Member sizes not clear
Cornières à ailes égales (suite)
t
u
Equal leg angles (continued)
v
r2
v
Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
t
r2
(Fortsetzung)
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
y
v
Gleichschenkliger Winkelstahl
h
zs
45o
ys
u2
u
b
Désignation Designation Bezeichnung
L 60 x 60 x 7*
Position des axes Position of axes Lage der Achsen
Dimensions Abmessungen
v
u1
z
Surface Oberfläche
G
h=b
t
r1
A
zs=ys
v
u1
u2
AL
AG
kg/m
mm
mm
mm
mm2
mm
mm
mm
mm
m2/m
m2/t
x102
x10
x10
x10
x10
6,26
60
7
8
7,98
1,73
4,24
2,45
2,13
0,233
37,22
L 60 x 60 x 8
-/
7,09
60
8
8
9,03
1,77
4,24
2,50
2,14
0,233
32,89
L 60 x 60 x 10*
8,69
60
10
8
11,1
1,85
4,24
2,61
2,17
0,233
26,83
L63 x 63 x 5*
4,82
63
5
9
6,14
1,71
4,45
2,42
2,21
0,244
50,71
L63 x 63 x 6*
5,72
63
6
9
7,29
1,75
4,45
2,48
2,21
0,244
42,70
L63 x 63 x 6,5*
6,17
63
6,5
9
7,85
1,78
4,45
2,51
2,22
0,244
39,62
L 65 x 65 x 4*
4,02
65
4
9
5,13
1,71
4,60
2,41
2,28
0,252
62,68
L 65 x 65 x 5* / L 65 x 65 x 6*
4,97
65
5
9
6,34
1,76
4,60
2,49
2,28
0,252
50,71
5,91
65
6
9
7,53
1,80
4,60
2,55
2,28
0,252
42,70
L 65 x 65 x 7 / L 65 x 65 x 8*
6,83
65
7
9
8,70
1,85
4,60
2,61
2,29
0,252
36,95
7,73
65
8
9
9,85
1,89
4,60
2,67
2,31
0,252
32,64
L 65 x 65 x 9*
8,62
65
9
9
11,0
1,93
4,60
2,73
2,32
0,252
29,28
L 65 x 65 x 10*
9,49
65
10
9
12,1
1,97
4,60
2,78
2,34
0,252
26,59
L 65 x 65 x 11*
10,3
65
11
9
13,2
2,00
4,60
2,83
2,35
0,252
24,39
-
L 70 x 70 x 5
5,37
70
5
9
6,84
1,88
4,95
2,66
2,46
0,272
50,73
-
6,38
70
6
9
8,13
1,93
4,95
2,73
2,46
0,272
42,68
-
7,38
70
7
9
9,40
1,97
4,95
2,79
2,47
0,272
36,91
8,37
70
8
10
10,7
2,01
4,95
2,84
2,47
0,271
32,41
L 70 x 70 x 9
9,32
70
9
9
11,9
2,05
4,95
2,90
2,50
0,272
29,20
L 70 x 70 x 10*
10,3
70
10
9
13,1
2,09
4,95
2,96
2,51
0,272
26,50
L 75 x 75 x 4* L 75 x 75 x 5*
4,65
75
4
9
5,93
1,96
5,30
2,76
2,63
0,292
62,82
5,76
75
5
9
7,34
2,01
5,30
2,84
2,63
0,292
50,75
L 75 x 75 x 6 * L 75 x 75 x 7* -/
6,85
75
6
9
8,73
2,05
5,30
2,90
2,64
0,292
42,66
7,93
75
7
9
10,1
2,10
5,30
2,96
2,65
0,292
36,88
L 75 x 75 x 8
-
8,99
75
8
9
11,4
2,14
5,30
3,02
2,66
0,292
32,53
L 75 x 75 x 9*
10,0
75
9
9
12,8
2,18
5,30
3,08
2,67
0,292
29,14
L 75 x 75 x 10*
11,1
75
10
9
14,1
2,22
5,30
3,13
2,69
0,292
26,43
L 70 x 70 x 6 L 70 x 70 x 7 L 70 x 70 x 8
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 Profilé conforme à DIN 1028: 1994 Profilé conforme à CSN 42 5541: 1974. Avec arêtes vives sur demande.
* + -
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges.
* + -
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich.
L ly= lz
Wel.y= Wel.z
iy= iz
Iu
kg/m
mm
3
mm
x104
x103
4
iu
Iv
mm
4
mm
x10
x104
Pure compression
iv
lyz
mm
4
mm
mm
mm4
x10
x104
x10
x104
L 60 x 60 x 7
6,26
26,05
6,10
1,81
41,34
2,28
10,76
1,16
-15,23
1
1
L 60 x 60 x 8
7,09
29,15
6,89
1,80
46,19
2,26
12,11
1,16
-17,04
1
1
L 60 x 60 x 10
8,69
34,93
8,41
1,78
55,10
2,23
14,76
1,15
-20,17
1
1
L63 x 63 x 5
4,82
22,42
4,88
1,91
35,61
2,41
9,24
1,23
-13,18
4
4
L63 x 63 x 6
5,72
26,44
5,82
1,90
41,99
2,40
10,89
1,22
-15,55
1
4
L63 x 63 x 6,5
6,17
28,37
6,27
1,90
45,06
2,40
11,69
1,22
-16,68
1
4
L 65 x 65 x 4
4,02
20,09
4,19
1,98
31,86
2,49
8,32
1,27
-11,77
4
4
L 65 x 65 x 5
4,97
24,74
5,22
1,98
39,29
2,49
10,19
1,27
-14,55
4
4
L 65 x 65 x 6
5,91
29,19
6,21
1,97
46,36
2,48
12,01
1,26
-17,17
1
4
L 65 x 65 x 7
6,83
33,43
7,18
1,96
53,08
2,47
13,78
1,26
-19,65
1
1
L 65 x 65 x 8
7,73
37,49
8,13
1,95
59,46
2,46
15,52
1,26
-21,97
1
1
L 65 x 65 x 9
8,62
41,37
9,05
1,94
65,52
2,44
17,22
1,25
-24,15
1
1
L 65 x 65 x 10
9,49
45,08
9,94
1,93
71,26
2,43
18,91
1,25
-26,17
1
1
L 65 x 65 x 11
10,3
48,64
10,82
1,92
76,69
2,41
20,58
1,25
-28,06
1
1
L 70 x 70 x 5
5,37
31,24
6,10
2,14
49,61
2,69
12,86
1,37
-18,37
4
4
L 70 x 70 x 6
6,38
36,88
7,27
2,13
58,60
2,69
15,16
1,37
-21,72
4
4
L 70 x 70 x 7
7,38
42,30
8,41
2,12
67,19
2,67
17,41
1,36
-24,89
1
4
L 70 x 70 x 8
8,37
47,27
9,46
2,10
75,01
