weight. This load is achieved by applying an acceleration of 1.0g in the negative y-direction for the whole structure. The values of self-weight of the module are same inn all 3 directions and must be taken in account for earthquake action calculation.

Basic Load case 2, 12, 22 secondary/ or outfitting steel:

The self-weight of the module structure generated by Staad Pro must be multiplied by a factor of 0.25g to count for the secondary or outfitting steel. Secondary or outfitting steel counts for the weight of the structure generated by taking in consideration welding and fire protection. The value of secondary or outfitting steel is same in all 3 directions and must be taken in account for earthquake action calculation.

Page 19

Basic load case 4, 14, 24 equipment load:

The offshore module structure must be designed for housing 12 gas injection pumps, each estimated to weigh around 1500kg. The equipment load is total dry weight of these 12 pumps which shall be located on the first and second floor of the module. A 20% contingency factor should be included to cover uncertainties in the equipment load. The pumps have foot print measures 2.0*0.75m and located on transvers beams as shown in the following figure. Equipment load applied as evenly distributed load over a length 2.0 m on the mentioned beams. The value of equipment load is same in all 3 directions and must be taken in account for earthquake action calculation.

Figure 4.1 equipment load, (source: Staad Pro)

Page 20

4.7

LIVE LOAD

General Live loads are loads which may vary in magnitude, position and direction during the life of structure. Variable Functional loads Variable functional loads are loads which may vary magnitude, position and direction during the period under consideration, and which are related to operation and normal use of the structure. Examples are: -

Personnel

-

Stored materials, equipment, gas, fluid and fluid pressure

-

Crane operational loads

-

Loads associated with installation operations

-

Loads associated with drilling operations

-

Loads from variable ballast and equipment

During the life of the platform, generally all floor and roof area can be subjected to operational loads in addition to known permanent equipment loads. Since the exact nature of these live load is not known at the state design, all deck area designed to carry some general live loads in addition to permanent loads of equipment, piping etc. The characteristics value of a variable functional load is the maximum (or minimum) specified value, which produce the most unfavorable load effects in the structure under consideration. The specified value shall be determined on the basis of relevant specifications. Variable functional loads on the deck area of topside structure are based on Table D1from offshore standard DNV- OS-C101, 2011. Variable functional loads have been used for design analysis in this thesis are as 5.0kN/m2 distributed load for area between equipment in first and second floor of offshore module, and 15.0kN/m2 distributed load on lay down areas on the top deck of module structure.

Page 21

Basic load case 4-14-24 variable functional loads: The variable functional load according to DNV-OS-C101 [ref/15] is 5.0kN/m2 and this load has applied on the area between equipment in the first and second floor of offshore module where the 12 gas injection pumps located. The variable functional load applied in such a way that value of load varying from where pumps are located comparing to the rest of area. Detailed calculation of variable functional load is presented in appendix B.

Figure 4.1 variable functional load (source: Staad. Pro)

Variable functional load has the same value in all 3 directions and must be taken in account in case of earthquake action calculation.

Page 22

Basic Load case 5, 15, 25 laydown load: The laydown load according to DNV-OS-C101 [ref/9] Table D1 shall be 15.0kN/m2. This load applied to the top of the module structure. The total load is 15.0 kN/m2 multiplied to A, where A is the laydown area. The total load is divided by the total length of all beams located, an applied as evenly distributed line load on all relevant members. Detail calculation of laydown load presented in appendix B

Figure 4.3 laydown load (source: Staad.ProV8i) Laydown loads have the same value in 3 directions and must be taken in account case of earthquake action calculation.

Page 23

4.8

ENVIRONMENTAL ACTION

Environmental loads are loads caused by environmental phenomena, which may vary in magnitude, position and direction during the period under consideration, and which are related to operation and normal use of the installation. Environmental loads to be used for design shall be based on environmental data for specific location and operation question, and are to be determined by use of relevant methods applicable for the location /operation talking into account type of structure, size, shape and response characteristics. According to the regulation, the environmental actions shall be determined with the stipulated probabilities of exceedance. Characteristic actions for the design of structure in the in-place condition are defined by annual exceedance probabilities of 10-2 and 10-4. Examples are: -

Hydrodynamic loads induced by wave and current

-

Inertia forces

-

Wind

-

Earthquake

-

Tidal effect

-

Marine growth

-

Ice and snow

Environmental loads are considered in these thesis include wind, and earthquake. Ice and snow loads are not considered relevant for these analyses. Ice from sea spray is only relevant for structures located below 25.0 meters above sea level. Snow loads according to NORSOK N-003 [ref. /3/] shall be 0.5kN/m2. Snow loads are only to be combined with 10 year wind and therefore considered negligible. Wave load is not relevant for structures positioned higher than 25.0 meters above sea level. It is considered that the offshore module structure presented on this report has sufficient height above sea level to avoid direct wave action.

Page 24

4.8.1 WIND ACTION

Basic Load case, 11- 14 wind load The most important design consideration for an offshore platform are the storm wind and storm wave loadings it will be subjected to during its service life. Structure or structural components that are not very sensetive to wind gusts may be calculated by considering the wind action as static. In the case of structure or structural parts where the maximum dimenstion is less than approximately 50 m, 3 s wind gusts used when calculating static wind action. In case of structure or structural parts where the maximum length is greather than 50 m,the mean period for wind may be increased to 15 s. The wind load which is applied on the module structure is based on static wind load and basic information is presented below. The global ULS inplace analyses will be based on the 3-second gust wind (L < 50m). For simplicity the wind load in the module analyses will be based on a constant wind speed at an elevation located 2/3 of the module structure height, and module can be assumed to 50% solid. It means that wind load acting on the structure in practice is 50 % total wind load. The static wind load is calculated in accordance to NORSOK N-003 section 6.3.3. For extreme conditions, variation of the wind velocity as a function of height and the mean period is calculated by use of the following formulas: The wind loads are calculated by the following formula: =

½ · ρ · Cs · A · Um2 · sin (α)

ρ

=

1.225 kg/m3 mass density of air

Cs

=

shape coefficient shall be obtained from DNV-RP-C205,

A

=

area of a member or surface area normal to the direction of the force

Um

=

wind speed

P Where:

Page 25

α

=

angle between wind and exposed area

The characteristic wind velocity u (z,t)(m/s) at a height z(m) above sea level and corresponding averaging time period t less than or equal to may be calculated as: U(z,t) = Uz [1-0.41Iu(z) ln (t/t0)] Where, the 1 h mean wind speed U(z)(m/s) is given by U(z) = U0[1+C ln(z/10)] C = 5.73 * 10 -2 (1 + 0.15 U0) 0.5 The turbulence intensity factor Iu (z) is given by Iu(z) =0.061[1+0.043U0](z/10)-0.22 U0 (m/s) is the 1 h mean wind speed at 10m Calculation of static wind and wind action on offshore module structure is presented in appendix B.

Figure 4.4 reference wind speeds for design of wind action (source design brief) Page 26

Wave loads Wave loads are not relevant for the new module which is located above 25 m mean water level and has sufficient air gap to avoid wave action on offshore module structure. Ice and snow loads Ice from sea spray is not relevant for structure located higher than 25m above sea level. The new offshore module is about 33m above sea level and therefore ice loads are ignored in this thesis. Ice from atmospheric action according to design brief shall be 90 N/m2 is small when compared with other loads and has not been considered in analysis. Snow load according to design brief shall be taken as 250N/m2. The snow load is relatively small compared to the other loads on the deck area and concluded that snow load will not affect global analysis in this thesis and can be neglected.

4.8.2 EARTHQUAKE ACTION Basic Load case, 41- 46 10-2 year(ULS) and Basic Load case, 51-56 10-4 year(ALS) Earthquake action should be determined on the basis of the relevant tectonic condition, and the historical seismological data. Measured time histories of earthquakes in the relevant area or other area with similar tectonic conditions may be adopted. Earthquake motion at the location described by means of response spectra or standardized time histories with the peak ground acceleration to characterize the maximum motion. The earthquake motion can be described by two orthogonally horizontal oscillatory motions and one vertical motion acting simultaneously. These motion components are assumed to be statically independent. One of the horizontal excitations should be parallel to the main structural axis, with the major component directed to obtain the maximum value for the response quantity considered. Unless more accurate calculations are performed, the orthogonal horizontal component may be set equal to 2/3 of the major component and the vertical component equal to 2/3 of major component, referred to bedrock.

Page 27

When determining earthquake action on to the structure, interaction between the soil, the structure and surrounding water should be taken into consideration. When time histories are used, the load effect should be calculated for at least three sets of time histories. The mean value of the maximum values of calculated action effects from the time history analysis may be taken as basis for design. The time series shall be selected in such a way that they are representative of earthquake on the Norwegian continental shelf at the given probability of exceedance. Earthquake design include ULS check of components based on earthquake with annual probability of occurrence 10-2 and appropriate action and material factor as well as an ALS check of overall structure to prevent its collapse during earthquakes with an annual probability of exceedance of 10-4 with appropriate action in and material factors. Normally the ALS requirement will be governing, implying that earthquakes with annual probability of exceedance of 10-2 can be disregarded. The assessment of earthquake effects should be carried out with a refinement of analysis methodology that is consistent with the importance of such effects. Structures shall resist accelerations due to earthquake. The 102 years ULS earthquake and 104 years ALS earthquake are both considered in the analysis. The considered values for accelerations respect to the elevation of the structure are listed in table 3-4 below. Reference earthquake accelerations were given in the design brief [ref. /1/] and applied accordingly in the analysis. Table 4.8.2 earthquake acceleration Earthquake acceleration 10-2 year

Earthquake acceleration 10-4.year

X= 0.0441g Y= 0.0390g Z= 0.0133g

X= 0.2176g Y= 0.2523g Z= 0.0589g

The values of earthquake accelerations presented in the above table were calculated from the reference earthquake acceleration given in design brief. For detailed calculation refer to appendix B.

Page 28

Figure 4.5 reference earthquake accelerations (source: design brief).

4.9

ACCIDENTAL LOADS

Accidental loads can be defined as fires and explosions, impact from ships, dropped object and helicopter crash. Impacts loads from ships and helicopter crash have not been considered in these analyses. The accidental loads have been considered in these thesis are dropped object accidental load which is defined as a 7.0 tons container falling from a height of 3.0 meters, explosion load and fire loads. The module structure must withstand the impact force and prevent damaging of instruments which are located inside of the module structure. The initial plastic design of module structure is based on the impact effect of a dropped object, plastic hinge development and local damage due to the plastic deformation.

Page 29

4.9.1 Dropped object The dropped object action is characterized by kinetic energy governed by the mass of the object and the velocity of the object at the instant of impact. In most cases the major part of the kinetic energy has to be dissipated as strain energy in the impacted component and possibly in the dropped object. Generally this involves large plastic strain and significant structural damage to the impacted component. The strain energy dissipation is estimated from force deformation relationship for the component and object, where the deformations in the component shall comply with ductility and stability requirements. The load bearing functions of the structure shall remain with the damages imposed by a dropped object. Dropped objects are rarely critical to global integrity of the installation and will mostly cause local damage. The structural effect from dropped object may either be determined by nonlinear dynamic finite element analyses or by energy consideration combined with simple elastic plastic methods as given in A.4.2 to A4.5 in NORSOK N-004, [ref/4/]. In this thesis impact effect of dropped object calculation done by using energy considerations combined with simple elastic-plastic method. This method is the most conservative method and based on fully plastic collapse mechanism. Dropped object impact detailed calculations are presented in Appendix C.

4.9.2 Explosion loads Explosion loads are characterized by temporal and spatial pressure distribution. The most important temporal parameters are rise time, maximum pressure and pulse duration. For components and sub structure the explosion pressure shall normally be considered uniformly distributed. On global level the spatial distribution is normally non-uniform both with respect to pressure and duration. The response to loads may either be determined by non-linear dynamic finite element analysis or by simple calculation model based on SDOF (single degree of freedom) analogies and elastic- plastic methods of analysis.

Page 30

If none-linear dynamic finite element analysis is applied all effect described in the following paragraphs shall either be implicitly covered the modelling adopted or subjected to special consideration, whenever relevant. In the sample calculation models the component is transformed to a single spring-mass system exposed to an equivalent load pulse by means suitable shape function for the displacements in the elastic and elastic-plastic range. The shape function allow calculation of the characteristic resistance curve and equivalent mass in the elastic and elastic-plastic range as well as the fundamental period of vibration for the SDOF system in the elastic range. Provided that the temporal variation of the pressure can be assumed to be triangular, the maximum displacement of the component can be calculated from design charts for the (SDOF) single degree of freedom system as a function of pressure duration versus fundamental period of vibration and equivalent load amplitude versus maximum resistance in the elastic range. The maximum displacement shall comply with ductility and stability requirements for the component. The load bearing function of the structure shall remain intact with the damage imposed by the explosion loads. In addition, the residual strength requirements given in section A.7

NORSOK N-004 shall be comply with. In this thesis explosion action calculation based on the simple method (SDOF) analysis and the explosion loads have been defined in design brief. The module is subjected to internal blast pressure of 0.06Mpa. In analysis of explosion loads on offshore module two different scenarios have been considered. It has been assumed that the explosion will happen in first floor or in the second floor. Calculation results are presented in appendix C.

Page 31

4.9.3 Fire loads The characteristic fire structural action is temperature rise in exposed member. The temporal and spatial variation of temperature depends on the fire intensity, whether or not the structural members are fully or partly engulfed by the flame and what extend the members are insulted. Structural steel expands at elevated temperature and internal stresses are developed in redundant structures. These stresses are most often a moderate significance with respect to global integrity. The heating cause also progressive loss of strength and stiffness and is, in redundant structures, accompanied by redistribution of forces on from members with low strength to members that retain their load bearing capacity. A substantial loss of load bearing capacity of individual members and subassemblies may take place, but load bearing function of the installation shall remain intact with during exposure to the fire action. Structural analysis may be performed on either 

individual members



Subassemblies entire system.

The assessment of fire load effect and mechanical response shall be based on either 

simple calculation methods applied to individual member,



general calculation method or combination

Simple calculation methods may give overly conservative results. General calculation methods in which engineering principle are applied in a realistic methods to specific applications. In this thesis simple calculation method has been used for analysis of fire action on new offshore module structure as temperature domain and results are presented in appendix C. Calculation done according to EC3 NS-EN 1993-1-2:2005 + NA: 2009 .Design of steel structures part 1-2: general rules structural fire design. [ref/14].

Page 32

5.0

DESIGN CONSIDERATION TRANSPORT PHASE

During transportation of the module structure from the fabrication yard to its offshore location, the forces that will affect structure depend upon the structure’s weight and geometry and the support condition supplied by the barge or by buoyancy, as well as on the environmental condition that prevail during transportation. The transport analysis will consider ULS-a/b load conditions. Relevant loads are the module self-weight, secondary/ or outfitting steel, dead weight of pumps, barge accelerations and wind. Barge accelerations calculation are done in according to the simplified motion criteria presented in (DNV 1996) rules for planning and execution of marine operation part 2 and chapter 2 section 2.2.3.[ref/6]. The conditions for using simplified criteria are; -

towing in open sea on a flat top barge with length greater than 80m,

-

barge natural period in roll equal or less than 7 sec.,

-

object positioned closed to middle of the ship and with no part overhanging the barge sides, and

-

object weight less than 500 tons

Wind loads and barge accelerations are applied in eight directions at 45 degrees interval covering the complete rosette. They will always be applied in the same direction

Page 33

5.1

BARGE ACTION IN TRANSPORT

Basic Load case, 41-46 barge acceleration in transport: The barge acceleration calculated according to (DNV 1996) Marine Operation part2. Refer to appendix B, for detailed calculation.

Table 4.1 barge accelerations in transport

Direction +x -x +z -z +y -y

5.2

Acceleration 0.5945g -0.5945g 0.8668g -0.8668g 0.35g -0.45g

Axis Horizontal Horizontal Horizontal Horizontal Vertical Vertical

WIND ACTION IN TRANSPORT

Basic Load case, 61- 64 wind action in transport: During the transportation of module from onshore to the offshore field the module will be subjected to wind from all directions. The wind pressure (1.0 KN/m2) in transport is taken form (DNV 1996) Marine Operations part 2. Result of wind action calculation represented in appendix B.

Page 34

6.0

GLOBAL STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION

The aim of structural design analysis is to obtain a structure that will be able to withstand all loads and deformations to which it is likely to be subjected throughout its expected life with a suitable margin of safety. The offshore module structure must also fit the serviceability requirements during normal operation. It is necessary to consider all three stages as different members may be critical in different conditions. In practice the offshore module structure must be analyzed for all three conditions. Structural analyses were therefore carried out for three primary load conditions, inplace, lift and transportation. The structural analysis and design optimization flow chart presented below shows procedure has been done to overcome optimized and well integrated structure for inplace, transport and lifting condition.

Page 35

6.1

INPLACE CONDITION

Inplace load combinations shall consider ULS-a, ULS-b and ALS load conditions with contribution from relevant load types as defined in chapter 4. Load combinations are established to give maximum footing reactions at the interface between the offshore module structure and the existing production platform structure, and resulting stresses in the structure. Environmental loads, wind and earthquake, shall be considered acting from eight different directions at 45 degrees interval covering the complete rosette, but in this thesis wind action has been considered for five directions during in place design. The module structure is analyzed for wind with average recurrence period of 100 years. Considering the module structure height above water level, Ice load is neglected in these analyses. Considering the small load magnitude of 0.5 KN/m2 it is concluded that the snow load can be neglected in the global analyses. Load combinations for inplace analyses are performed in Staad.ProV8i.

6.1.1 ULS INPLACE DESIGN CHECK ACCORDING TO EC3

The objective of structural analysis is to determine load effects on the structure such as displacement, deformation, stress and other structural responses. These load effects define the sizing of structural components and are used for checking resistance strength of these components. The structure shall comply with limit state criteria defined by design rules and codes. The structural analysis of the module structure for inplace condition is based on the linear elastic behavior of the structure. As mentioned earlier the module structure is exposed to different loads. The structural weight and permanent loads are considered as time-independent loads. Further, the environmental loads are considered as time-dependent loads. Different wind durations are calculated and 3.0 second wind gust is selected and applied to compute the static wind load for 100 year return period.

Page 36

These analyses are performed and results presented for each condition and all members of the structure have utilization factor less than UF≤1.00 for the applied loads in inplace operational condition. This means that the members have sufficient capacity to withstand the applied loads.

6.1.2 SLS DESIGN CHECK The objective of this analysis is to satisfy the service ability limit criteria of the new offshore module structure to make sure that the module remains functional for its intended use. The new module structure has sufficient capacity under ULS design check and the analysis is conservative. This result indicates that the structure has sufficient capacity under service limit state too. Because the SLS criteria states that the load and material factor is 1.0 for dead and live load and no environmental load will be included. Therefore it has been concluded that the SLS criteria satisfied during normal use and no need for further check.

6.2

LIFTING CONDITION

The purpose of lifting analysis is to ensure that lifting operation offshore shall be performed in safe manner and in accordance with the prevailing regulations. The module will be lifted onto the platform by a heavy lift vessel. All lifting factors and design of lifting pad eyes shall be according to NORSOK R-002. There are several lifting methods such as single hook, multiple hooks, spreader bar, no spreader, lifting frame, three part sling arrangement, four part sling arrangement etc. In this case the lifting arrangement used is steel wire with four-sling arrangement which is directly hooked on to a single hook on the crane vessel. Vessel motion, crane motion and object motion are important issues that must be considered carefully during lifting operation.

Page 37

Vessel motion Vessel motion can be defined by the six degrees of freedom (DOF) that is experienced by a vessel at sea. The six DOF motions comprise of three translation and three rotational motions. The importance of each of the six DOF in marine operation varies, depending on the type of operation, for instance: 

Heave is most important for vertical operations.



Roll is most important for crane operation over the side.

The rotational motions (roll, yaw and pitch) are the same for all point of vessel, while the translational motions (heave, surge and sway) are coupled and dependent on the motions of the other degrees of freedom.

Crane motion Motion in the carne can be a challenging issue during lifting and installing new equipment on platforms. The motion can be caused by several different factors where wind, wave and snap load are the most common. Wind can cause some motion in the crane, but in cases of strong wind the lifting operation will be postponed. Object motion The motion of object can be caused by the same factor as motion in the crane. Wind will cause movement on the object depending on the design and area of the object. For the offshore module structure there are no large surfaces hence the motion caused by the wind can be neglected. These motions are topics that are too broad to explain in this thesis and therefore mentioned here very briefly. In according to the design brief the offshore module structure will be lifted by using four points sling arrangement which is shown in the following figure.

Page 38

Figure 6.1 Four point sling arrangement (source: NORSOK R-002) For lifting condition the governing load condition is ULS-a. Load factors such as Center Of Gravity factor, Dynamic amplification factor, Skew load factor, Design factor and Center of Gravity envelope factor must be calculated and applied to find the total lifting load. An additional consequence factor is applied to various part of the module structure depending on their criticality during lifting operations. In this report all calculations are done according to the lifting equipment standard NORSOK R-002 [ref. /7/].

Page 39

The members are categorized in three groups: 1. Single critical members, these are members connected to the lifting point and are assigned a consequence factor of 1.25 2. Reduced critical members, these are main members not connected to the lifting points, and assigned a factor of 1.10. 3. None critical members, these are members considered to have no impact on the lifting operation, and are assigned a consequence factor of 1.00.

Figure 6.2 lifting design model (source: Staad.ProV8i)

Page 40

6.2.1 LIFTING DESIGN LOAD FACTOR Load factors relevant for lifting design are summarized and presented as follows:

Center of gravity (COG)

When completing lift operation of a structure it desirable to have lifting hook placed above the object’s center of gravity to ensure that vertical the hook to prevent the object from tilting when it’s lifted into the air. To cover the uncertainties in weight and center of gravity a factor is multiplied with the estimated weight of structure to obtain a design weight to be used for further analysis in lifting. From NORSOK R-002 we can find two different COG factors can be used for lifting analysis. For weighed object or object with a sample weight pattern:

WCOG = 1.0

For un-weighted object or object with a complex weight pattern: WCOG = 1.1 In this thesis factor of WCOG = 1.1 is used in lifting analysis.

Dynamic Amplification Factor (DAF)

Offshore lifting is exposed to significant dynamic effects that shall be taken into account by applying an appropriate dynamic amplification factor. The NORSOK R-002 uses different DAF factors for offshore and onshore lifts. Offshore lift means the lift from the boat on to the platform, every lift operation inside the platform is classified as onshore. From section F.2.3.5 in NORSOK R-002 we can see that onshore lift under 50 tones should use 1.5 as DAF factor. For offshore lifts over 50 tones the following equation shall be used to obtain DAF factor. DAF = 1.70-0.004*WLL for WLL> 50 tones (F.2-2)

Page 41

Working load limit The working load limit (WLL) for the complete is defined as follow: WLL = W* W.CF Where WLL = weight of the lifted object W including weight contingency factor and excluding the sling set W = estimated weight of the lifted object WCF = weight contingency factor

Skew Load Factor (SKL)

Skew loads are additional loads from redistribution due to equipment and fabrication tolerances and other uncertainties with respect to force distribution in the rigging arrangement. The skew load (SKL) is used as a safety factor to secure extra loads which are encountered because of mismatches in sling length. This may arise as a consequence of human failure or fabrication failure. Single hook four point lift without spreader bar the skew load factor can be taken 1.25 according to NORSOK R-002 section F.7.2.3.4 (Table F.3).

Design Factor (DF)

Design factor is combination of the consequence factor (ᵞc) and partial load factor (ᵞp). The partial load factor is 1.34 for all cases from the NORSOK R-002, but the consequence factor varies from 1.00 to 1.25. In this present case and most other cases when the lifting pad eyes are attached directly to the object, the consequence factor will be 1.25 which resulting that the design factor will be 1.68. Design load factor DF defined as:

ᵞ ᵞ

DF = p * c

Where:

Page 42

ᵞp = partial load factor ᵞ

C=

consequence factor

These factors (DF) are variable for different members of module structure. They have been selected as listed below in table 6.2.1 Table 6.2.1 DF factors (NORSOK R-002)

ᵞp

ᵞc

DF = p * c

1.34

1.25

1.68

Lifting equipment (spreader bar, shackles, sling etc.)

1.34

1.25

1.68

Main elements which are supporting the lift point

1.34

1.10

1.48

Other structural elements of the lifted object

1.34

1.00

1.34

ELEMENT CATEGORY Lifting points including attachment to object

ᵞ ᵞ

Single critical elements supporting the lifting point

Finally these factors were used for analysis of module structure under lifting condition. WCF = 1.10 COG = 1.10 DAF = 1.4316 SKL = 1.25 ULS-a = 1.30



C

= 1.00/1.10/1.25   

ᵞtot = WCF*COG*DAF*SKL*ULS-a*ᵞc = 3.5186 Main element ᵞtot= WCF*COG*DAF*SKL*ULS-a*ᵞc = 3.1000 Other element ᵞtot =WCF*COG*DAF*SKL*ULS-a*ᵞc =2.8149 Lifting points

Page 43

6.3

TRANSPORT CONDITION

The new structure shall be fabricated on onshore, and transported to the” Block Gold filed PH” on a barge where wind load and barge acceleration shall be calculated according to (DNV1996) Rules for planning and execution of marine operation. Marine operations shall be properly planned at all stages of a project or operation. The marine operation shall as far as feasible be based on the use of well proven principles, techniques, system and equipment. The feasibility of extending proven technology shall be thoroughly documented. Marine operation manuals shall be prepared and shall cover all phases of the work, from start of operations for the operation to completed demobilizations, and including organization and communication and a program for familiarization of personnel, a description of and procedure and acceptance criteria for testing/commission of all equipment to be used for the operations, description of Vessel and sites, detailed procedure for all stages of the operations, towing routes with estimated sailing time and possible ports of refuge , definition of decision , hold and approval points and criteria for starting of each phase of the operation, acceptable tolerances, monitoring and reporting details, verification that the operation have been completed in accordance with the design and requirement stated in standard and regulation for marine operations. Environmental criteria to be adopted for the planning of transportation shall have a return period of 10 years for the pertinent season and area. Less severe criteria may be used for inshore transportation routes where suitable ports of refuge along the route have been identified, provided an equivalent overall safety is maintained. Design of grillages and sea-fastening shall facilitate load out and subsequent release, shall provide adequate vertical and horizontal support and shall be such that the welding and flamecutting do not inflict damage to the transported object. The contribution from friction shall be disregarded in the design of sea-fastening and grillage. The transportation barge shall be equipped with access ladders, minimum one on each side. The sea fastenings fix the offshore module structure to the barge that transports it from the fabrication yard to its offshore location. The module must be fixed to the barge in order to withstand barge motions in rough sea. The sea fastenings are determined by the positions of Page 44

the framing in the module as well as the hard points of the barge. A structural analysis will be run again, taking into consideration the fixation points and the movement of the barge. This phase requires cooperation between the installation company and the engineering firm that performed the design. Cooperation between the installation’s company and engineering company in early phase of the project is important for safe transportation and installation of the module. Transportation in open sea is a challenging phase in offshore projects. Careful planning is required to achieve a safe transport. Transporting can be done on a flattop barge or on the deck of the heavy lift vessel [HLV]. In this thesis a standard North Sea Barge, UGLAND UR 171, has been selected for the transportation of the module structure. E-mail: from Aker Solutions,[ref /10/].

Figure 6.3 Standard barge uses in North Sea Oil industry (Aker Solutions). Barge accelerations are action loads which will be applied on the module structure in transportation condition. The intention with barge acceleration calculation is to identify applicable accelerations for the barge tow and to calculate the acceleration load that will be imposed on the structure. The applicable barge accelerations are calculated and applied according to DNV, Guidelines for marine transportations [ref./6/] Page 45

During transport the module structure will be subjected to both wind and barge acceleration action. The governing loads action during transport is self-weight of offshore module structure, wind load and barge accelerations. The calculation results for wind and barge accelerations in transport condition are presented in appendix B.