2,65
19,52
1,35
-27,75
1
1
L 70 x 70 x 9
9,32
52,47
10,60
2,10
83,18
2,65
21,76
1,35
-30,71
1
1
L 70 x 70 x 10
10,3
57,24
11,66
2,09
90,60
2,63
23,88
1,35
-33,36
1
1
L 75x75x4
4,65
31,43
5,67
2,30
49,85
2,90
13,01
1,48
-18,42
4
4
L 75x75x5
5,76
38,77
7,06
2,30
61,59
2,90
15,96
1,47
-22,82
4
4
L 75 x 75 x 6
6,85
45,83
8,41
2,29
72,84
2,89
18,82
1,47
-27,01
4
4
L 75 x 75 x 7
7,93
52,61
9,74
2,28
83,60
2,88
21,62
1,46
-30,99
1
4
L 75 x 75 x 8
8,99
59,13
11,03
2,27
93,91
2,86
24,35
1,46
-34,78
1
4
L 75 x 75 x 9
10,0
65,40
12,29
2,26
103,8
2,85
27,03
1,45
-38,36
1
1
L 75 x 75 x 10
11,1
71,43
13,52
2,25
113,2
2,83
29,68
1,45
-41,75
1
1
* * *
EN 10225:2009
G
axe v-v axis v-v Achse v-v
S355
axe u-u axis u-u Achse u-u
S235
axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z
EN 10025-4: 2004
Classification EN 1993-1-1: 2005
Valeurs statiques / Section properties / Statische Kennwerte*
Désignation Designation Bezeichnung
EN 10025-2: 2004
Notations pages 215-219 / Bezeichnungen Seiten 215-219
Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1
105
Cornières à ailes égales (suite)
t
u
Equal leg angles (continued)
v
r2
v
Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
t
r2
(Fortsetzung)
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
y
v
Gleichschenkliger Winkelstahl
h
zs
45o
ys
u2
u
b
Désignation Designation Bezeichnung
Position des axes Position of axes Lage der Achsen
Dimensions Abmessungen
v
u1
z
Surface Oberfläche
G
h=b
t
r1
A
zs=ys
v
u1
u2
AL
AG
kg/m
mm
mm
mm
mm2
mm
mm
mm
mm
m2/m
m2/t
x102
x10
x10
x10
x10
L 80 x 80 x 5*
6,17
80
5
10
7,86
2,12
5,66
3,00
2,81
0,311
50,49
L 80 x 80 x 6 L 80 x 80 x 7*
7,34
80
6
10
9,35
2,17
5,66
3,07
2,81
0,311
42,44
8,49
80
7
10
10,8
2,21
5,66
3,13
2,82
0,311
36,67
-
9,63
80
8
10
12,3
2,26
5,66
3,19
2,83
0,311
32,34
L 80 x 80 x 8
L 80 x 80 x 9*
10,8
80
9
10
13,7
2,30
5,66
3,25
2,84
0,311
28,96
-/ L 80 x 80 x 10 *
11,9
80
10
10
15,1
2,34
5,66
3,30
2,85
0,311
26,26
L 90 x 90 x 5*
6,97
90
5
11
8,88
2,35
6,36
3,33
3,16
0,351
50,29
8,28
90
6
10
10,5
2,42
6,36
3,42
3,16
0,351
42,44
-
9,61
90
7
11
12,2
2,45
6,36
3,47
3,16
0,351
36,48
-
10,9
90
8
11
13,9
2,50
6,36
3,53
3,17
0,351
32,15
-
12,2
90
9
11
15,5
2,54
6,36
3,59
3,18
0,351
28,77
L 90 x 90 x 10 * L 90 x 90 x 11*
13,4
90
10
11
17,1
2,58
6,36
3,65
3,19
0,351
26,07
14,7
90
11
11
18,7
2,62
6,36
3,70
3,21
0,351
23,86
L 90 x 90 x 16
20,7
90
16
11
26,4
2,81
6,36
3,97
3,29
0,351
16,93
L 100 x 100 x 6
9,26
100
6
12
11,8
2,64
7,07
3,74
3,51
0,390
42,09
L 100 x 100 x 7
10,7
100
7
12
13,7
2,69
7,07
3,81
3,51
0,390
36,33
12,2
100
8
12
15,5
2,74
7,07
3,87
3,52
0,390
32,00
L 90 x 90 x 6 L 90 x 90 x 7 L 90 x 90 x 8 L 90 x 90 x 9
-/
-
L 100 x 100 x 8 L 100 x 100 x 9
-
L 100 x 100 x 10 L 100 x 100 x 11
13,6
100
9
12
17,3
2,78
7,07
3,93
3,53
0,390
28,62
15,0
100
10
12
19,2
2,82
7,07
3,99
3,54
0,390
25,92
16,4
100
11
12
20,9
2,86
7,07
4,05
3,55
0,390
23,70
L 100 x 100 x 12
-
17,8
100
12
12
22,7
2,90
7,07
4,11
3,57
0,390
21,86
L 100 x 100 x 14*
20,6
100
14
12
26,2
2,98
7,07
4,22
3,60
0,390
18,95
L 100 x 100 x 16
23,2
100
16
12
29,6
3,06
7,07
4,32
3,63
0,390
16,77
L 110 x 110 x 6
10,2
110
6
12
13,0
2,89
7,78
4,09
3,87
0,430
42,12
L 110 x 110 x 7
11,8
110
7
12
15,1
2,94
7,78
4,16
3,87
0,430
36,34
13,4
110
8
12
17,1
2,99
7,78
4,22
3,87
0,430
31,98
L 110 x 110 x 8 L 110 x 110 x 9
15,0
110
9
12
19,1
3,03
7,78
4,28
3,88
0,430
28,59
L 110 x 110 x 10
16,6
110
10
13
21,2
3,06
7,78
4,33
3,88
0,429
25,79
L 110 x 110 x 11
18,2
110
11
13
23,2
3,11
7,78
4,39
3,89
0,429
23,58
L 110 x 110 x 12
19,7
110
12
13
25,1
3,15
7,78
4,45
3,91
0,429
21,73
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998. Profilé conforme à DIN 1028: 1994. Profilé conforme à CSN 42 5541: 1974. Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord.
* + -
x
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.
* + -
x
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.