70

DESIGN CHECK OF PADEYES

7.1

LOCAL ANALYSIS OF PADEYES

The lifting arrangement chosen for the new offshore module structure calls for 4 pad eyes to be installed on top of the structure. The pad eyes are to be considered as temporary and removed before the module structure enters in its normal use. Several calculation methods are available, but in this thesis NORSOK R-002 lifting equipment design used. In this thesis the pad eyes TYPE 2 (WLL≤ 50T) [ref. /7/] is used for lifting of offshore module structure. The following stresses are evaluated and presented: •

Pin hole stress



Main plate stress



Cheek plate stress



welds

Pad eye body is usually welded to main structure. In some occasion main body may be welded to a plate and bolted to main structure for easier removal. Stress checks shall be done on body and welded connection. In this thesis the pad eyes will be welded to main beam on the top of the module structure.

Page 46

Figure 7.1 pad eyes (Autodesk) All loads are to be transferred from main structure to the pad eye structures. The pad eyes have been designed in according NORSOK R-002 lifting equipment design. The lifting slings must have sufficient length so that angle of the slings meets the criteria set. To minimize transverse loading on the pad eyes, they should be tilted to match the angle of sling. Lifting gear such as sling and shackles are not part of this report. Pin size is based on the highest sling load and a green pin is chosen from www.greenpin [ref. /9/]. Offshore module structure has a total self-weight under lifting 77.31 tones and therefore has been chosen a standard shackles for working load limit of 85 tones. A copy of data sheet of a standard green pin and shackle is shown in the following figure.

Page 47

Figure 7.2 standard shackles. (greenpin.com) Calculation result of local analysis of pad eyes presented in appendix D. Page 48

8.0

DESIGN CHECK OF CONNECTIONS

8.1

BOLTED CONNECTIONS

The module structure will be connected by bolts to the main column of existing production platform by their two lower support point. The bolt connection is checked according to NSEN EC3 1993 1-8 [ref. /5/] section 3.4.1 and 3.6.1. Results are presented in appendix E.

Figure 7.2 Sketch of plate and bolts for bottom support of new module (Auto desk) Page 49

8.2

WELDED CONNECTIONS

All welds on the module structure are in general full pen welds and not subjected to further checks. However, the welded connection between the column and plates which are going to connect the bottom support of the new module to the existing platform are 8 mm fillet welds. These welds are checked according to EC3 1993-1-8 section 4.5 and have enough capacity to withstand to the prevailing forces. The highest joint force will be resulted in inplace phase from earthquake 10-4 years (ALS) load combination and therefore weld capacity has been checked in the most critical joint with highest axial force on each member. Analyses result from Staad. Prov8i show that highest tensile axial force happen at node 9. For calculation results refer to the appendix E.

Figure 7.3 sketch of joint between braces and main beams (Auto desk)

Page 50

9.0

CONCLUSIONS

The main objective of this thesis was to do design, analysis and calculation of an offshore module to obtain a proper weighed structure that has sufficient capacity and strength with respect to normal operation, transportation and installation phases. Apart from these factors the goal of design analysis and optimization of profile types in this structure is to achieve that has high safety with respect to life, environment and economic risk.

In this master thesis structural analysis and design of the gas injection module structure to ensure the required safety and serviceability requirements against different load and load combinations (i.e. dropped object impact load, explosion load, fire load, live load, wind load and earthquake) by considering all phases such as inplace, transport and lifting condition, were done to obtain the main goals. The module structure was designed, modeled and analyzed by using the Staad. ProV8i. New offshore module structure designed and analyzed for three different conditions, inplace, transport and offshore lifting condition. In inplace the module structure has been designed and modeled to withstand against all loads and load combination assumed to occur during the estimated life period for normal operation. Global structural analysis is done in Staad.Pro.V8i and results show that the designed offshore module structure has sufficient capacity to withstand normal operating loads, such as wind, laydown loads, earthquake loads. Highest utilization factor from the Staad.Pro analyses is 0.941 which is less than the design limit criteria, UF≤1.00. In inplace the module structure is going to be subjected dropped object impact load scenario, explosion loads and fire loads. The calculation of affected beams in case of dropped object impact load based on fully plastic criteria were done to show that the module structure has enough capacity to withstand dropped object impact load without damaging the instruments which are going to be installed under the offshore module structure. Resulting UF from hand calculations is 1.00. Explosion loads are the second accidental loads that have been considered that might be happen in inplce phase. Structural analysis was done by Staad Pro and results obtained by analysis shows that the UF in this cases are within the acceptance limit criteria set in design basis and highest UF = 0.984 which is less than the UF≤1.00. Page 51

Fire action is the last accidental loads which have been considered for inplace condition, simple calculation method has been used to check module capacity against fire action. Hand calculations were done for the most effected beams with the highest bending moment and results shows that the new offshore module structure must be protected against fire loads to fulfill the design limit criteria basis. Transport was the second step in the analysis. This condition was also analyzed by the Staad.Pro.V8i. Structural analysis of this model shows that the designed model has enough capacity in most of the members to withstand the imposed loads during transportation. But braces are used in the south and north part of the module had utilization factors more than their capacity (UF>1.00) and therefore some temporary braces used to prevent failing of the members and fulfill the criteria was set in design limit criteria. The temporary braces used only during the transportation and shall be removed before the module will be placed to its final position. After putting two extra braces structural analysis was run again for transportation phase the result shows that module has enough capacity and the highest utilization factor is (UF= 0.973) which is small compared to design limit criteria UF≤1.00 analysis results are presented in appendix A. Third step comprise the lifting condition and design of pad eyes. The structural analysis was run for lifting condition and analysis results shows that the module has enough capacity during offshore lifting, the highest utilization factor for lifting analysis is 0.996 which is fairly modest compared design limit criteria UF≤1.00. Suitable pad eyes were chosen according NORSOK R-002 lifting equipment for lifting design and necessary calculations were done to check that pad eyes have enough capacity to withstand subjected load during lifting of module structure. Calculation results show that pad eyes have utilization factors as (UF= 0.595) which are less than UF≤1.00 defined in design limit criteria. Finally a check of bolted connections sewing the module structure to the main column of existing production platform “Black Gold Filed PH” had to be done. Calculation and design check were done in according to Euro code3-1-8[Table 3.3] section 3.4.1 and 3.6.1 Calculation results show that bolted connections have enough capacity to withstand imposed load. According to my experience on working with this thesis i would like to mention some steps to be considered during the design and analysis of such offshore module until we reach to the suitable cross section for initial design. Page 52



It is advisable to do analysis for each condition separately, by starting with initial design for inplace condition and identify the most critical load cases that might have great impact on selection of profile types such as accidental loads (dropped object impact load on top of module, explosion loads).



Secondly we shall run analyses for all load cases that might happen during the life of offshore module for normal use of structure and guess initial cross section for this condition.



The module shall be analyzed and checked for transportation condition to show that offshore module with the selected profiles is suitable for this phase ae well. If the results from different analyses are acceptable then we can run analyses for lifting condition to check the module capacity for this phase.

When we get some initial profiles then we can follow the structural analysis and optimization flow chart which was presented in chapter 6. This proposed methodology in this thesis provides a very good platform for practicing engineers who are going to analysis and design of offshore module structures in future. The accuracy and the efficiency are the main advantages of proposed methodology.

Page 53

10.0 REFRENCES

[1]

STRUCTURAL DESIGN BRIEF, AKER SOLUTIONS 19.12.2014

[2]

NORSOK STANDARD N-001 STRUCTURAL DESIGN Rev.4 Feb. 2004

[3]

NORSOK STANDARD N-003 ACTIONS AND ACTIONS EFFECTS Edition 2, Sep. 2007

[4]

NORSOK STANDARD N-004 DESIGN OF STEEL STRUCTURES Rev.2 Oct2004

[5]

NS-EN 1993 -1-8 NA 2005, Euro Code 3 DESIGN OF STEEL STRUCTURES Rev. May 2005

[6]

DET NORSK VERITAS (DNV) RULES FOR MARINE OPERATIONS Rev. Jan.1996

[7]

NORSOOK STANDARD LIFTING EQUIPMENT (R-002) EDITION 2 Sep.2012

[8]

NS 3472 DESIGN OF STEEL STRUCTURES–CALCULATION AND DIMENSIONERING Rev.3 Sep. 2001

[9]

WWW.GREENPIN.COM

[10]

E-MAIL: FROM JOHAN CHRISTIAN BRUN, AKERSOLUTIONS.REGARDING

CHOICE OF BARGE FOR TRANSPORTATION OF STRUCTURE. March 2015 [11]

COLBEAM NS3472-.2.5

[12]

STÅLHÅNDBOK DEL 3 V.2010

[13]

DESIGN OF STEEL STRUCTURES NSEN 1993-1-1: 2005 NA 2008.

[14]

DESIGN OF STEEL STRUCTURES,PART 1-2: GENERAL RULES

STRUCTURAL FIRE DESIGN.

Page 54

[15]

DNV-OS-C101 OFFSORE STEEL STRUCTURES GENERAL (LRFD METHOD) JULY 2014

[16]

WWW.BENTLEY.COM

[17]

WWW.PTC.COM

(STAAD PROV8i)

(MATHCAD 15)

11.0 APPENDICES



APPENDIX A

STAAD.ProV8i ANALYSIS- INPUT AND OUTPUT FILES



APPENDIX B

BASIC LOAD CASES AND LOAD COMBINATION



APPENDIX C

ALS CONDITION AND DOP IMPACT CALCULATION



APPENDIX D

DESIGN CHECK OF PAD EYES



APPENDIX E

DESIGN CHECK OF CONNECTION

Page 55

APENDICES APENDIX A ......................................................................................................................................... 57 A.1

GEOMETRY ............................................................................................................................ 58

A.2

STAAD. Pro INPUTFILE INPLACE DESIGN ............................................................................... 74

A.3

STAAD.Pro INPUT FILE TRANSPORT DESIGN ......................................................................... 88

A.4

STAAD. Pro INPUT FILE LIFTING DESIGN................................................................................ 95

A.5

STAAD. Pro OUTPUT FILE ANALYSIS INPLACE DESIGN ........................................................ 101

A.5.1

Utilization table, reaction summary and displacement summary .............................. 101

A.5.2

Inplace, ULS-a/b wind, LC101-115 ............................................................................... 101

A.5.1.2

Inplace, earthquake ULS-a/b, LC121-158 .................................................................... 112

A.5.1.3

Inplace, earthquake,(ALS), LC161-178......................................................................... 118

A.5.1.4

Explosion loads inplace LC 311-312............................................................................. 124

A.5.1.5

Fire action inplace (ALS) LC 411................................................................................... 129

A.5.1.6

Transport, ULS-a/b, LC181-198 ................................................................................... 134

A.5.1.7

Transport, ULS-b, LC 201-218 ...................................................................................... 140

A.5.1.8

Lift, ULS-a, LC511, LC 512, LC 513 ................................................................................ 146

APENDIX B ....................................................................................................................................... 151 B.1

LAYDOWN LOAD CALCULATION .......................................................................................... 152

B.2

STATIC WIND CALCULATION ............................................................................................... 153

B.3

EARTHQUAKE ACCELERATION CALCULATION ..................................................................... 155

B.4

BARGE ACCELERATION CALCULATION ................................................................................ 158

B.5

VARIABLE FUNCTIONAL LOADS ........................................................................................... 161

B.6

COMBINATION ACTIONS TABLE .......................................................................................... 163

APENDIXC ........................................................................................................................................ 166 C.1

DROPPED OBJECT IMPACT LOAD CALCULATION................................................................. 167

C.2

EXPLOSION LOADS CALCULATION ....................................................................................... 174

C.3

FIRE LOADS DESIGN CALCULATION CHE CK......................................................................... 175

APENDIX D ....................................................................................................................................... 184 D.1

CALCULATION AND DESIGN CHECK OF PAD EYES ............................................................... 185

APENDIX E........................................................................................................................................ 196 E.1

DESING CHECK OF BOLTS AND WELDS CONNECTION ......................................................... 197

Page 56

APENDIX A GEOMETRY

STAAD PRO INPUT FILE INPLACE DESIG

STAAD PRO INPUT FILE TRANSPORT DESIGN

STAAD PRO INPUT LIFTING DESIN

STAAD PRO OUT PUT FILE ANALYSIS INPLACE DESIGN

Page 57

A.1

GEOMETRY

Figure Error! No text of specified style in document.-1a beam local coordinate axes

Figure Error! No text of specified style in document.-2b All members with nod numbers

Page 58

BASIC LOAD CASES in inplace

Figure Error! No text of specified style in document.-3

LC1, self- weight accelerated downwards

LC11and LC21are identical to LC 1, but accelerated horizontally.

Figure Error! No text of specified style in document.-4

LC2 secondary steel, -y direction

LC12 and LC22 are identical to LC 2, but accelerated horizontally Page 59

Figure Error! No text of specified style in document.-4 downward, -y direction

LC3 equipment dead load accelerated

LC13 and LC23 are identical to LC 3, but accelerated horizontally

Figure Error! No text of specified style in document.-5 downward, -y direction

LC4 Functional live load accelerated

LC14 and LC24 are identical to LC4, but accelerated horizontally

Page 60

Figure Error! No text of specified style in document.-6 direction

LC5

Laydown load accelerated downward, -y

Figure Error! No text of specified style in document.-7

LC5

Laydown load, + x direction

Page 61

Figure Error! No text of specified style in document.-8

LC5

Figure Error! No text of specified style in document.-9

LC31 wind action inplace, +X direction

Page 62

Laydown load, + Z direction

Figure Error! No text of specified style in document.-10

LC32 wind action inplace, -X direction

Figure Error! No text of specified style in document.-1

L33 wind action inplace, +Z direction

Page 63

Figure Error! No text of specified style in document.-12

LC34 wind action inplace, -Z direction

Figure Error! No text of specified style in document.-13

LC41 earthquake 100 year , +X direction

Page 64

Figure Error! No text of specified style in document.-14

LC42 earthquake 100year, -X direction

Figure Error! No text of specified style in document.-15

LC43 earthquake 100 year, +Z direction

Page 65

Figure Error! No text of specified style in document.-16

LC44 earthquake 100 year, -Z direction

Figure Error! No text of specified style in document.-17

LC45 earthquake 100 year, +Y direction

Page 66

Figure Error! No text of specified style in document.-8

LC46 earthquake 100 year, -Y direction

Figure Error! No text of specified style in document.-19

LC 51 earthquake 10000 year, +X direction

Page 67

Figure Error! No text of specified style in document.-20

LC52 earthquake 10000 year, -X direction

Figure Error! No text of specified style in document.-21

LC53 earthquake 10000 year, +Z direction

Page 68

Figure Error! No text of specified style in document.-22

LC54 earthquake 10000 year, -Z direction

Figure Error! No text of specified style in document.-23

LC55 earthquake 10000 year, +Y direction

Page 69

Figure Error! No text of specified style in document.-24

LC56 earthquake 10000 year, -Y direction

Figure Error! No text of specified style in document.-25

LC 300 explosion loads at second floor

Page 70

Figure Error! No text of specified style in document.-26

LC 301 explosion loads at first floor

Basic load cases in transport

Figure Error! No text of specified style in document.-27

Page 71

LC61 wind action transport, +X direction

Figure Error! No text of specified style in document.-28

LC62 wind action transport, -X direction

Figure Error! No text of specified style in document.-29

LC53 wind action transport, + Z direction

Page 72

Figure Error! No text of specified style in document.-30

LC54 wind action transport, -Z direction

Figure Error! No text of specified style in document.-31

LC1 self-weight lifting phase

Page 73

A.2

STAAD. Pro INPUTFILE INPLACE DESIGN

STAAD SPACE START JOB INFORMATION ENGINEER DATE 5-Jan-15 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 9.5 0; 3 10 9.5 0; 4 10 0 0; 5 0 0 5.5; 6 0 9.5 5.5; 7 10 9.5 5.5; 8 10 0 5.5; 9 0 4.75 5.5; 10 10 4.75 5.5; 11 0 4.75 0; 12 10 4.75 0; 13 5 9.5 5.5; 14 5 4.75 5.5; 15 5 0 5.5; 16 5 9.5 0; 17 5 4.75 0; 18 5 0 0; 19 2 9.5 0; 20 2 9.5 5.5; 21 4 9.5 0; 22 4 9.5 5.5; 23 6 9.5 0; 24 6 9.5 5.5; 25 8 9.5 0; 26 8 9.5 5.5; 43 0 9.5 2.75; 44 10 9.5 2.75; 45 2 9.5 2.75; 46 4 9.5 2.75; 47 6 9.5 2.75; 48 8 9.5 2.75; 63 1.429 0 0; 64 1.429 0 5.5; 65 2.858 0 0; 66 2.858 0 5.5; 67 4.287 0 0; 68 4.287 0 5.5; 69 5.716 0 0; 70 5.716 0 5.5; 71 7.145 0 0; 72 7.145 0 5.5; 73 8.574 0 0; 74 8.574 0 5.5; 75 0 0 2.75; 76 1.429 0 2.75; 77 2.858 0 2.75; 78 4.287 0 2.75; 79 5.716 0 2.75; 80 7.145 0 2.75; 81 8.574 0 2.75; 82 10 0 2.75; 83 1.429 4.75 5.5; 84 1.429 4.75 0; 85 2.858 4.75 5.5; 86 2.858 4.75 0; 87 4.287 4.75 5.5; 88 4.287 4.75 0; 89 5.716 4.75 5.5; 90 5.716 4.75 0; 91 7.145 4.75 5.5; 92 7.145 4.75 0; 93 8.574 4.75 5.5; 94 8.574 4.75 0; 95 10 4.75 2.75; 96 0 4.75 2.75; 97 1.429 4.75 2.75; 98 2.858 4.75 2.75; 99 4.287 4.75 2.75; 100 5.716 4.75 2.75; 101 7.145 4.75 2.75; 102 8.574 4.75 2.75; 128 0 0 -0.5; 129 10 0 -0.5; 130 0 9.5 -0.5; 131 10 9.5 -0.5; 132 3 9.5 0; 133 3 9.5 5.5; 134 7 9.5 0; 135 7 9.5 5.5; 136 9 9.5 0; 137 9 9.5 5.5; 138 3 9.5 2.75; 139 5 9.5 2.75; 140 7 9.5 2.75; 141 9 9.5 2.75; 142 1 9.5 0; 143 1 9.5 5.5; 144 1 9.5 2.75; 145 0 7.125 0; 146 10 7.125 0; MEMBER INCIDENCES 1 1 11; 2 2 142; 4 5 9; 5 6 143; 6 7 10; 7 2 43; 8 3 44; 13 9 6; 14 10 8; 17 12 4; 21 13 24; 23 14 13; 25 15 14; 26 16 23; 28 17 16; 30 18 17; 31 19 132; 32 20 133; 33 19 45; 34 21 16; 35 22 13; 36 21 46; 37 23 134; 38 24 135; 39 23 47; 40 25 136; 41 26 137; 42 25 48; 67 43 6; 68 44 7; 73 43 144; 74 45 138; 75 46 139; 76 47 140; 77 48 141; 103 6 14; 106 9 15; 107 2 9; 108 11 5; 109 3 10; 110 12 8; 116 5 64; 117 15 70; 119 18 69; 120 1 63; 121 63 65; 122 64 66; 124 65 67; 125 66 68; 127 67 18; 128 68 15; 130 69 71; 131 70 72; 133 71 73; 134 72 74; 136 73 4; 138 1 75; 145 4 82; 146 75 5; 153 82 8; 154 75 76; 155 76 77; 156 77 78; 157 78 79; 158 79 80; 159 80 81; 160 81 82; 161 74 8; 162 11 84; 163 17 90; 164 12 95; 165 10 93; 166 14 87; 167 9 96; 168 83 9; 169 84 86; 171 85 83; 172 86 88; 174 87 85; 175 88 17; 177 89 14; 178 90 92; 180 91 89; 181 92 94; 183 93 91; 184 94 12; 186 95 10; 194 96 97; 195 97 98; 196 98 99; 197 99 100; 198 100 101; 199 101 102; 200 102 95; 256 96 11; 269 20 45; 270 22 46; 271 24 47; 272 26 48; 273 128 1; 274 129 4; 275 130 2; 276 131 3; 301 132 21; 302 133 22; 303 134 25; 304 135 26; 305 136 3; 306 137 7; 307 138 46; 308 139 47; 309 140 48; 310 141 44; 311 132 138; 312 16 139; 313 134 140; 314 136 141; 315 133 138; 316 13 139; 317 135 140; 318 137 141; 319 142 19; 320 143 20; 321 144 45; 322 142 144; 323 143 144; 372 97 84; 373 97 83; 374 98 86; 375 98 85; 376 99 88; 377 99 87; 378 100 90; 379 100 89; 380 101 92; 381 101 91; 382 102 94; 383 102 93; 384 76 63; 385 76 64; 386 77 65; 387 77 66; 388 78 67; 389 78 68; 390 79 69; 391 79 70; 392 80 71; 393 80 72; 394 81 73; 395 81 74;

Page 74

444 15 10; 445 14 7; 446 11 145; 447 12 146; 448 145 2; 449 146 3; 450 145 142; 451 146 136; ELEMENT INCIDENCES SHELL 396 2 142 144 43; 397 142 19 45 144; 398 19 132 138 45; 399 132 21 46 138; 400 21 16 139 46; 401 16 23 47 139; 402 23 134 140 47; 403 134 25 48 140; 404 25 136 141 48; 405 136 3 44 141; 406 43 144 143 6; 407 144 45 20 143; 408 45 138 133 20; 409 138 46 22 133; 410 46 139 13 22; 411 139 47 24 13; 412 47 140 135 24; 413 140 48 26 135; 414 48 141 137 26; 415 141 44 7 137; 416 11 84 97 96; 417 84 86 98 97; 418 86 88 99 98; 419 88 90 100 99; 420 90 92 101 100; 421 92 94 102 101; 422 94 12 95 102; 423 96 97 83 9; 424 97 98 85 83; 425 98 99 87 85; 426 99 100 89 87; 427 100 101 91 89; 428 101 102 93 91; 429 102 95 10 93; 430 1 63 76 75; 431 63 65 77 76; 432 65 67 78 77; 433 67 69 79 78; 434 69 71 80 79; 435 71 73 81 80; 436 73 4 82 81; 437 75 76 64 5; 438 76 77 66 64; 439 77 78 68 66; 440 78 79 70 68; 441 79 80 72 70; 442 80 81 74 72; 443 81 82 8 74; ***** ELEMENT PROPERTY 396 TO 443THICKNESS 0.01 DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 78.5 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL ***** MEMBER PROPERTY EUROPEAN 1 17 446 TO 449 TABLE ST TUB30030016 103 106 444 445 TABLE ST TUB1201206 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 161 162 TO 169 171 172 174 175 177 178 180 181 183 184 186 256 TABLE ST HE240B 73 TO 77 154 TO 160 194 TO 200 307 TO 310 321 TABLE ST HE140A 372 TO 395 TABLE ST HE220B 273 TO 276 TABLE ST TUB20020010 2 5 7 8 21 26 31 TO 42 67 68 269 TO 272 301 TO 306 311 TO 320 322 323 TABLE ST TUB25025016 23 25 28 30 450 451 TABLE ST TUB12012010 4 6 13 14 TABLE ST TUB2502508 107 TO 110 TABLE ST TUB1401408 CONSTANTS MATERIAL STEEL ALL **** SUPPORTS 128 129 ENFORCED BUT FY MX MY MZ 2 3 ENFORCED BUT FX MX MY MZ ************************************* * SYETEM GENERATED SELF WEIGHT * ************************************* MEMBER RELEASE 110 START MY

Page 75

110 END MY 109 START MY 109 END MY 108 START MY 108 END MY 107 START MY 107 END MY 444 START MY 444 END MY 106 START MY 106 END MY 103 START MY 103 END MY 445 START MY 445 END MY LOAD 1 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT - Y SELFWEIGHT Y -1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 11 LOADTYPE Dead TITLE SYSTEM GENERATED SELFWEIGHT + X SELFWEIGHT X 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 21 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT + Z SELFWEIGHT Z 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 2 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL - Y SELFWEIGHT Y -0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 12 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + X SELFWEIGHT X 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 22 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + Z SELFWEIGHT Z 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 ******************** * EQUIPMENT LOAD * ******************** LOAD 3LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT - Y MEMBER LOAD 372 TO 395 UNI GY -8.829 0 1

Page 76

LOAD 13LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + X MEMBER LOAD 372 TO 395 UNI GX 8.829 0 1 LOAD 23LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + Z MEMBER LOAD 372 TO 395 UNI GZ 8.829 0 1

********************************* * FUNCTIONNAL VARIABLE LOAD* ********************************* LOAD 4 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS - Y MEMBER LOAD 374 TO 381 386 TO 393 UNI GY -3.4 0 1 372 373 382 TO 385 394 395 UNI GY -6.975 0 1 374 TO 381 386 TO 393 UNI GY -7.15 1 2.75 372 373 382 TO 385 394 395 UNI GY -10.725 1 2.75 LOAD 14 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + X MEMBER LOAD 374 TO 381 386 TO 393 UNI GX 3.4 0 1 372 373 382 TO 385 394 395 UNI GX 6.975 0 1 374 TO 381 386 TO 393 UNI GX 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GX 10.725 1 2.75 LOAD 24 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + Z MEMBER LOAD 374 TO 381 386 TO 393 UNI GZ 3.4 0 1 372 373 382 TO 385 394 395 UNI GZ 6.975 0 1 374 TO 381 386 TO 393 UNI GZ 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GZ 10.725 1 2.75 ******************* * LAY DOWN LOAD* ******************* LOAD 5 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD - Y MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -13.87 LOAD 15 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + X MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 13.87 LOAD 25 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + Z MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 13.87 ********************** * WIND LOAD INPLACE* ********************** LOAD 31 LOADTYPE Live TITLE WIND + X MEMBER LOAD 1 4 7 13 67 107 108 138 146 167 256 446 448 UNI GX 1.1 6 8 14 17 68 109 110 145 153 164 186 447 449 UNI GX 0.7765 LOAD 32 LOADTYPE Live TITLE WIND - X MEMBER LOAD 6 8 14 17 68 109 110 145 153 164 186 447 449 UNI GX -1.1 1 4 7 13 67 107 108 138 146 167 256 446 448 UNI GX -0.7765

Page 77

LOAD 33 LOADTYPE Live TITLE WIND + Z MEMBER LOAD 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 446 TO 449 UNI GZ 1.1 4 TO 6 13 14 21 23 25 32 35 38 41 103 106 116 117 122 125 128 131 134 161 302 304 306 320 444 445 UNI GZ 0.7765 LOAD 34 LOADTYPE Live TITLE WIND - Z MEMBER LOAD 4 TO 6 13 14 21 23 25 32 35 38 41 103 106 116 117 122 125 128 131 134 161 165 166 168 171 174 177 180 183 302 304 306 320 444 445 UNI GZ -1.1 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 446 TO 449 UNI GZ -0.7765 ***************************** * SEISMIC LOAD EQ 100 YEAR * ***************************** LOAD 41 LOADTYPE Seismic TITLE EQ 100 + X SELFWEIGHT X 0.04412 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X 0.011 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX 0.39 0 1 374 TO 381 386 TO 393 UNI GX 0.15 0 1 372 373 382 TO 385 394 395 UNI GX 0.3077 0 1 374 TO 381 386 TO 393 UNI GX 0.3154 1 2.75 372 373 382 TO 385 394 395 UNI GX 0.4732 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 0.612 LOAD 42 LOADTYPE Seismic TITLE EQ 100 - X SELFWEIGHT X -0.04412 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X -0.011 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX -0.39 0 1 374 TO 381 386 TO 393 UNI GX -0.15 0 1 372 373 382 TO 385 394 395 UNI GX -0.3077 0 1 374 TO 381 386 TO 393 UNI GX -0.3154 1 2.75 372 373 382 TO 385 394 395 UNI GX -0.4732 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX -0.612 LOAD 43 LOADTYPE Seismic TITLE EQ 100 + Z SELFWEIGHT Z 0.0133 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 -