L Wel.y= Wel.z
iy= iz
Iu
kg/m
mm
mm
3
x104
x103
4
iu
Iv
mm
mm
4
iv
lyz
mm
mm
4
mm
mm4
x10
x104
x10
x104
x10
x104
L 80 x 80 x 5
6,17
47,14
8,02
2,45
74,83
3,09
19,45
1,57
-27,69
4
4
-
L 80 x 80 x 6
7,34
55,82
9,57
2,44
88,69
3,08
22,96
1,57
-32,87
4
4
-
L 80 x 80 x 7
8,49
64,19
11,09
2,44
102,0
3,07
26,38
1,56
-37,81
1
4
-
L 80 x 80 x 8
9,63
72,25
12,58
2,43
114,8
3,06
29,72
1,56
-42,52
1
4
-
L 80 x 80 x 9
10,8
80,01
14,03
2,42
127,0
3,05
33,01
1,55
-47,01
1
1
-
L 80 x 80 x 10
11,9
87,50
15,45
2,41
138,8
3,03
36,24
1,55
-51,27
1
1
-
L 90 x 90 x 5
6,97
67,67
10,18
2,76
107,3
3,48
27,98
1,78
-39,68
4
4
-
L 90 x 90 x 6
8,28
80,72
12,26
2,77
128,3
3,49
33,16
1,77
-47,57
4
4
-
L 90 x 90 x 7
9,61
92,55
14,13
2,75
147,1
3,47
38,03
1,76
-54,52
4
4
-
L 90 x 90 x 8
10,9
104,4
16,05
2,74
165,9
3,46
42,89
1,76
-61,50
1
4
-
L 90 x 90 x 9
12,2
115,8
17,93
2,73
184,0
3,44
47,65
1,75
-68,19
1
4
-
L 90 x 90 x 10
13,4
126,9
19,77
2,72
201,5
3,43
52,33
1,75
-74,59
1
1
-
L 90 x 90 x 11
14,7
137,6
21,57
2,71
218,3
3,42
56,94
1,74
-80,70
1
1
-
L 90 x 90 x 16
20,7
186,4
30,11
2,66
293,5
3,34
79,40
1,74
-107,0
1
1
-
L 100 x 100 x 6
9,26
111,1
15,09
3,07
176,3
3,87
45,80
1,97
-65,25
4
4
-
L 100 x 100 x 7
10,7
128,2
17,54
3,06
203,7
3,86
52,72
1,96
-75,48
4
4
-
L 100 x 100 x 8
12,2
144,8
19,94
3,06
230,2
3,85
59,49
1,96
-85,35
4
4
-
L 100 x 100 x 9
13,6
161,0
22,30
3,05
255,9
3,84
66,13
1,95
-94,86
1
4
-
L 100 x 100 x 10
15,0
176,7
24,62
3,04
280,7
3,83
72,66
1,95
-104,0
1
4
-
L 100 x 100 x 11
16,4
191,9
26,89
3,03
304,7
3,81
79,09
1,94
-112,8
1
1
-
L 100 x 100 x 12
17,8
206,7
29,12
3,02
327,9
3,80
85,44
1,94
-121,3
1
1
-
L 100 x 100 x 14
20,6
235,0
33,48
3,00
372,1
3,77
97,92
1,93
-137,1
1
1
-
L 100 x 100 x 16
23,2
261,7
37,70
2,97
413,3
3,74
110,2
1,93
-151,5
1
1
-
L 110 x 110 x 6
10,2
149,5
18,43
3,39
237,3
4,27
61,60
2,18
-87,87
4
4
-
L 110 x 110 x 7
11,8
172,7
21,43
3,39
274,4
4,27
70,94
2,17
-101,7
4
4
-
L 110 x 110 x 8
13,4
195,3
24,37
3,38
310,5
4,26
80,11
2,16
-115,2
4
4
-
L 110 x 110 x 9
15,0
217,3
27,26
3,37
345,5
4,25
89,10
2,16
-128,2
4
4
-
L 110 x 110 x 10
16,6
238,0
29,99
3,35
378,2
4,23
97,74
2,15
-140,2
1
4
-
L 110 x 110 x 11
18,2
258,8
32,79
3,34
411,2
4,21
106,4
2,14
-152,4
1
4
-
L 110 x 110 x 12
19,7
279,1
35,54
3,33
443,2
4,20
115,0
2,14
-164,1
1
1
-
* * *
EN 10225:2009
ly= lz
Pure compression
S460
G
axe v-v axis v-v Achse v-v
S355
axe u-u axis u-u Achse u-u
S235
axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z
EN 10025-4: 2004
Classification EN 1993-1-1: 2005
Valeurs statiques / Section properties / Statische Kennwerte*
Désignation Designation Bezeichnung
EN 10025-2: 2004
Notations pages 215-219 / Bezeichnungen Seiten 215-219
Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1
107
Cornières à ailes égales (suite)
t
u
Equal leg angles (continued)
v
r2
v
Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
t
r2
(Fortsetzung)
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
y
v
Gleichschenkliger Winkelstahl
h
zs
45o
ys
u2
u
b
Désignation Designation Bezeichnung
Position des axes Position of axes Lage der Achsen
Dimensions Abmessungen
v
u1
z
Surface Oberfläche
G
h=b
t
r1
A
zs=ys
v
u1
u2
AL
AG
kg/m
mm
mm
mm
mm2
mm
mm
mm
mm
m2/m
m2/t
x102
x10
x10
x10
x10
x
12,9
120
7
13
16,5
3,18
8,49
4,49
4,22
0,469
36,22
/x
14,7
120
8
13
18,7
3,23
8,49
4,56
4,22
0,469
31,87
x
16,5
120
9
13
21,0
3,27
8,49
4,62
4,23
0,469
28,48
-/x
18,2
120
10
13
23,2
3,31
8,49
4,69
4,24
0,469
25,76
/x
19,9
120
11
13
25,4
3,36
8,49
4,75
4,25
0,469
23,54
-/x
21,6
120
12
13
27,5
3,40
8,49
4,80
4,26
0,469
21,69
L 120 x 120 x 13
x
23,3
120
13
13
29,7
3,44
8,49
4,86
4,28
0,469
20,12
L 120 x 120 x 14
25,0
120
14
13
31,8
3,48
8,49
4,92
4,29
0,469
18,77
L 120 x 120 x 15 /x L 120 x 120 x 16*
26,6
120
15
13
33,9
3,51
8,49
4,97
4,31
0,469
17,60
28,3
120
16
13
36,0
3,55
8,49
5,02
4,32
0,469
16,58
L 130 x 130 x 8 L 130 x 130 x 9*
16,0
130
8
14
20,4
3,46
9,19
4,90
4,57
0,508
31,77
17,9
130
9
14
22,8
3,51
9,19
4,96
4,57
0,508
28,38
L 130 x 130 x 10
19,8
130
10
14
25,2
3,55
9,19
5,03
4,58
0,508
25,67
L 130 x 130 x 11
21,7
130
11
14
27,6
3,60
9,19
5,09
4,59
0,508
23,45
L 130 x 130 x 12
23,5
130
12
14
30,0
3,64
9,19
5,15
4,60
0,508
21,59
L 130 x 130 x 13
25,4
130
13
14
32,3
3,68
9,19
5,20
4,62
0,508
20,02
L 130 x 130 x 14
27,2
130
14
14
34,7
3,72
9,19
5,26
4,63
0,508
18,68
L 130 x 130 x 15 L 130 x 130 x 16*
29,0
130
15
14
37,0
3,76
9,19
5,32
4,65
0,508
17,51
30,8
130
16
14
39,3
3,80
9,19
5,37
4,66
0,508
16,49
L 140 x 140 x 9
L 120 x 120 x 7 L 120 x 120 x 8 L 120 x 120 x 9
L 120 x 120 x 10 L 120 x 120 x 11 L 120 x 120 x 12
x
-
19,3
140
9
15
24,6
3,75
9,90
5,30
4,92
0,547
28,30
L 140 x 140 x 10
21,4
140
10
15
27,2
3,79
9,90
5,37
4,93
0,547
25,59
L 140 x 140 x 11
23,4
140
11
15
29,8
3,84
9,90
5,43
4,94
0,547
23,36
25,4
140
12
15
32,4
3,88
9,90
5,49
4,95
0,547
21,51
27,5
140
13
15
35,0
3,92
9,90
5,55
4,96
0,547
19,94
L 140 x 140 x 14
29,4
140
14
15
37,5
3,96
9,90
5,61
4,97
0,547
18,60
L 140 x 140 x 15 L 140 x 140 x 16*
31,4
140
15
15
40,0
4,00
9,90
5,66
4,99
0,547
17,43
33,3
140
16
15
42,5
4,04
9,90
5,72
5,00
0,547
16,41
+/-/x
23,0
150
10
16
29,3
4,03
10,61
5,71
5,28
0,586
25,51
+/-/x
27,3
150
12
16
34,8
4,12
10,61
5,83
5,29
0,586
21,44
+/x
29,5
150
13
16
37,6
4,17
10,61
5,89
5,30
0,586
19,87
+//x
31,6
150
14
16
40,3
4,21
10,61
5,95
5,32
0,586
18,53
+/-/x
33,8
150
15
16
43,0
4,25
10,61
6,01
5,33
0,586
17,36
+/x
35,9
150
16
16
45,7
4,29
10,61
6,06
5,34
0,586
16,34
L 140 x 140 x 12 L 140 x 140 x 13
L 150 x 150 x 10
L 150 x 150 x 12 L 150 x 150 x 13 L 150 x 150 x 14 L 150 x 150 x 15 L 150 x 150 x 16
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 Profilé conforme à DIN 1028: 1994 Profilé conforme à CSN 42 5541: 1974 Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord.