Page 78

195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z 0.003325 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 TO 276 301 TO 323 372 TO 447 MEMBER LOAD 372 TO 395 UNI GZ 0.1174 0 1 374 TO 381 386 TO 393 UNI GZ 0.045 0 1 372 373 382 TO 385 394 395 UNI GZ 0.093 0 1 374 TO 381 386 TO 393 UNI GZ 0.095 1 2.75 372 373 382 TO 385 394 395 UNI GZ 0.1426 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 0.1844 LOAD 44 LOADTYPE Seismic TITLE EQ 100 - Z SELFWEIGHT Z -0.0133 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z -0.003325 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GZ -0.1174 0 1 374 TO 381 386 TO 393 UNI GZ -0.045 0 1 372 373 382 TO 385 394 395 UNI GZ -0.093 0 1 374 TO 381 386 TO 393 UNI GZ -0.095 1 2.75 372 373 382 TO 385 394 395 UNI GZ -0.1426 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ -0.1844 LOAD 45 LOADTYPE Seismic TITLE EQ 100 + Y SELFWEIGHT Y 0.039 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y 0.0097 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GY 0.3447 0 1 374 TO 381 386 TO 393 UNI GY 0.1327 0 1 372 373 382 TO 385 394 395 UNI GY 0.272 0 1 374 TO 381 386 TO 393 UNI GY 0.2788 1 2.75 372 373 382 TO 385 394 395 UNI GY 0.418 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY 0.54 LOAD 46 LOADTYPE Seismic TITLE EQ 100 - Y SELFWEIGHT Y -0.039 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y -0.0097 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 -

Page 79

136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GY -0.3447 0 1 374 TO 381 386 TO 393 UNI GY -0.1327 0 1 372 373 382 TO 385 394 395 UNI GY -0.272 0 1 374 TO 381 386 TO 393 UNI GY -0.2788 1 2.75 372 373 382 TO 385 394 395 UNI GY -0.418 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -0.54 ******************************* * SEISMIC LOAD EQ 10000 YEAR * ******************************* LOAD 51 LOADTYPE Seismic TITLE EQ 10000 + X SELFWEIGHT X 0.218 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X 0.0545 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX 1.9251 0 1 374 TO 381 386 TO 393 UNI GX 0.9376 0 1 372 373 382 TO 385 394 395 UNI GX 1.5206 0 1 374 TO 381 386 TO 393 UNI GX 1.5587 1 2.75 372 373 382 TO 385 394 395 UNI GX 2.338 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 3.0237 LOAD 52 LOADTYPE Seismic TITLE EQ 10000 - X SELFWEIGHT X -0.218 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X -0.0545 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX -1.9251 0 1 374 TO 381 386 TO 393 UNI GX -0.9376 0 1 372 373 382 TO 385 394 395 UNI GX -1.5206 0 1 374 TO 381 386 TO 393 UNI GX -1.5587 1 2.75 372 373 382 TO 385 394 395 UNI GX -2.338 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX -3.0237 LOAD 53 LOADTYPE Seismic TITLE EQ 10000 + Z SELFWEIGHT Z 0.06 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z 0.015 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 -

Page 80

136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GZ 0.53 0 1 374 TO 381 386 TO 393 UNI GZ 0.26 0 1 372 373 382 TO 385 394 395 UNI GZ 0.42 0 1 374 TO 381 386 TO 393 UNI GZ 0.43 1 2.75 372 373 382 TO 385 394 395 UNI GZ 0.6435 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 0.8322 LOAD 54 LOADTYPE Seismic TITLE EQ 10000 - Z SELFWEIGHT Z -0.06 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z -0.015 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GZ -0.53 0 1 374 TO 381 386 TO 393 UNI GZ -0.26 0 1 372 373 382 TO 385 394 395 UNI GZ -0.42 0 1 374 TO 381 386 TO 393 UNI GZ -0.43 1 2.75 372 373 382 TO 385 394 395 UNI GZ -0.6435 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ -0.8322 LOAD 55 LOADTYPE Seismic TITLE EQ 10000 + Y SELFWEIGHT Y 0.402 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y 0.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GY 3.5493 0 1 374 TO 381 386 TO 393 UNI GY 1.3668 0 1 372 373 382 TO 385 394 395 UNI GY 2.804 0 1 374 TO 381 386 TO 393 UNI GY 2.8743 1 2.75 372 373 382 TO 385 394 395 UNI GY 4.3115 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY 5.5757 LOAD 56 LOADTYPE Seismic TITLE EQ 10000 - Y SELFWEIGHT Y -0.402 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y -0.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD

Page 81

372 TO 395 UNI GY -3.5493 0 1 374 TO 381 386 TO 393 UNI GY -1.3668 0 1 372 373 382 TO 385 394 395 UNI GY -2.804 0 1 374 TO 381 386 TO 393 UNI GY -2.8743 1 2.75 372 373 382 TO 385 394 395 UNI GY -4.3115 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -5.5757 ******************** * EXPLOSION LOAD * ******************** LOAD 300 LOADTYPE Accidental TITLE EXPLOSION LOAD MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY 22.1848 194 TO 200 372 TO 383 UNI GY -30.6977 LOAD 301 LOADTYPE Accidental TITLE EXPLOSION LOAD MEMBER LOAD 194 TO 200 372 TO 383 UNI GY 30.6977 154 TO 160 384 TO 395 UNI GY -30.6977 *********************************** * WIND LOAD COMBINATION ULS-A * ************************************ LOAD COMB 101 INPLACE: ULS-A WIND + X 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 31 0.7 LOAD COMB 102 INPLACE: ULS-A WIND + X - Z 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 31 0.495 34 0.495 LOAD COMB 103 INPLACE: ULS-A WIND - X 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 32 0.7 LOAD COMB 104 INPLACE: ULS-A WIND - X - Z 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 32 0.495 34 0.495 LOAD COMB 105 INPLACE: ULS-A WIND - Z 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 34 0.7 LOAD COMB 111 INPLACE: ULS-B WIND + X 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 31 1.3 LOAD COMB 112 INPLACE: ULS-B WIND + X - Z 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 31 0.919 34 0.919 LOAD COMB 113 INPLACE: ULS-B WIND - X 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 32 1.3 LOAD COMB 114 INPLACE: ULS-B WIND - X - Z 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 32 0.919 34 0.919 LOAD COMB 115 INPLACE: ULS-B WIND - Z 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 34 0.919 ******************************************** * EQ 100 YEAR INPLACE ULS-A COMBINATION * ********************************************* LOAD COMB 121 INPLACE: ULS-A EQ 100 + X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.7 46 0.7 LOAD COMB 122 INPLACE: ULS-A EQ 100 + X - Z - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.495 44 0.495 46 0.7 LOAD COMB 123 INPLACE: ULS-A EQ 100 - X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.7 46 0.7 LOAD COMB 124 INPLACE: ULS-A EQ 100 - X + Z - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.495 43 0.495 46 0.7

Page 82

LOAD COMB 125 INPLACE: ULS- A EQ 100 + Z - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.7 46 0.7 LOAD COMB 126 INPLACE: ULS-A EQ 100 + Z + X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.495 41 0.495 46 0.7 LOAD COMB 127 INPLACE: ULS-A EQ 100 - Z- Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.7 46 0.7 LOAD COMB 128 INPLACE: ULS-A EQ 100 - Z - X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.495 42 0.495 46 0.7 LOAD COMB 131 INPLACE: ULS-A EQ 100 + X +Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.7 45 0.7 LOAD COMB 132 INPLACE: ULS-A EQ 100 +X - Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.495 44 0.495 45 0.7 LOAD COMB 133 INPLACE: ULS-A EQ 100 - X + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.7 45 0.7 LOAD COMB 134 INPLACE: ULS-A EQ 100 - X + Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.495 43 0.495 45 0.7 LOAD COMB 135 INPLACE: ULS-A EQ 100 + Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.7 45 0.7 LOAD COMB 136 INPLACE: ULS-A EQ 100 +Z + X + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.495 41 0.495 45 0.7 LOAD COMB 137 INPLACE: ULS-A EQ 100 - Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.7 45 0.7 LOAD COMB 138 INPLACE: ULS-A EQ 100 - Z - X + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.495 42 0.495 45 0.7

****************************************** * EQ 100 YEAR LOAD COMBINATION ULS-B * ****************************************** LOAD COMB 141 INPLACE: ULS-B EQ 100 + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 1.3 46 1.3 LOAD COMB 142 INPLACE: ULS-B EQ 100 + X - Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 0.919 44 0.919 46 1.3 LOAD COMB 143 INPLACE: ULS-B EQ 100 - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 1.3 46 1.3 LOAD COMB 144 INPLACE: ULS-B EQ 100 - X + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 0.919 43 0.919 46 1.3 LOAD COMB 145 INPLACE: ULS-B EQ 100 + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 43 1.3 46 1.3 LOAD COMB 146 INPLACE: ULS-B EQ 100 + Z + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 43 0.919 41 0.919 46 1.3 LOAD COMB 147 INPLACE: ULS-B EQ 100 - Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 1.3 46 1.3 LOAD COMB 148 INPLACE: ULS-B E Q 100 - Z - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 0.919 42 0.919 46 1.3 LOAD COMB 151 INPLACE: ULS-B EQ 100 + X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 1.3 45 1.3 LOAD COMB 152 INPLACE: ULS-B EQ 100 + X - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 0.919 44 0.919 45 1.3 LOAD COMB 153 INPLACE: ULS- B EQ 100 - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 1.3 45 1.3 LOAD COMB 154 INPLACE: ULS-B EQ 100 - X + Z + Y

Page 83

1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 0.919 43 0.919 45 1.3 LOAD COMB 155 INPLACE: ULS-B EQ 100 + Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 43 1.3 45 1.3 LOAD COMB 156 INPLACE: ULS-B EQ 100 + Z + X + Y 1 1.0 12 1.0 3 1.0 4 0.75 5 0.75 43 0.919 41 0.919 45 1.3 LOAD COMB 157 INPLACE: ULS-B EQ 100 - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 1.3 45 1.3 LOAD COMB 158 INPLACE: ULS-B EQ 100 - Z - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 0.919 42 0.919 45 1.3

****************************************** * EQ 10000 YEAR LOAD COMBINATION ALS * ****************************************** LOAD COMB 161 INPLACE: ALS EQ 10000 + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 51 1.0 56 1.0 LOAD COMB 162 INPLACE: ALS EQ 10000 + X - Z - Y 1 1.0 2 1.0 3 1.0 14 0.75 5 0.75 51 0.707 54 0.707 56 1.0 LOAD COMB 163 INPLACE: ALS EQ 10000 - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 1.0 56 1.0 LOAD COMB 164 INPLACE: ALS EQ 10000 - X + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 0.707 53 0.707 56 1.0 LOAD COMB 165 INPLACE: ALS EQ 10000 + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 1.0 56 1.0 LOAD COMB 166 INPLACE: ALS EQ 10000 + Z + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 0.707 51 0.707 56 1.0 LOAD COMB 167 INPLACE: ALS EQ 10000 - Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 1.0 56 1.0 LOAD COMB 168 INPLACE: ALS EQ 10000 - Z - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 0.707 52 0.707 56 1.0 LOAD COMB 171 INPLACE: ALS EQ 10000 + X +Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 51 1.0 55 1.0 LOAD COMB 172 INPLACE: ALS EQ 10000 + X - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 51 0.707 54 0.707 55 1.0 LOAD COMB 173 INPLACE: ALS EQ 10000 - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 1.0 55 1.0 LOAD COMB 174 INPLACE: ALS EQ 10000 - X + Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 0.707 53 0.707 55 1.0 LOAD COMB 175 INPLACE: ALS EQ 10000 + Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 1.0 55 1.0 LOAD COMB 176 INPLACE: ALS EQ 10000 + Z + X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 0.707 51 0.707 55 1.0 LOAD COMB 177 INPLACE: ALS EQ 10000 - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 1.0 55 1.0 LOAD COMB 178 INPLACE: ALS EQ 10000 - Z - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 0.707 52 0.707 55 1.0 ********************************** * EXPLOSION LOAD COMBINATION * ********************************** LOAD COMB 311 ALS EXPLOSION LOAD 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 300 1.0 LOAD COMB 312 ALS EXPLOSION LOAD

Page 84

1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 301 1.0 *************************** * FIRE LOADCOMBINATION * *************************** LOAD COMB 411 ALS FIRE LOAD 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 PERFORM ANALYSIS PRINT STATICS CHECK ** LOAD LIST 101 TO 105 PARAMETER 1 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 111 TO 115 PARAMETER 2 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 121 TO 128 PARAMETER 3 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 131 TO 138 PARAMETER 4 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS

Page 85

** LOAD LIST 141 TO 148 PARAMETER 5 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** LOAD LIST 151 TO 158 PARAMETER 6 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 161 TO 168 PARAMETER 7 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 171 TO 178 PARAMETER 8 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS

LOAD LIST 311 312 PARAMETER 9 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL

Page 86

PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 411 PARAMETER 9 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** FINIS

Page 87

A.3

STAAD.Pro INPUT FILE TRANSPORT DESIGN

STAAD SPACE START JOB INFORMATION ENGINEER DATE 5-Jan-15 JOB NAME Master Thesis Spring 2015 JOB CLIENT University of Stavanger ENGINEER NAME Gholam Sakhi Sakha END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 9.5 0; 3 10 9.5 0; 4 10 0 0; 5 0 0 5.5; 6 0 9.5 5.5; 7 10 9.5 5.5; 8 10 0 5.5; 9 0 4.75 5.5; 10 10 4.75 5.5; 11 0 4.75 0; 12 10 4.75 0; 13 5 9.5 5.5; 14 5 4.75 5.5; 15 5 0 5.5; 16 5 9.5 0; 17 5 4.75 0; 18 5 0 0; 19 2 9.5 0; 20 2 9.5 5.5; 21 4 9.5 0; 22 4 9.5 5.5; 23 6 9.5 0; 24 6 9.5 5.5; 25 8 9.5 0; 26 8 9.5 5.5; 43 0 9.5 2.75; 44 10 9.5 2.75; 45 2 9.5 2.75; 46 4 9.5 2.75; 47 6 9.5 2.75; 48 8 9.5 2.75; 63 1.429 0 0; 64 1.429 0 5.5; 65 2.858 0 0; 66 2.858 0 5.5; 67 4.287 0 0; 68 4.287 0 5.5; 69 5.716 0 0; 70 5.716 0 5.5; 71 7.145 0 0; 72 7.145 0 5.5; 73 8.574 0 0; 74 8.574 0 5.5; 75 0 0 2.75; 76 1.429 0 2.75; 77 2.858 0 2.75; 78 4.287 0 2.75; 79 5.716 0 2.75; 80 7.145 0 2.75; 81 8.574 0 2.75; 82 10 0 2.75; 83 1.429 4.75 5.5; 84 1.429 4.75 0; 85 2.858 4.75 5.5; 86 2.858 4.75 0; 87 4.287 4.75 5.5; 88 4.287 4.75 0; 89 5.716 4.75 5.5; 90 5.716 4.75 0; 91 7.145 4.75 5.5; 92 7.145 4.75 0; 93 8.574 4.75 5.5; 94 8.574 4.75 0; 95 10 4.75 2.75; 96 0 4.75 2.75; 97 1.429 4.75 2.75; 98 2.858 4.75 2.75; 99 4.287 4.75 2.75; 100 5.716 4.75 2.75; 101 7.145 4.75 2.75; 102 8.574 4.75 2.75; 128 0 0 -0.5; 129 10 0 -0.5; 130 0 9.5 -0.5; 131 10 9.5 -0.5; 132 3 9.5 0; 133 3 9.5 5.5; 134 7 9.5 0; 135 7 9.5 5.5; 136 9 9.5 0; 137 9 9.5 5.5; 138 3 9.5 2.75; 139 5 9.5 2.75; 140 7 9.5 2.75; 141 9 9.5 2.75; 142 1 9.5 0; 143 1 9.5 5.5; 144 1 9.5 2.75; 145 0 7.125 0; 146 10 7.125 0; MEMBER INCIDENCES 1 1 11; 2 2 142; 4 5 9; 5 6 143; 6 7 10; 7 2 43; 8 3 44; 13 9 6; 14 10 8; 17 12 4; 21 13 24; 23 14 13; 25 15 14; 26 16 23; 28 17 16; 30 18 17; 31 19 132; 32 20 133; 33 19 45; 34 21 16; 35 22 13; 36 21 46; 37 23 134; 38 24 135; 39 23 47; 40 25 136; 41 26 137; 42 25 48; 67 43 6; 68 44 7; 73 43 144; 74 45 138; 75 46 139; 76 47 140; 77 48 141; 116 5 64; 117 15 70; 119 18 69; 120 1 63; 121 63 65; 122 64 66; 124 65 67; 125 66 68; 127 67 18; 128 68 15; 130 69 71; 131 70 72; 133 71 73; 134 72 74; 136 73 4; 138 1 75; 145 4 82; 146 75 5; 153 82 8; 154 75 76; 155 76 77; 156 77 78; 157 78 79; 158 79 80; 159 80 81; 160 81 82; 161 74 8; 162 11 84; 163 17 90; 164 12 95; 165 10 93; 166 14 87; 167 9 96; 168 83 9; 169 84 86; 171 85 83; 172 86 88; 174 87 85; 175 88 17; 177 89 14; 178 90 92; 180 91 89; 181 92 94; 183 93 91; 184 94 12; 186 95 10; 194 96 97; 195 97 98; 196 98 99; 197 99 100; 198 100 101; 199 101 102; 200 102 95; 256 96 11; 269 20 45; 270 22 46; 271 24 47; 272 26 48; 273 128 1; 274 129 4; 275 130 2; 276 131 3; 301 132 21; 302 133 22; 303 134 25; 304 135 26; 305 136 3; 306 137 7; 307 138 46; 308 139 47; 309 140 48; 310 141 44; 311 132 138; 312 16 139; 313 134 140; 314 136 141; 315 133 138; 316 13 139; 317 135 140; 318 137 141; 319 142 19; 320 143 20; 321 144 45; 322 142 144; 323 143 144; 372 97 84; 373 97 83; 374 98 86; 375 98 85; 376 99 88; 377 99 87; 378 100 90; 379 100 89; 380 101 92; 381 101 91; 382 102 94; 383 102 93; 384 76 63; 385 76 64; 386 77 65; 387 77 66; 388 78 67; 389 78 68; 390 79 69; 391 79 70; 392 80 71; 393 80 72; 394 81 73; 395 81 74; 447 14 7; 449 9 2; 454 14 6; 455 15 10; 456 15 9; 458 5 11; 459 3 10; 460 12 8; 461 11 145; 462 12 146; 467 145 2; 468 146 3; 469 145 142; 470 146 136; 471 18 14; 472 17 13; ELEMENT INCIDENCES SHELL 396 2 142 144 43; 397 142 19 45 144; 398 19 132 138 45; 399 132 21 46 138; 400 21 16 139 46; 401 16 23 47 139; 402 23 134 140 47; 403 134 25 48 140;

Page 88

404 25 136 141 48; 405 136 3 44 141; 406 43 144 143 6; 407 144 45 20 143; 408 45 138 133 20; 409 138 46 22 133; 410 46 139 13 22; 411 139 47 24 13; 412 47 140 135 24; 413 140 48 26 135; 414 48 141 137 26; 415 141 44 7 137; 416 11 84 97 96; 417 84 86 98 97; 418 86 88 99 98; 419 88 90 100 99; 420 90 92 101 100; 421 92 94 102 101; 422 94 12 95 102; 423 96 97 83 9; 424 97 98 85 83; 425 98 99 87 85; 426 99 100 89 87; 427 100 101 91 89; 428 101 102 93 91; 429 102 95 10 93; 430 1 63 76 75; 431 63 65 77 76; 432 65 67 78 77; 433 67 69 79 78; 434 69 71 80 79; 435 71 73 81 80; 436 73 4 82 81; 437 75 76 64 5; 438 76 77 66 64; 439 77 78 68 66; 440 78 79 70 68; 441 79 80 72 70; 442 80 81 74 72; 443 81 82 8 74; * ELEMENT PROPERTY 396 TO 443 THICKNESS 0.01 DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 78.5 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL * * MEMBER PROPERTY EUROPEAN 1 17 461 462 467 468 TABLE ST TUB30030016 447 454 TO 456 471 472 TABLE ST TUB1201206 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 161 162 TO 169 171 172 174 175 177 178 180 181 183 184 186 256 TABLE ST HE240B 73 TO 77 154 TO 160 194 TO 200 307 TO 310 321 TABLE ST HE140A 372 TO 395 TABLE ST HE220B 275 276 TABLE ST TUB30030016 273 274 TABLE ST TUB1601606 2 5 7 8 21 26 31 TO 42 67 68 269 TO 272 301 TO 306 311 TO 320 322 323 TABLE ST TUB25025016 23 25 28 30 469 470 TABLE ST TUB12012010 4 6 13 14 TABLE ST TUB2502508 449 458 TO 460 TABLE ST TUB1401408 CONSTANTS MATERIAL STEEL ALL * SUPPORTS 1 4 5 8 PINNED ************************************* * SYETEM GENERATED SELF WEIGHT * ************************************* MEMBER RELEASE 447 START MY 447 END MY 449 START MY 449 END MY 454 START MY 454 END MY 455 START MY 455 END MY 456 START MY 456 END MY 459 START MY 459 END MY 460 START MY 460 END MY

Page 89

458 START MY 458 END MY 471 START MX MY 471 END MY 472 START MX MY 472 END MY LOAD 1 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT - Y SELFWEIGHT Y -1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 11 LOADTYPE Dead TITLE SYSTEM GENERATED SELFWEIGHT + X SELFWEIGHT X 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 21 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT + Z SELFWEIGHT Z 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 2 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL - Y SELFWEIGHT Y -0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 12 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + X SELFWEIGHT X 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 22 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + Z SELFWEIGHT Z 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 ******************** * EQUIPMENT LOAD * ******************** LOAD 3 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT - Y MEMBER LOAD 372 TO 395 UNI GY -8.829 0 1 LOAD 13 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + X MEMBER LOAD 372 TO 395 UNI GX 8.829 0 1 LOAD 23 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + Z MEMBER LOAD 372 TO 395 UNI GZ 8.829 0 1 ***************************** * FUNCTION VARIABLE LOAD * ***************************** LOAD 4 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS - Y MEMBER LOAD 374 TO 381 386 TO 393 UNI GY -3.4 0 1 372 373 382 TO 385 394 395 UNI GY -6.975 0 1 374 TO 381 386 TO 393 UNI GY -7.15 1 2.75 372 373 382 TO 385 394 395 UNI GY -10.725 1 2.75 LOAD 14 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + X MEMBER LOAD 374 TO 381 386 TO 393 UNI GX 3.4 0 1

Page 90

372 373 382 TO 385 394 395 UNI GX 6.975 0 1 374 TO 381 386 TO 393 UNI GX 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GX 10.725 1 2.75 LOAD 24 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + Z MEMBER LOAD 374 TO 381 386 TO 393 UNI GZ 3.4 0 1 372 373 382 TO 385 394 395 UNI GZ 6.975 0 1 374 TO 381 386 TO 393 UNI GZ 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GZ 10.725 1 2.75 ******************* * LAY DOWN LOAD * ******************* LOAD 5 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD - Y MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -13.87 LOAD 15 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + X MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 13.87 LOAD 25 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + Z MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 13.87 *************************** * WIND LOAD IN TRANSPORT * *************************** LOAD 61 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT + X MEMBER LOAD 1 4 7 13 67 138 146 167 256 449 458 461 467 UNI GX 0.5151 6 8 14 17 68 145 153 164 183 186 459 460 462 468 UNI GX 0.3678 LOAD 62 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT - X MEMBER LOAD 6 8 14 17 68 145 153 164 186 459 460 462 468 UNI GX -0.5151 1 4 7 13 67 138 146 167 256 449 458 461 467 UNI GX -0.3678 LOAD 63 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT + Z MEMBER LOAD 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 461 462 467 468 UNI GZ 0.5151 4 TO 6 13 14 21 23 25 32 35 38 41 116 117 122 125 128 131 134 161 165 166 168 171 174 177 180 183 302 304 306 320 447 454 TO 456 UNI GZ 0.3678 LOAD 64 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT - Z MEMBER LOAD 4 TO 6 13 14 21 23 25 32 35 38 41 116 117 122 125 128 131 134 161 165 166 168 171 174 177 180 183 302 304 306 320 447 454 TO 456 UNI GZ -0.5151 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 461 462 467 468 UNI GZ -0.3678 *********************************** * BARGE ACCELERATION IN TRANSPORT * *********************************** LOAD 71 LOADTYPE Dead TITLE BARGE ACCELERATION + X SELFWEIGHT X 0.5945 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT X 0.1486 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GX 5.2488 0 1 LOAD 72 LOADTYPE Dead TITLE BARGE ACCELERATION - X

Page 91

SELFWEIGHT X -0.5945 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT X -0.1486 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GX -5.2488 0 1 LOAD 73 LOADTYPE Dead TITLE BARGE ACCELERATION + Z SELFWEIGHT Z 0.8668 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Z 0.2167 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GZ 7.653 0 1 LOAD 74 LOADTYPE Dead TITLE BARGE ACCELERATION - Z SELFWEIGHT Z -0.8668 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Z -0.2167 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GZ -7.653 0 1 LOAD 75 LOADTYPE Dead TITLE BARGE ACCELERATION + Y SELFWEIGHT Y 0.35 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Y 0.0875 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GY 3.09 0 1 LOAD 76 LOADTYPE Dead TITLE BARGE ACCELERATION - Y SELFWEIGHT Y -0.45 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Y -0.1125 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GY -3.973 0 1 **************************************************** * WIND ACTION COMBINATION IN TRANSPORT ULS-A * **************************************************** LOAD COMB 181 TRANSPORT: ULS-A + X + Y 1 1.3 2 1.3 3 1.3 61 0.7 71 0.7 75 0.7 LOAD COMB 182 TRANSPORT:ULS-A + X + Z + Y

Page 92

1 1.3 2 1.3 3 1.3 61 0.495 63 0.495 71 0.495 73 0.495 75 0.7 LOAD COMB 183 TRANSPORT: ULS-A + Z + Y 1 1.3 2 1.3 3 1.3 63 0.7 73 0.7 75 0.7 LOAD COMB 184 TRANSPORT: ULS-A - X + Z + Y 1 1.3 2 1.3 3 1.3 62 0.495 63 0.495 72 0.495 73 0.495 75 0.7 LOAD COMB 185 TRANSPORT: ULS-A - X + Y 1 1.3 2 1.3 3 1.3 62 0.7 72 0.7 75 0.7 LOAD COMB 186 TRANSPORT: ULS-A - X - Z + Y 1 1.3 2 1.3 3 1.3 62 0.495 64 0.495 72 0.495 74 0.495 75 0.7 LOAD COMB 187 TRANSPORT: ULS- A - Z + Y 1 1.3 2 1.3 3 1.3 64 0.7 74 0.7 75 0.7 LOAD COMB 188 TRANSPORT: ULS-A - Z + X + Y 1 1.3 2 1.3 3 1.3 64 0.495 61 0.495 74 0.495 71 0.495 75 0.7 LOAD COMB 191 TRANSPORT: ULS-A + X - Y 1 1.3 2 1.3 3 1.3 61 0.7 71 0.7 76 0.7 LOAD COMB 192 TRANSPORT:ULS-A + X + Z - Y 1 1.3 2 1.3 3 1.3 61 0.495 63 0.495 71 0.495 73 0.495 76 0.7 LOAD COMB 193 TRANSPORT: ULS-A + Z - Y 1 1.3 2 1.3 3 1.3 63 0.7 73 0.7 76 0.7 LOAD COMB 194 TRANSPORT: ULS-A - X + Z - Y 1 1.3 2 1.3 3 1.3 62 0.495 63 0.495 72 0.495 73 0.495 76 0.7 LOAD COMB 195 TRANSPORT: ULS-A - X - Y 1 1.3 2 1.3 3 1.3 62 0.7 72 0.7 76 0.7 LOAD COMB 196 TRANSPORT: ULS-A - X - Z - Y 1 1.3 2 1.3 3 1.3 62 0.495 64 0.495 72 0.495 74 0.495 76 0.7 LOAD COMB 197 TRANSPORT: ULS- A - Z - Y 1 1.3 2 1.3 3 1.3 64 0.7 74 0.7 76 0.7 LOAD COMB 198 TRANSPORT: ULS-A - Z + X - Y 1 1.3 2 1.3 3 1.3 64 0.495 61 0.495 74 0.495 71 0.495 76 0.7 **************************************************** *WIND ACTION COMBINATION IN TRANSPORT ULS-B * **************************************************** LOAD COMB 201 TRANSPORT: ULS-B + X + Y 1 1.0 2 1.0 3 1.0 61 1.3 71 1.3 75 1.3 LOAD COMB 202 TRANSPORT: ULS-B + X + Z + Y 1 1.0 2 1.0 3 1.0 61 0.92 63 0.92 71 0.92 73 0.92 75 1.3 LOAD COMB 203 TRANSPORT: ULS-B + Z + Y 1 1.0 2 1.0 3 1.0 63 1.3 73 1.3 75 1.3 LOAD COMB 204 TRANSPORT: ULS-B - X + Z + Y 1 1.0 2 1.0 3 1.0 62 0.92 63 0.92 72 0.92 73 0.92 75 1.3 LOAD COMB 205 TRANSPORT: ULS-B - X + Y 1 1.0 2 1.0 3 1.0 62 1.3 72 1.3 75 1.3 LOAD COMB 206 TRANSPRT: ULS-B - X - Z + Y 1 1.0 2 1.0 3 1.0 62 0.92 64 0.92 72 0.92 74 0.92 75 1.3 LOAD COMB 207 TRANSPORT: ULS-B - Z + Y 1 1.0 2 1.0 3 1.0 64 1.3 74 1.3 75 1.3 LOAD COMB 208 TRANSPORT: ULS-B - Z + X + Y 1 1.0 2 1.0 3 1.0 64 0.92 61 0.92 74 0.92 71 0.92 75 1.3 LOAD COMB 211 TRANSPORT: ULS-B + X - Y 1 1.0 2 1.0 3 1.0 61 1.3 71 1.3 76 1.3 LOAD COMB 212 TRANSPORT: ULS-B + X + Z - Y 1 1.0 2 1.0 3 1.0 61 0.92 63 0.92 71 0.92 73 0.92 76 1.3 LOAD COMB 213 TRANSPORT: ULS-B + Z - Y 1 1.0 2 1.0 3 1.0 63 1.3 73 1.3 76 1.3 LOAD COMB 214 TRANSPORT: ULS-B - X + Z - Y 1 1.0 2 1.0 3 1.0 62 0.92 63 0.92 72 0.92 73 0.92 76 1.3 LOAD COMB 215 TRANSPORT: ULS-B - X - Y 1 1.0 2 1.0 3 1.0 62 1.3 72 1.3 76 1.3 LOAD COMB 216 TRANSPRT: ULS-B - Z - X - Y 1 1.0 2 1.0 3 1.0 64 0.92 62 0.92 74 0.92 72 0.92 76 1.3