* + -
x
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.
* + -
x
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.
L Wel.y= Wel.z
iy= iz
Iu
kg/m
mm
mm
3
x104
x103
4
iu
Iv
mm
mm
4
iv
lyz
mm
mm
4
mm
mm4
x10
x104
x10
x104
x10
x104
EN 10225:2009
ly= lz
Pure compression
S460
G
axe v-v axis v-v Achse v-v
S355
axe u-u axis u-u Achse u-u
S235
axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z
EN 10025-4: 2004
Classification EN 1993-1-1: 2005
Valeurs statiques / Section properties / Statische Kennwerte*
Désignation Designation Bezeichnung
EN 10025-2: 2004
Notations pages 215-219 / Bezeichnungen Seiten 215-219
L 120 x 120 x 7
12,9
225,6
25,57
3,70
358,4
4,66
92,80
2,37
-132,8
4
4
4
L 120 x 120 x 8
14,7
255,4
29,11
3,69
406,0
4,65
104,8
2,37
-150,6
4
4
4
L 120 x 120 x 9
16,5
284,5
32,59
3,68
452,4
4,64
116,7
2,36
-167,9
4
4
4
L 120 x 120 x 10
18,2
312,9
36,03
3,67
497,6
4,63
128,3
2,35
-184,6
4
4
4
L 120 x 120 x 11
19,9
340,6
39,41
3,66
541,5
4,62
139,8
2,35
-200,9
1
4
4
L 120 x 120 x 12
21,6
367,7
42,73
3,65
584,3
4,61
151,1
2,34
-216,6
1
4
4
L 120 x 120 x 13
23,3
394,0
46,01
3,64
625,8
4,59
162,2
2,34
-231,8
1
1
4
L 120 x 120 x 14
25,0
419,8
49,25
3,63
666,3
4,58
173,3
2,33
-246,5
1
1
4
L 120 x 120 x 15
26,6
444,9
52,43
3,62
705,6
4,56
184,2
2,33
-260,7
1
1
1
L 120 x 120 x 16
28,3
469,4
55,57
3,61
743,8
4,54
195,0
2,33
-274,4
1
1
1
L 130 x 130 x 8
16,0
326,7
34,26
4,00
519,2
5,05
134,3
2,57
-192,5
4
4
-
L 130 x 130 x 9
17,9
364,4
38,39
4,00
579,2
5,04
149,5
2,56
-214,9
4
4
-
L 130 x 130 x 10
19,8
401,1
42,47
3,99
637,8
5,03
164,5
2,55
-236,7
4
4
-
L 130 x 130 x 11
21,7
437,1
46,48
3,98
694,9
5,02
179,2
2,55
-257,9
4
4
-
L 130 x 130 x 12
23,5
472,2
50,44
3,97
750,6
5,00
193,7
2,54
-278,4
1
4
-
L 130 x 130 x 13
25,4
506,5
54,35
3,96
804,9
4,99
208,1
2,54
-298,4
1
4
-
L 130 x 130 x 14
27,2
540,1
58,20
3,95
857,8
4,98
222,3
2,53
-317,8
1
1
-
L 130 x 130 x 15
29,0
572,9
62,00
3,94
909,4
4,96
236,3
2,53
-336,5
1
1
-
L 130 x 130 x 16
30,8
605,0
65,75
3,93
959,7
4,94
250,3
2,53
-354,7
1
1
-
L 140 x 140 x 9
19,3
457,8
44,66
4,31
727,6
5,44
188,0
2,76
-269,8
4
4
-
L 140 x 140 x 10
21,4
504,4
49,43
4,30
802,0
5,43
206,9
2,76
-297,6
4
4
-
L 140 x 140 x 11
23,4
550,1
54,14
4,29
874,7
5,41
225,5
2,75
-324,6
4
4
-
L 140 x 140 x 12
25,4
594,8
58,78
4,28
945,7
5,40
243,9
2,74
-350,9
4
4
-
L 140 x 140 x 13
27,5
638,5
63,37
4,27
1015
5,39
262,0
2,74
-376,5
1
4
-
L 140 x 140 x 14
29,4
681,4
67,89
4,26
1083
5,37
280,0
2,73
-401,4
1
4
-
L 140 x 140 x 15
31,4
723,3
72,36
4,25
1149
5,36
297,7
2,73
-425,6
1
2
-
L 140 x 140 x 16
33,3
764,4
76,77
4,24
1214
5,34
315,2
2,72
-449,2
1
1
-
L 150 x 150 x 10
23,0
624,0
56,91
4,62
992,0
5,82
256,1
2,96
-368,0
4
4
4
L 150 x 150 x 12
27,3
736,9
67,75
4,60
1172
5,80
302,1
2,94
-434,9
4
4
4
L 150 x 150 x 13
29,5
791,7
73,07
4,59
1259
5,79
324,6
2,94
-467,1
4
4
4
L 150 x 150 x 14
31,6
845,4
78,33
4,58
1344
5,77
346,9
2,93
-498,5
1
4
4
L 150 x 150 x 15
33,8
898,1
83,52
4,57
1427
5,76
369,0
2,93
-529,1
1
4
4
L 150 x 150 x 16
35,9
949,7
88,65
4,56
1509
5,74
390,8
2,92
-558,9
1
4
4
* * *
Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1
109
Cornières à ailes égales (suite)
t
u
Equal leg angles (continued)
v
r2
v
Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
t
r2
(Fortsetzung)
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
y
v
Gleichschenkliger Winkelstahl
h
zs
45o
ys
u2
u
b
Désignation Designation Bezeichnung
Position des axes Position of axes Lage der Achsen
Dimensions Abmessungen
v
u1
z
Surface Oberfläche
G
h=b
t
r1
A
zs=ys
v
u1
u2
AL
AG
kg/m
mm
mm
mm
mm2
mm
mm
mm
mm
m2/m
m2/t
x102
x10
x10
x10
x10
L 150 x 150 x 18+/x
40,1
150
18
16
51,0
4,37
10,61
6,17
5,37
0,586
14,63
L 150 x 150 x 20+/x
44,2
150
20
16
56,3
4,44
10,61
6,28
5,41
0,586
13,27
L 160 x 160 x 14+
33,9
160
14
17
43,2
4,45
11,31
6,29
5,66
0,625
18,46
L 160 x 160 x 15
36,2
160
15
17
46,1
4,49
11,31
6,35
5,67
0,625
17,30
L 160 x 160 x 16+
38,4
160
16
17
49,0
4,53
11,31
6,41
5,69
0,625
16,28
L 160 x 160 x 17
40,7
160
17
17
51,8
4,57
11,31
6,46
5,70
0,625
15,37
L 160 x 160 x 18
42,9
160
18
17
54,7
4,61
11,31
6,52
5,71
0,625
14,57
L 160 x 160 x 19
45,1
160
19
17
57,5
4,65
11,31
6,58
5,73
0,625
13,86
L 180 x 180 x 13+/x
35,7
180
13
18
45,5
4,90
12,73
6,93
6,35
0,705
19,74
L 180 x 180 x 14+/x
38,3
180
14
18
48,8
4,94
12,73
6,99
6,36
0,705
18,40
L 180 x 180 x 15+/x
40,9
180
15
18
52,1
4,98
12,73
7,05
6,37
0,705
17,23
L 180 x 180 x 16
43,5
180
16
18
55,4
5,02
12,73
7,10
6,38
0,705
16,20
L 180 x 180 x 17+/x
46,0
180
17
18
58,7
5,06
12,73
7,16
6,40
0,705
15,30
L 180 x 180 x 18
48,6
180
18
18
61,9
5,10
12,73
7,22
6,41
0,705
14,50
L 180 x 180 x 19+/x
51,1
180
19
18
65,1
5,14
12,73
7,27
6,42
0,705
13,78
L 180 x 180 x 20+/x
53,7
180
20
18
68,3
5,18
12,73
7,33
6,44
0,705
13,13
L 200 x 200 x 13
39,8
200
13
18
50,7
5,40
14,14
7,63
7,06
0,785
19,73
L 200 x 200 x 15+/x
45,6
200
15
18
58,1
5,48
14,14
7,75
7,08
0,785
17,20
L 200 x 200 x 16
48,5
200
16
18
61,8
5,52
14,14
7,81
7,09
0,785
16,18
L 200 x 200 x 17+/x
51,4
200
17
18
65,5
5,56
14,14
7,87
7,10
0,785
15,27
L 200 x 200 x 18
54,2
200
18
18
69,1
5,60
14,14
7,93
7,12
0,785
14,46
L 200 x 200 x 19+/x
57,1
200
19
18
72,7
5,64
14,14
7,98
7,13
0,785
13,74
L 200 x 200 x 20
59,9
200
20
18
76,3
5,68
14,14
8,04
7,15
0,785
13,09
L 200 x 200 x 21+/x
62,8
200
21
18
79,9
5,72
14,14
8,09
7,16
0,785
12,50
L 200 x 200 x 22+/x
65,6
200
22
18
83,5
5,76
14,14
8,15
7,18
0,785
11,97
L 200 x 200 x 23+/x
68,3
200
23
18
87,1
5,80
14,14
8,20
7,19
0,785
11,48
L 200 x 200 x 24
71,1
200
24
18
90,6
5,84
14,14
8,26
7,21
0,785
11,03
L 200 x 200 x 25+/x
73,9
200
25
18
94,1
5,88
14,14
8,31
7,23
0,785
10,62
L 200 x 200 x 26+/x
76,6
200
26
18
97,6
5,91
14,14
8,36
7,25
0,785
10,24
L 200 x 200 x 28 x
82,0
200
28
18
105
5,99
14,14
8,47
7,28
0,785
9,56
+/-
+/
+/-/x
+/-/x
x
+/-/x
+/-/x
+/-/x
+/-/x
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 Profilé conforme à DIN 1028: 1994 Profilé conforme à CSN 42 5541: 1974 Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord.
* + -
x
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.
* + -
x
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.
L Notations pages 215-219 / Bezeichnungen Seiten 215-219
Classification EN 1993-1-1: 2005
Valeurs statiques / Section properties / Statische Kennwerte*
S235
S355
S420
S460
EN 10025-2: 2004
EN 10025-4: 2004
EN 10225:2009
Désignation Designation Bezeichnung
L 150 x 150 x 18
40,1
1050
98,74
4,54
1666
5,71
433,8
2,92
-616,1
1
1
1
1
L 150 x 150 x 20
44,2
1146
108,6
4,51
1817
5,68
476,2
2,91
-670,2
1
1
1
1
L 160 x 160 x 14
33,9
1034
89,50
4,89
1644
6,17
423,9
3,13
-609,9
2
4
4
-
L 160 x 160 x 15
36,2
1099
95,47
4,88
1747
6,16
450,9
3,13
-647,9
1
4
4
-
L 160 x 160 x 16
38,4
1163
101,4
4,87
1848
6,14
477,7
3,12
-685,0
1
4
4
-
L 160 x 160 x 17
40,7
1225
107,2
4,86
1947
6,13
504,2
3,12
-721,2
1
1
4
-
L 160 x 160 x 18
42,9
1287
113,0
4,85
2043
6,11
530,4
3,11
-756,5
1
1
4
-
L 160 x 160 x 19
45,1
1347
118,7
4,84
2138
6,10
556,5
3,11
-790,9
1
1
1
-
L 180 x 180 x 13
35,7
1396
106,5
5,54
2220
6,99
571,7
3,55
-824,4
4
4
4
4
L 180 x 180 x 14
38,3
1493
114,3
5,53
2375
6,98
611,4
3,54
-881,8
4
4
4
4
L 180 x 180 x 15
40,9
1589
122,0
5,52
2527
6,96
650,6
3,53
-938,0
4
4
4
4
L 180 x 180 x 16
43,5
1682
129,7
5,51
2675
6,95
689,4
3,53
-993,0
2
4
4
4
L 180 x 180 x 17
46,0
1775
137,2
5,50
2822
6,94
727,9
3,52
-1047
1
4
4
4
L 180 x 180 x 18
48,6
1866
144,7
5,49
2965
6,92
766,0
3,52
-1100
1
4
4
4
L 180 x 180 x 19
51,1
1955
152,1
5,48
3106
6,91
803,8
3,51
-1151
1
2
4
4
L 180 x 180 x 20
53,7
2043
159,4
5,47
3244
6,89
841,3
3,51
-1202
1
1
4
4
L 200 x 200 x 13
39,8
1939
132,8
6,19
3085
7,80
792,8
3,96
-1146
4
4
4
4
L 200 x 200 x 15
45,6
2209
152,2
6,17
3516
7,78
903,0
3,94
-1306
4
4
4
4
L 200 x 200 x 16
48,5
2341
161,7
6,16
3725
7,76
957,2
3,94
-1384
4
4
4
4
L 200 x 200 x 17
51,4
2472
171,2
6,14
3932
7,75
1011
3,93
-1461
4
4
4
4
L 200 x 200 x 18
54,2
2600
180,6
6,13
4135
7,74
1064
3,92
-1535
1
4
4
4
L 200 x 200 x 19
57,1
2726
189,9
6,12
4335
7,72
1117
3,92
-1609
1
4
4
4
L 200 x 200 x 20
59,9
2851
199,1
6,11
4532
7,70
1169
3,91
-1681
1
4
4
4
L 200 x 200 x 21
62,8
2973
208,2
6,10
4725
7,69
1221
3,91
-1752
1
4
4
4
L 200 x 200 x 22
65,6
3094
217,3
6,09
4915
7,67
1273
3,90
-1821
1
1
4
4
L 200 x 200 x 23
68,3
3213
226,3
6,08
5102
7,66
1324
3,90
-1889
1
1
2
4
L 200 x 200 x 24