Page 93

LOAD COMB 217 TRANSPORT: ULS-B - Z - Y 1 1.0 2 1.0 3 1.0 64 1.3 74 1.3 76 1.3 LOAD COMB 218 TRANSPORT: ULS-B - Z + X - Y 1 1.0 2 1.0 3 1.0 64 0.92 61 0.92 74 0.92 71 0.92 76 1.3 PERFORM ANALYSIS PRINT STATICS CHECK *** LOAD LIST 181 TO 188 PARAMETER 1 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS * LOAD LIST 191 TO 198 PARAMETER 2 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS * LOAD LIST 201 TO 208 PARAMETER 3 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS * LOAD LIST 211 TO 218 PARAMETER 4 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS **** FINISH ****

Page 94

A.4

STAAD. Pro INPUT FILE LIFTING DESIGN

STAAD SPACE START JOB INFORMATION ENGINEER DATE 5-Jan-15 JOB NAME Master Thesis Spring 2015 JOB CLIENT Universiy of Stavanger ENGINEER NAME Gholam Sakhi Sakha END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 9.5 0; 3 10 9.5 0; 4 10 0 0; 5 0 0 5.5; 6 0 9.5 5.5; 7 10 9.5 5.5; 8 10 0 5.5; 9 0 4.75 5.5; 10 10 4.75 5.5; 11 0 4.75 0; 12 10 4.75 0; 13 5 9.5 5.5; 14 5 4.75 5.5; 15 5 0 5.5; 16 5 9.5 0; 17 5 4.75 0; 18 5 0 0; 19 2 9.5 0; 20 2 9.5 5.5; 21 4 9.5 0; 22 4 9.5 5.5; 23 6 9.5 0; 24 6 9.5 5.5; 25 8 9.5 0; 26 8 9.5 5.5; 43 0 9.5 2.75; 44 10 9.5 2.75; 45 2 9.5 2.75; 46 4 9.5 2.75; 47 6 9.5 2.75; 48 8 9.5 2.75; 63 1.429 0 0; 64 1.429 0 5.5; 65 2.858 0 0; 66 2.858 0 5.5; 67 4.287 0 0; 68 4.287 0 5.5; 69 5.716 0 0; 70 5.716 0 5.5; 71 7.145 0 0; 72 7.145 0 5.5; 73 8.574 0 0; 74 8.574 0 5.5; 75 0 0 2.75; 76 1.429 0 2.75; 77 2.858 0 2.75; 78 4.287 0 2.75; 79 5.716 0 2.75; 80 7.145 0 2.75; 81 8.574 0 2.75; 82 10 0 2.75; 83 1.429 4.75 5.5; 84 1.429 4.75 0; 85 2.858 4.75 5.5; 86 2.858 4.75 0; 87 4.287 4.75 5.5; 88 4.287 4.75 0; 89 5.716 4.75 5.5; 90 5.716 4.75 0; 91 7.145 4.75 5.5; 92 7.145 4.75 0; 93 8.574 4.75 5.5; 94 8.574 4.75 0; 95 10 4.75 2.75; 96 0 4.75 2.75; 97 1.429 4.75 2.75; 98 2.858 4.75 2.75; 99 4.287 4.75 2.75; 100 5.716 4.75 2.75; 101 7.145 4.75 2.75; 102 8.574 4.75 2.75; 128 0 0 -0.5; 129 10 0 -0.5; 130 0 9.5 -0.5; 131 10 9.5 -0.5; 132 3 9.5 0; 133 3 9.5 5.5; 134 7 9.5 0; 135 7 9.5 5.5; 136 9 9.5 0; 137 9 9.5 5.5; 138 3 9.5 2.75; 139 5 9.5 2.75; 140 7 9.5 2.75; 141 9 9.5 2.75; 142 1 9.5 0; 143 1 9.5 5.5; 144 1 9.5 2.75; 145 5 25 2.81; 146 0 7.125 0; 147 10 7.125 0; MEMBER INCIDENCES 1 1 11; 2 2 142; 4 5 9; 5 6 143; 6 7 10; 7 2 43; 8 3 44; 13 9 6; 14 10 8; 17 12 4; 21 13 24; 23 14 13; 25 15 14; 26 16 23; 28 17 16; 30 18 17; 31 19 132; 32 20 133; 33 19 45; 34 21 16; 35 22 13; 36 21 46; 37 23 134; 38 24 135; 39 23 47; 40 25 136; 41 26 137; 42 25 48; 67 43 6; 68 44 7; 73 43 144; 74 45 138; 75 46 139; 76 47 140; 77 48 141; 116 5 64; 117 15 70; 119 18 69; 120 1 63; 121 63 65; 122 64 66; 124 65 67; 125 66 68; 127 67 18; 128 68 15; 130 69 71; 131 70 72; 133 71 73; 134 72 74; 136 73 4; 138 1 75; 145 4 82; 146 75 5; 153 82 8; 154 75 76; 155 76 77; 156 77 78; 157 78 79; 158 79 80; 159 80 81; 160 81 82; 161 74 8; 162 11 84; 163 17 90; 164 12 95; 165 10 93;

Page 95

166 14 87; 167 9 96; 168 83 9; 169 84 86; 171 85 83; 172 86 88; 174 87 85; 175 88 17; 177 89 14; 178 90 92; 180 91 89; 181 92 94; 183 93 91; 184 94 12; 186 95 10; 194 96 97; 195 97 98; 196 98 99; 197 99 100; 198 100 101; 199 101 102; 200 102 95; 256 96 11; 269 20 45; 270 22 46; 271 24 47; 272 26 48; 273 128 1; 274 129 4; 275 130 2; 276 131 3; 301 132 21; 302 133 22; 303 134 25; 304 135 26; 305 136 3; 306 137 7; 307 138 46; 308 139 47; 309 140 48; 310 141 44; 311 132 138; 312 16 139; 313 134 140; 314 136 141; 315 133 138; 316 13 139; 317 135 140; 318 137 141; 319 142 19; 320 143 20; 321 144 45; 322 142 144; 323 143 144; 372 97 84; 373 97 83; 374 98 86; 375 98 85; 376 99 88; 377 99 87; 378 100 90; 379 100 89; 380 101 92; 381 101 91; 382 102 94; 383 102 93; 384 76 63; 385 76 64; 386 77 65; 387 77 66; 388 78 67; 389 78 68; 390 79 69; 391 79 70; 392 80 71; 393 80 72; 394 81 73; 395 81 74; 447 14 7; 449 9 2; 454 14 6; 455 15 10; 456 15 9; 458 5 11; 459 3 10; 460 12 8; 461 11 146; 462 12 147; 463 6 145; 464 2 145; 465 3 145; 466 7 145; 467 146 2; 468 147 3; 469 146 142; 470 147 136; 471 145 139; ELEMENT INCIDENCES SHELL 396 2 142 144 43; 397 142 19 45 144; 398 19 132 138 45; 399 132 21 46 138; 400 21 16 139 46; 401 16 23 47 139; 402 23 134 140 47; 403 134 25 48 140; 404 25 136 141 48; 405 136 3 44 141; 406 43 144 143 6; 407 144 45 20 143; 408 45 138 133 20; 409 138 46 22 133; 410 46 139 13 22; 411 139 47 24 13; 412 47 140 135 24; 413 140 48 26 135; 414 48 141 137 26; 415 141 44 7 137; 416 11 84 97 96; 417 84 86 98 97; 418 86 88 99 98; 419 88 90 100 99; 420 90 92 101 100; 421 92 94 102 101; 422 94 12 95 102; 423 96 97 83 9; 424 97 98 85 83; 425 98 99 87 85; 426 99 100 89 87; 427 100 101 91 89; 428 101 102 93 91; 429 102 95 10 93; 430 1 63 76 75; 431 63 65 77 76; 432 65 67 78 77; 433 67 69 79 78; 434 69 71 80 79; 435 71 73 81 80; 436 73 4 82 81; 437 75 76 64 5; 438 76 77 66 64; 439 77 78 68 66; 440 78 79 70 68; 441 79 80 72 70; 442 80 81 74 72; 443 81 82 8 74; *** START GROUP DEFINITION MEMBER _1.25 2 5 TO 8 13 67 68 275 276 305 306 461 462 467 TO 470 _1.15 21 23 26 28 31 TO 42 73 TO 77 269 TO 272 301 TO 304 307 TO 323 447 449 454 459 _1.00 1 4 14 17 25 30 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 273 274 276 372 TO 395 455 456 458 460 END GROUP DEFINITION *** ELEMENT PROPERTY

Page 96

396 TO 443 THICKNESS 0.01 *** DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 78.5 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL MEMBER PROPERTY EUROPEAN 1 17 461 462 467 468 TABLE ST TUB30030016 447 454 TO 456 TABLE ST TUB1201206 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 161 162 TO 169 171 172 174 175 177 178 180 181 183 184 186 256 TABLE ST HE240B 73 TO 77 154 TO 160 194 TO 200 307 TO 310 321 TABLE ST HE140A 372 TO 395 TABLE ST HE220B 275 276 TABLE ST TUB30030016 273 274 TABLE ST TUB1601606 2 5 7 8 21 26 31 TO 42 67 68 269 TO 272 301 TO 306 311 TO 320 322 323 TABLE ST TUB25025016 463 TO 466 471 TABLE ST PIPE OD 0.15 ID 0.05 23 25 28 30 469 470 TABLE ST TUB12012010 4 6 13 14 TABLE ST TUB2502508 449 458 TO 460 TABLE ST TUB1401408 CONSTANTS MATERIAL STEEL ALL ************************************* * SYETEM GENERATED SELF WEIGHT * ************************************* MEMBER RELEASE 447 START MY 447 END MY 449 START MY 449 END MY 454 START MY 454 END MY 455 START MY 455 END MY 456 START MY

Page 97

456 END MY 458 START MY 458 END MY 459 START MY 459 END MY 460 START MY 460 END MY 463 START MX MY MZ 466 START MX MY MZ 465 START MX MY MZ 464 START MX MY MZ SUPPORTS 145 FIXED LOAD 1 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT - Y SELFWEIGHT Y -1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 11 LOADTYPE Dead TITLE SYSTEM GENERATED SELFWEIGHT + X SELFWEIGHT X 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 21 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT + Z SELFWEIGHT Z 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 2 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL - Y SELFWEIGHT Y -0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 12 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + X SELFWEIGHT X 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 22 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + Z SELFWEIGHT Z 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 -

Page 98

74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 3 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT - Y MEMBER LOAD 372 TO 395 UNI GY -8.829 0 1 LOAD 13 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + X MEMBER LOAD 372 TO 395 UNI GX 8.829 0 1 LOAD 23 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + Z MEMBER LOAD 372 TO 395 UNI GZ 8.829 0 1

***************************** *LOAD COMBINATION ULS-A * ***************************** LOAD COMB 511 LIFT ANALYSIS GAMMAC = 1.25 1 3.5186 2 3.5186 3 3.5186 LOAD COMB 512 LIFT ANALYSIS GAMMAC = 1.10 1 3.1 2 3.1 3 3.1 LOAD COMB 513 LIFT ANALYSIS GAMMAC = 1.00 1 2.8149 2 2.8149 3 2.8149 PERFORM ANALYSIS PRINT STATICS CHECK *** LOAD LIST 511 PARAMETER 1 CODE EC3 BEAM 1 MEMB _1.25 GM0 1.15 MEMB _1.25 TRACK 0 MEMB _1.25 PY 355000 MEMB _1.25 CHECK CODE MEMB _1.25 PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** LOAD LIST 512 PARAMETER 2 CODE EC3 BEAM 1 MEMB _1.15

Page 99

GM0 1.15 MEMB _1.15 TRACK 0 MEMB _1.15 PY 355000 MEMB _1.15 CHECK CODE MEMB _1.15 PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** LOAD LIST 513 PARAMETER 3 CODE EC3 BEAM 1 MEMB _1.00 GM0 1.15 MEMB _1.00 TRACK 0 MEMB _1.00 PY 355000 MEMB _1.00 CHECK CODE MEMB _1.00 PERFORM ANALYSIS PRINT ANALYSIS RESULTS FINISH