71,1
3331
235,2
6,06
5286
7,64
1375
3,90
-1955
1
1
1
2
L 200 x 200 x 25
73,9
3446
244,0
6,05
5467
7,62
1426
3,89
-2020
1
1
1
1
L 200 x 200 x 26
76,6
3560
252,7
6,04
5644
7,61
1476
3,89
-2084
1
1
1
1
L 200 x 200 x 28
82,0
3784
270,0
6,02
5991
7,57
1576
3,88
-2207
1
1
1
1
* * *
axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z
axe u-u axis u-u Achse u-u
G
ly= lz
Wel.y= Wel.z
iy= iz
Iu
kg/m
mm
mm
3
x104
4
axe v-v axis v-v Achse v-v iu
Iv
mm
mm
4
x103
x10
Pure compression
iv
lyz
mm
mm
4
mm
mm4
x104
x10
x104
x10
x104
Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1
111
Cornières à ailes égales (suite)
r2
Dimensions: AM Standard Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
r2
u
v
v
t
Equal leg angles (continued)
Dimensions: AM Standard Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
t
r2
(Fortsetzung)
Abmessungen: AM Standard Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
r3
y zs
45o
ys
r2
u2
u
b
v
Gleichschenkliger Winkelstahl
h
Désignation Designation Bezeichnung
Position des axes Position of axes Lage der Achsen
Dimensions Abmessungen
u1
v
z
Surface Oberfläche
G
h=b
t
r1
r2
r3
A
zs=ys
v
u1
u2
AL
AG
kg/m
mm
mm
mm
mm
mm
mm2
mm
mm
mm
mm
m2/m
m2/t
x102
x10
x10
x10
x10
L 250 x 250 x 17+
64,4
250
17
18
9
3
82,1
6,79
17,68
9,60
9,28
0,98
15,14
L 250 x 250 x 18+
68,1
250
18
18
9
3
86,7
6,83
17,68
9,66
9,29
0,98
14,33
L 250 x 250 x 19+
71,7
250
19
18
9
3
91,4
6,87
17,68
9,72
9,30
0,98
13,60
L 250 x 250 x 20+
75,3
250
20
18
9
3
96,0
6,91
17,68
9,78
9,31
0,98
12,95
L 250 x 250 x 21+
78,9
250
21
18
9
3
100,6
6,96
17,68
9,84
9,33
0,98
12,36
L 250 x 250 x 22+
82,5
250
22
18
9
3
105,1
7,00
17,68
9,89
9,34
0,98
11,82
L 250 x 250 x 23+
86,1
250
23
18
9
3
109,7
7,03
17,68
9,95
9,36
0,98
11,33
L 250 x 250 x 24+
89,7
250
24
18
9
3
114,2
7,07
17,68
10,00
9,37
0,98
10,88
L 250 x 250 x 25+
93,2
250
25
18
9
3
118,7
7,11
17,68
10,06
9,39
0,98
10,47
L 250 x 250 x 26+
96,7
250
26
18
9
3
123,2
7,15
17,68
10,11
9,40
0,98
10,09
L 250 x 250 x 27+
101
250
27
18
9
3
127,7
7,19
17,68
10,17
9,42
0,98
9,66
+
104
250
28
18
9
3
132,1
7,23
17,68
10,22
9,44
0,98
9,40
+
107
250
29
18
9
3
136,6
7,27
17,68
10,28
9,45
0,98
9,10
+
111
250
30
18
9
3
141,0
7,30
17,68
10,33
9,47
0,98
8,81
+
114
250
31
18
9
3
145,4
7,34
17,68
10,38
9,49
0,98
8,55
+
118
250
32
18
9
3
149,7
7,38
17,68
10,44
9,50
0,98
8,30
+
121
250
33
18
9
3
154,1
7,42
17,68
10,49
9,52
0,98
8,06
+
124
250
34
18
9
3
158,4
7,45
17,68
10,54
9,54
0,98
7,84
+/-
128
250
35
18
9
3
162,7
7,49
17,68
10,59
9,56
0,98
7,64
*
112
300
25
18
12
15
142,7
8,35
21,21
11,80
11,18
1,17
10,40
*
116
300
26
18
12
15
148,2
8,39
21,21
11,86
11,19
1,17
10,01
*
121
300
27
18
12
15
153,7
8,43
21,21
11,92
11,21
1,17
9,66
*
125
300
28
18
12
15
159,1
8,47
21,21
11,97
11,22
1,17
9,33
*
129
300
29
18
12
15
164,6
8,50
21,21
12,03
11,24
1,17
9,02
*
133
300
30
18
12
15
170,0
8,54
21,21
12,08
11,25
1,17
8,73
*
138
300
31
18
12
15
175,4
8,58
21,21
12,14
11,27
1,17
8,46
*
142
300
32
18
12
15
180,7
8,62
21,21
12,19
11,29
1,17
8,21
*
146
300
33
18
12
15
186,1
8,66
21,21
12,24
11,30
1,17
7,98
*
150
300
34
18
12
15
191,4
8,70
21,21
12,30
11,32
1,17
7,75
*
154
300
35
18
12
15
196,7
8,73
21,21
12,35
11,34
1,17
7,55
L 250 x 250 x 28 L 250 x 250 x 29 L 250 x 250 x 30 L 250 x 250 x 31
L 250 x 250 x 32 L 250 x 250 x 33 L 250 x 250 x 34 L 250 x 250 x 35
L 300 x 300 x 25 L 300 x 300 x 26 L 300 x 300 x 27 L 300 x 300 x 28 L 300 x 300 x 29 L 300 x 300 x 30 L 300 x 300 x 31 L 300 x 300 x 32 L 300 x 300 x 33
L 300 x 300 x 34 L 300 x 300 x 35
Autres dimensions sur demande. Les rayons r1, r2, r3
peuvent être inférieur en fonction du procédé de laminage. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 20t par profilé et qualité ou suivant accord.
* +
Other dimensions on request. The r1, r2, r3 radius may be smaller depending on the rolling process. Minimum tonnage and delivery conditions upon agreement. Minimum order: 20t per section and grade or upon agreement.
* +
Andere Abmessungen auf Anfrage. Die Radien r1, r2, r3 können je nach Walzprozess kleiner sein. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 20t pro Profil und Güte oder nach Vereinbarung.
L Wel.y= Wel.z
iy= iz
Iu
kg/m
mm
mm
3
x104
x103
4
iu
Iv
mm
mm
4
iv
lyz
mm
mm
4
mm
mm4
x10
x104
x10
x104
x10
x104
L 250 x 250 x 17
64,4
4893
268,7
7,72
7789
9,74
1997
4,93
-2896
4
4
4
L 250 x 250 x 18
68,1
5156
283,8
7,71
8208
9,73
2104
4,93
-3052
4
4
4
L 250 x 250 x 19
71,7
5417
298,9
7,70
8622
9,71
2212
4,92
-3205
4
4
4
L 250 x 250 x 20
75,3
5674
313,8
7,69
9031
9,70
2318
4,91
-3357
4
4
4
L 250 x 250 x 21
78,9
5929
328,6
7,68
9435
9,69
2423
4,91
-3506
4
4
4
L 250 x 250 x 22
82,5
6180
343,3
7,67
9833
9,67
2528
4,90
-3652
2
4
4
L 250 x 250 x 23
86,1
6429
357,8
7,66
10230
9,66
2632
4,90
-3797
1
4
4
L 250 x 250 x 24
89,7
6674
372,3
7,64
10610
9,64
2735
4,89
-3939
1
4
4
L 250 x 250 x 25
93,2
6917
386,7
7,63
11000
9,63
2837
4,89
-4079
1
4
4
L 250 x 250 x 26
96,7
7156
400,9
7,62
11370
9,61
2939
4,88
-4217
1
4
4
L 250 x 250 x 27
101
7393
415,1
7,61
11750
9,59
3040
4,88
-4353
1
2
4
L 250 x 250 x 28
104
7627
429,2
7,60
12110
9,57
3141
4,88
-4486
1
1
4
L 250 x 250 x 29
107
7858
443,1
7,59
12480
9,56
3241
4,87
-4618
1
1
2
L 250 x 250 x 30
111
8087
457,0
7,57
12830
9,54
3340
4,87
-4747
1
1
1
L 250 x 250 x 31
114
8313
470,8
7,56
13190
9,53
3439
4,86
-4874
1
1
-
L 250 x 250 x 32
118
8536
484,4
7,55
13540
9,51
3538
4,86
-4998
1
1
-
L 250 x 250 x 33
121
8757
498,0
7,54
13880
9,49
3636
4,86
-5121
1
1
-
L 250 x 250 x 34
124
8975
511,5
7,53
14220
9,47
3734
4,86
-5241
1
1
-
L 250 x 250 x 35
128
9191
524,9
7,52
14550
9,46
3832
4,85
-5359
1
1
-
L 300 x 300 x 25
112
12150
561,1
9,23
19370
11,65
4930
5,88
-7220
4
4
4
L 300 x 300 x 26
116
12590
582,5
9,22
20060
11,63
5115
5,87
-7475
2
4
4
L 300 x 300 x 27
121
13020
603,5
9,20
20750
11,62
5294
5,87
-7726
2
4
4
L 300 x 300 x 28
125
13450
624,6
9,19
21420
11,60
5475
5,87
-7975
1
4
4
L 300 x 300 x 29
129
13870
645,2
9,18
22090
11,59
5650
5,86
-8220
1
4
4
L 300 x 300 x 30
133
14290
666,0
9,17
22750
11,57
5828
5,86
-8462
1
4
4
L 300 x 300 x 31
138
14700
686,3
9,16
23400
11,55
5999
5,85
-8701
1
4
-
L 300 x 300 x 32
142
15120
707,2
9,15
24050
11,54
6184
5,85
-8936
1
2
-
L 300 x 300 x 33
146
15520
727,2
9,13
24690
11,52
6351
5,84
-9169
1
2
-
L 300 x 300 x 34
150
15930
747,7
9,12
25320
11,50
6532
5,84
-9398
1
1
-
L 300 x 300 x 35
154
16320
767,4
9,11
25950
11,49
6696
5,83
-9624
1
1
-
EN 10225:2009
ly= lz
Pure compression
S420
G
axe v-v axis v-v Achse v-v
S355
axe u-u axis u-u Achse u-u
S235
axe y-y / axe z-z axis y-y / axis z-z Achse y-y / Achse z-z
EN 10025-4: 2004
Classification EN 1993-1-1: 2005
Valeurs statiques / Section properties / Statische Kennwerte
Désignation Designation Bezeichnung
EN 10025-2: 2004
Notations pages 215-219 / Bezeichnungen Seiten 215-219
113
Cornières à ailes inégales
r2
u3
v
Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
v1
t
Unequal leg angles
u
h
Ungleichschenkliger Winkelstahl
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
y
r2
t
u
v2
r1
zs ys
b
u1
Désignation Designation Bezeichnung
Position des axes Position of axes Lage der Achsen
Dimensions Abmessungen
v
z
u2
Surface Oberfläche
G
h
b
t
r1
A
zs
ys
v1
v2
u1
u2
u3
AL
AG
kg/m
mm
mm
mm
mm
mm2
mm
mm
mm
mm
mm
mm
mm
m2/m
m2/t
x102
x10
x10
x10
x10
x10
x10
x10
L 100 x 65 x 7-
8,77
100
65
7
10
11,2
3,23
1,51
6,83
4,90
2,64
3,44
1,66
0,321
36,66
L 100 x 65 x 8-
9,94
100
65
8
10
12,7
3,27
1,55
6,81
4,92
2,69
3,43
1,69
0,321
32,32
L 100 x 65 x 9♣
11,1
100
65
9
10
14,1
3,32
1,59
6,78
4,94
2,74
3,42
1,72
0,321
28,94
L 100 x 65 x 10-
12,3
100
65
10
10
15,6
3,36
1,63
6,76
4,96
2,79
3,41
1,75
0,321
26,23
L 100 x 65 x 12
14,5
100
65
12
10
18,5
3,44
1,71
6,72
4,99
2,88
3,40
1,81
0,321
22,17
L 110 x 70 x 10/*
13,4
110
70
10
10
17,1
3,69
1,72
7,43
5,38
2,96
3,73
1,84
0,351
26,17
L 110 x 70 x 12/*
15,9
110
70
12
10
20,3
3,77
1,79
7,38
5,42
3,05
3,72
1,90
0,351
22,09
L 120 x 80 x 8-
12,2
120
80
8
11
15,5
3,83
1,87
8,23
5,97
3,25
4,19
2,09
0,391
32,12
L 120 x 80 x 10-
15,0
120
80
10
11
19,1
3,92
1,95
8,19
6,01
3,35
4,17
2,15
0,391
26,01
L 120 x 80 x 12-
17,8
120
80
12
11
22,7
4,00
2,03
8,14
6,04
3,45
4,16
2,20
0,391
21,93
L 130 x 90 x 10
16,6
130
90
10
11
21,2
4,16
2,19
8,93
6,67
3,75
4,62
2,49
0,431
25,96
L 130 x 90 x 12♣
19,7
130
90
12
11
25,1
4,24
2,26
8,90
6,69
3,84
4,59
2,51
0,430
21,80
L 130 x 90 x 14
22,8
130
90
14
11
29,0
4,33
2,34
8,85
6,73
3,95
4,61
2,60
0,431
18,94
L 140 x 90 x 8
14,0
140
90
8
11
17,9
4,49
2,03
9,56
6,81
3,58
4,83
2,27
0,451
32,08
L 140 x 90 x 10
17,4
140
90
10
11
22,1
4,58
2,11
9,52
6,85
3,69
4,81
2,33
0,451
25,94
L 140 x 90 x 12
20,6
140
90
12
11
26,3
4,66
2,19
9,47
6,89
3,79
4,79
2,39
0,451
21,83
L 140 x 90 x 14
23,8
140
90
14
11
30,4
4,74
2,27
9,43
6,92
3,88
4,78
2,45
0,451
18,90
L 150 x 90 x 10+/-/x
18,2
150
90
10
12
23,2
5,00
2,04
10,10
7,07
3,61
4,97
2,20
0,470
25,84
L 150 x 90 x 11+/x
19,9
150
90
11
12
25,3
5,04
2,08
10,07
7,09
3,66
4,95
2,23
0,470
23,61
L 150 x 90 x 12+/-/x
21,6
150
90
12
12
27,5
5,08
2,12
10,05
7,11
3,71
4,94
2,26
0,470
21,75
L 150 x 100 x 10+/-/x
19,0
150
100
10
12
24,2
4,81
2,34
10,27
7,48
4,08
5,25
2,64
0,490
25,83
L 150 x 100 x 12+/-/x
22,5
150
100
12
12
28,7
4,90
2,42
10,23
7,52
4,18
5,23
2,70
0,490
21,72
L 150 x 100 x 14+/♣/x
26,1
150
100
14
12
33,2
4,98
2,50
10,19
7,55
4,28
5,22
2,75
0,490
18,79
L 200 x 100 x 10+/-/x
23,0
200
100
10
15
29,2
6,93
2,01
13,15
8,74
3,72
5,94
2,09
0,587
25,58
L 200 x 100 x 12+/-/x
27,3
200
100
12
15
34,8
7,03
2,10
13,08
8,81
3,82
5,89
2,17
0,587
21,49
L 200 x 100 x 14+/♣/x
31,6
200
100
14
15
40,3
7,12
2,18
13,01
8,86
3,91
5,85
2,24
0,587
18,57
L 200 x 100 x 15+/-/x
33,7
200
100
15
15
43,0
7,16
2,22
12,98
8,89
3,95
5,84
2,27
0,587
17,40
L 200 x 100 x 16+/x
35,9
200
100
16
15
45,7
7,20
2,26
12,95
8,92
3,99
5,82
2,31
0,587
16,37
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 ♣ Profilé conforme à DIN 1029: 1994 Profilé conforme à CSN 42 5545: 1977. x Profilé disponible en S460M suivant accord.