Page 100

A.5 A.5.1 A.5.2

STAAD. Pro OUTPUT FILE ANALYSIS INPLACE DESIGN Utilization table, reaction summary and displacement summary Inplace, ULS-a/b wind, LC101-115

Page 101

Page 102

Page 103

Page 104

Page 105

Page 106

Page 107

Page 108

Page 109

Page 110

Page 111

A.5.1.2

Inplace, earthquake ULS-a/b, LC121-158

Page 112

Page 113

Page 114

Page 115

Page 116

Page 117

A.5.1.3

Inplace, earthquake,(ALS), LC161-178

Page 118

Page 119

Page 120

Page 121

Page 122

Page 123

A.5.1.4

Explosion loads inplace LC 311-312

Page 124

Page 125

Page 126

Page 127

Page 128

A.5.1.5

Fire action inplace (ALS) LC 411

Page 129

Page 130

Page 131

Page 132

Page 133

A.5.1.6

Transport, ULS-a/b, LC181-198

Page 134

Page 135

Page 136

Page 137

Page 138

Page 139

A.5.1.7

Transport, ULS-b, LC 201-218

Page 140

Page 141

Page 142

Page 143

Page 144

Page 145

A.5.1.8

Lift, ULS-a, LC511, LC 512, LC 513

Page 146

Page 147

Page 148

Page 149

Page 150

APENDIX B

LAYDOWN LOADS CALCULATION STATIC WIND LOAD CALCULATION EARTHQUAKE ACCELERATION CALCULATION BARGE ACCELERATION CALCULATION VARIABLE FUNCTIONAL LOADS CALCULATION COMBINATION ACTIONS TABLE

Page 151

B.1

LAYDOWN LOAD CALCULATION

Page 152

B.2

STATIC WIND CALCULATION

Page 153

Page 154

B.3

EARTHQUAKE ACCELERATION CALCULATION

Page 155

Page 156

Page 157

B.4

BARGE ACCELERATION CALCULATION

Page 158

Page 159

Page 160

B.5

VARIABLE FUNCTIONAL LOADS

Page 161

Page 162

B.6

COMBINATION ACTIONS TABLE

Wind load combination ULS-a/b Table B.4.1

wind load combination

Earthquake action 100 year Table B.4.2

earthquake action combination ULS-a

Page 163

Table.B.4.3

earthquake action combination ULS-b

Earthquake action 10000 year ALS

Table B.4.4

earthquake action combination

Page 164

Barge acceleration action

Table.B.4.5

barge acceleration action ULS-a

Table B.4.6

barge acceleration action ULS-b

Page 165

APENDIX.C

DROPPED OBJECT IMPACT LOAD CALCULATION

EXPLOSION LOADS CALCULATION

FIRE LOADS CALCULATION

Page 166

C.1

DROPPED OBJECT IMPACT LOAD CALCULATION

Page 167

Page 168

Page 169

Page 170

Page 171

Page 172

Page 173

C.2

EXPLOSION LOADS CALCULATION

Page 174

C.3

FIRE LOADS DESIGN CALCULATION CHE CK

Page 175

Page 176

Page 177

Page 178

Page 179

Page 180

Page 181

Page 182

Page 183

APENDIX D

CALCULATION AND DESIGN CHECK OF PAD EYES

Page 184

D.1

CALCULATION AND DESIGN CHECK OF PAD EYES

Page 185

Page 186

Page 187

Page 188

Page 189

Page 190

Page 191

Page 192

Page 193

Page 194

Page 195

APENDIX E

DESIGN CHECK OF BOLTS AND WELDED CONNECTION

Page 196

E.1

DESING CHECK OF BOLTS AND WELDS CONNECTION

Page 197

Page 198

Page 199

Page 200

Page 201

Page 202

Page 203

Page 204

Page 205

Page 206

Page 207

HSS BIM Solutions Pvt Ltd (A unit of HSS group of companies)

SD SD 100 X10 0X1 0

D DS 0S 0X1 X10 100

ISA

ISA

Modified Members

Modified Member

SD SD 100 X10 0X1 0

D DS 0S 0X1 X10 100

ISA

ISA

Modified Members

Modified Member

SD SD 100 X10 0X1 0

D DS 0S 0X1 X10 100

ISA

ISA

Modified Members

Modified Member

BUILDING INFORMATION MODELING What is BIM? Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle; defined as existing from earliest conception to demolition. Building information modeling extends this beyond 3D, augmenting the three primary spatial dimensions (width, height and depth - X, Y and Z) with time as the fourth dimension and cost as the fifth. BIM therefore covers more than just geometry. It also covers spatial relationships, light analysis, geographic information,

BIM OUTPUTS

and quantities and properties of building components.

3D MODEL AND COLLISION DETECTION Clash detection enables the effective identification, inspection, and reporting of interferences in the composite project model. Clash detection can be used as a one-time sanity check for completed design work or as part of an ongoing project audit and quality control process.

ACCURATE BOQ BIM models can be used to accurate generate quantitytakeoffs and assist in the creation of cost estimates throughout the lifecycle of a project. Using BIM models in this manner enables the project team to see the cost effects of their design decisions and proposed changes during all phases of the project, and this feedback supports better design decision-making and can help curb excessive budget overruns due to project modifications.

HSS BIM Solutions Pvt Ltd

www.hssbim.com

BUILDING INFORMATION MODELING CONSTRUCTION SIMULATION The ability to forecast and anticipate problems before they occur is essential for effective project management. Traditional scheduling methods do not address the spatial aspect to the construction activities nor are they directly linked to a design or building model. Traditional bar charts or Critical Path Method network diagrams can be difficult to understand or interpret. Having the ability to watch the elementsof a design come together onscreen gives the design and construction team improved accuracy in construction

sequencing.

Week 8

Week 10

Week 12

MARKETING PRESENTATION

D

AS BUILT MODEL Tracking and maintaining life cycle information about the building structure (wall, floors, roof, etc.) as well as the equipment serving the building mechanical, electrical, plumbing, etc.) to plan and schedule a program of maintenance activities that will improve building performance, reduce repairs, and reduce overall maintenance costs.

OUR SERVICES BIM SOLUTION BIM Solutions has a compiled a list of services for the most pressing needs of companies in our industry across several disciplines. We also have the ability to make a customized match of our capabilities to the needs of your organization.

BIM IMPLEMENTATION We start out by assisting you in creating your firm's BIM Technology Implementation Plan, making sure we have the support of the Principals and upper management. The Technology Implementation Plan is our guide throughout the transition process and will help us assign the appropriate Expert Team Member(s) to meet your firm's goals.

BIM TRAINING We understand that making the shift to BIM requires a resource that is knowledgeable and available for consultation. We have mentors on-staff that are available to participate in on-site and online sessions to get you over hurdles.

BIM CONTENT CREATION Revit Families are pre-made, precision engineered reusable objects compiled with similar parameters and visual graphical representations that can be organized into the same class or group. These families are very useful for the firms who always search for custom or manufacturer specific content.

HSS BIM Solutions Pvt Ltd

www.hssbim.com

India HSS BIM Solutions Pvt Ltd

3rd Floor, Ganesh Tower, B-1 ,1st Avenue, 100 Ft Road, Ashok Nagar, Chennai - 600083, Tamil Nadu, India.

Tel : + 91 44 49181100(100 lines)

GROUP OF COMPANIES HSS ENGINEERING SDN BHD TOTAL ENGINEERING SERVICES

HSS INTEGRATED SDN BHD ENGINEERING CONSULTANCY SERVICES

Fax : + 91 44 49181199

HSS PROJECTS SDN BHD

Mob: + 91 9444918325 Mail: [email protected]

HSS PROJECT MANAGEMENT SDN BHD

TURNKEY CONTRACTORS

PROJECT / CONSTRUCTION MANAGEMENT

Malaysia BIM GLOBAL VENTURES SDN BHD

B-1 (1-4) Block B, Plaza Dwitasik, No. 21, Jalan 5/106, Bandar Sri Permaisuri, 56000 Kuala Lumpur,Malaysia Mail: [email protected] UAE ConsultantHSS P.O Box: 183921, Dubai, U.A.E. Mail: [email protected] Singapore HSS BIM Global Pte Ltd 77A, Boat Quay, Singapore 049865 Tel : +65 63272490 Fax: +65 63272465 Mail: [email protected]

Partner

HSS URUS HARTA SDN BHD FACILITIES MANAGEMENT

HSS INTESYS SDN BHD ENGINEERING IT SERVICES

HSS MEKANIKAL & ELEKTRIKAL SDN BHD

Typical Steel Connections Dr. Seshu Adluri

Introduction „ Steel

Connections

…Many

configurations are used for force transfer in connections. The configuration depends upon the type of connecting elements, nature and magnitude of the forces (and moments), available equipment, fabrication and erection considerations, cost, etc. Steel Connections -Dr. Seshu Adluri

Rivets „

Steel Connections -Dr. Seshu Adluri

Bolts „

Steel Connections -Dr. Seshu Adluri

Connections „

Many types based on function … Beam-to-Beam

Connections … Beam-to-Column Connections … Column-to-Column Connections … Column Base Plates … Pocket Beam … Gusset plate connections (truss type, frame type, bracings, …) … Splices (cover plates, …)

Steel Connections -Dr. Seshu Adluri

Cover plates „

Steel Connections -Dr. Seshu Adluri

Cover plates „

Steel Connections -Dr. Seshu Adluri

Column splice „

Steel Connections -Dr. Seshu Adluri

Gusset plate connections „

Steel Connections -Dr. Seshu Adluri

Gusset plate connections „

Steel Connections -Dr. Seshu Adluri

Force dispersion to gusset plates „

Steel Connections -Dr. Seshu Adluri

Steel Framing Connections „

Framed Connections Bolts only in web, not the flanges … Transmits only shear … Not bending moment … Accomplished with …

„

„

clip angles & bolts/welds

Moment Connections Transmit shear & moment … Flanges must be connected … Bolt/Weld Flanges … May require column stiffeners …

Steel Connections -Dr. Seshu Adluri

Framed connections „

Only shear transfer … Equivalent

to pinned end for the beam … No moment at the beam end … Rotation is freely (?) allowed

Steel Connections -Dr. Seshu Adluri

Framed connections „

End reaction only … Web

of the beam is connected … No connection for the flanges

Steel Connections -Dr. Seshu Adluri

Transfer of shear force in frames „

Steel Connections -Dr. Seshu Adluri

Beam-to-beam connections „

Steel Connections -Dr. Seshu Adluri

Beam-to-beam connections „

Steel Connections -Dr. Seshu Adluri

Beam-to-column connections „

Steel Connections -Dr. Seshu Adluri

Beam-tocolumn connections

„ Steel Connections -Dr. Seshu Adluri

Beam to column joints „

Steel Connections -Dr. Seshu Adluri

Beam to column joints „

Steel Connections -Dr. Seshu Adluri

Beam to column joints „

Steel Connections -Dr. Seshu Adluri

Beam to column joints „

Steel Connections -Dr. Seshu Adluri

Beam-to-column connections

„

Steel Connections -Dr. Seshu Adluri

Beam-to-column connections „

Steel Connections -Dr. Seshu Adluri

Beam-tocolumn connections

„

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Beam Column

Bending moment from the beam

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

The bending moment of the beam is primarily taken by the flanges in the form of tension and compression forces

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Steel Connections -Dr. Seshu Adluri

Beam-to-column connections „

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Stiffener plates are used to ‘shore up’ the column flanges against the forces transmitted by the beam flanges. The stiffeners may be full length or may extend only part of the column web depth.

Steel Connections -Dr. Seshu Adluri

Beam plate buckling „ Beam flange local buckling

Beam web crippling

Steel Connections -Dr. Seshu Adluri

Beam plate buckling „ Beam web local yielding

Beam web buckling (look closely) Steel Connections -Dr. Seshu Adluri

Concentrated forces on webs „

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Steel Connections -Dr. Seshu Adluri

Beam to Column Semi-Rigid Joints „

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Stiffener plates are used to ‘shore up’ the column flanges against the forces transmitted by the beam flanges. The stiffeners may be full length or may extend only part of the column web depth.

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints ƒ The bending moment of the beam is primarily taken by the flanges in the form of tension and compression forces „ The bending moment of the column is also resolved as a force couple

Beam

Column

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Stiffeners help in distributing the forces in the connection zone and in avoiding local rupture, crushing or buckling of the beam web.

Beam

Column

Steel Connections -Dr. Seshu Adluri

Beam to Column Rigid Joints „

Steel Connections -Dr. Seshu Adluri

Beam Splices

„

Steel Connections -Dr. Seshu Adluri

Beam Splices

„

Steel Connections -Dr. Seshu Adluri

Column Splices

„

Steel Connections -Dr. Seshu Adluri

Column Splices

„

Steel Connections -Dr. Seshu Adluri

Connections for Bents (Eves)

„

Steel Connections -Dr. Seshu Adluri

Connections for Bents (Eves) „

Steel Connections -Dr. Seshu Adluri

Connections in frames „

Steel Connections -Dr. Seshu Adluri

Bracing Connections in frames

„

Steel Connections -Dr. Seshu Adluri

Column Bases „

Steel Connections -Dr. Seshu Adluri

Column Base Anchors „

Steel Connections -Dr. Seshu Adluri

Beam-to-wall connections „

Steel Connections -Dr. Seshu Adluri

Beam-to-wall connections „

Steel Connections -Dr. Seshu Adluri

References „

Many pictures in this file are taken from various sources such as CISC, AISC, etc. The copyrights for those materials are with the original sources. No copyright is claimed or implied by Dr. Seshu Adluri for things that are already under copyright protection. This file is for teaching purposes.

Steel Connections -Dr. Seshu Adluri

Related Documents

Key
April 2020 6
Key
June 2020 5
Key
May 2020 8
Key
November 2019 22
Key
November 2019 14
Key
November 2019 15

More Documents from ""

138 Notice - Rintu.docx
April 2020 29
111111111111111111
August 2019 44
December 2019 39
Presentation1.pptx
December 2019 41
Majlis Pelancaran.docx
December 2019 30
Ssd(1).docx
November 2019 10