* +
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. - Section in accordance with EN 10056-1: 1998. ♣ Section in accordance with DIN 1029: 1994 Section in accordance with CSN 42 5545: 1977. x Section available in S460M upon agreement.
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. + Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. - Profil gemäß EN 10056-1: 1998. ♣ Profil gemäß DIN 1029: 1994 Profil gemäß CSN 42 5545: 1977. x Profil in S460M nach Vereinbarung. *
L iy
lz
mm
3
kg/m
Wel.z
iz
Iu
mm
3
mm
mm
x104
x103
x10
iu
Iv
mm
4
mm
x104
x103
mm
x10
x104
Pure compression
α
iv
lyz
mm
4
mm
mm
mm
x10
x104
x10
x104
EN 10225:2009
Wel.y
axe v-v axis v-v Achse v-v
S355
ly
axe u-u axis u-u Achse u-u
S235
G
axe z-z axis z-z Achse z-z
L 100 x 65 x 7
8,77
112,5
16,61
3,17
37,58
7,53
1,83
128,2
3,39
21,89
1,40
-37,7
22,59
4
4
L 100 x 65 x 8
9,94
126,8
18,85
3,16
42,23
8,54
1,83
144,4
3,38
24,66
1,40
-42,4
22,53
3
4
L 100 x 65 x 9
11,1
140,6
21,05
3,15
46,70
9,52
1,82
160,0
3,36
27,37
1,39
-46,8
22,44
1
3
L 100 x 65 x 10
12,3
154,0
23,20
3,14
50,98
10,48
1,81
175,0
3,35
30,03
1,39
-51,0
22,35
1
2
L 100 x 65 x 12
14,5
179,6
27,38
3,12
59,07
12,33
1,79
203,4
3,32
35,23
1,38
-58,7
22,11
1
1
L 110 x 70 x 10
13,4
206,6
28,27
3,48
65,07
12,31
1,95
233,2
3,69
38,54
1,50
-66,8
21,67
1
3
L 110 x 70 x 12
15,9
241,5
33,40
3,45
75,54
14,51
1,93
271,8
3,66
45,22
1,49
-77,1
21,46
1
2
L 120 x 80 x 8
12,2
225,7
27,63
3,82
80,76
13,17
2,28
260,0
4,10
46,39
1,73
-78,5
23,65
4
4
L 120 x 80 x 10
15,0
275,5
34,10
3,80
98,11
16,21
2,26
317,0
4,07
56,60
1,72
-95,3
23,53
2
4
L 120 x 80 x 12
17,8
322,8
40,37
3,77
114,3
19,14
2,24
370,7
4,04
66,45
1,71
-110,8 23,37
1
2
L 130 x 90 x 10
16,6
359,7
40,70
4,12
141,8
20,82
2,59
421,5
4,46
79,92
1,94
-131,6 25,19
3
4
L 130 x 90 x 12
19,7
420,4
47,97
4,09
164,5
24,42
2,56
491,6
4,42
93,31
1,93
-152,6 25,02
1
3
L 130 x 90 x 14
22,8
481,4
55,50
4,07
187,9
28,24
2,55
561,9
4,40
107,4
1,93
-173,5 24,89
1
2
L 140 x 90 x 8
14,0
360,0
37,86
4,49
118,2
16,96
2,57
409,3
4,78
68,90
1,96
-119,8 22,38
4
4
L 140 x 90 x 10
17,4
440,9
46,81
4,46
144,1
20,91
2,55
500,8
4,76
84,19
1,95
-146,2 22,28
3
4
L 140 x 90 x 12
20,6
518,1
55,50
4,44
168,4
24,72
2,53
587,6
4,73
98,93
1,94
-170,6 22,15
2
4
L 140 x 90 x 14
23,8
591,9
63,96
4,41
191,3
28,41
2,51
670,0
4,70
113,3
1,93
-193,3 21,99
1
3
L 150 x 90 x 10
18,2
533,1
53,29
4,80
146,1
20,98
2,51
591,3
5,05
87,93
1,95
-160,9 19,87
4
4
4
L 150 x 90 x 11
19,9
580,7
58,30
4,79
158,7
22,91
2,50
643,7
5,04
95,70
1,94
-174,7 19,81
3
4
4
L 150 x 90 x 12
21,6
627,3
63,25
4,77
170,9
24,82
2,49
694,8
5,03
103,4
1,94
-188,1 19,75
3
4
4
L 150 x 100 x 10
19,0
552,6
54,23
4,78
198,5
25,92
2,87
637,3
5,14
113,8
2,17
-192,8 23,72
4
4
4
L 150 x 100 x 12
22,5
650,5
64,38
4,76
232,6
30,69
2,85
749,3
5,11
133,9
2,16
-225,9 23,61
3
4
4
L 150 x 100 x 14
26,1
744,4
74,27
4,74
264,9
35,32
2,82
855,9
5,08
153,4
2,15
-256,8 23,48
1
3
4
L 200 x 100 x 10
23,0
1219
93,24
6,46
210,3
26,33
2,68
1294
6,65
134,5
2,14
-286,8 14,82
4
4
4
L 200 x 100 x 12
27,3
1440
111,0
6,43
247,2
31,28
2,67
1529
6,63
158,5
2,13
-337,3 14,74
4
4
4
L 200 x 100 x 14
31,6
1654
128,4
6,41
282,2
36,08
2,65
1755
6,60
181,7
2,12
-384,8 14,65
3
4
4
L 200 x 100 x 15
33,7
1758
137,0
6,40
299,1
38,44
2,64
1865
6,59
193,1
2,12
-407,4 14,59
3
4
4
L 200 x 100 x 16
35,9
1861
145,4
6,38
315,6
40,76
2,63
1972
6,57
204,3
211
-429,3 14,53
3
4
4
* * *
4
4
4
˚
S460
axe y-y axis y-y Achse y-y
EN 10025-4: 2004
Classification EN 1993-1-1: 2005
Valeurs statiques / Section properties / Statische Kennwerte*
Désignation Designation Bezeichnung
EN 10025-2: 2004
Notations pages 215-219 / Bezeichnungen Seiten 215-219
Les valeurs statiques sont calculées avec r2 = 1/2 . r1 Sectional properties have been calculated with r2 = 1/2 . r1 Die statischen Werte sind berechnet mit r2 = 1/2 . r1
115
Dimensions de construction - cornières à ailes égales Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
r2
Dimensions for detailing - equal leg angles
t
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
h
Konstruktionsmaße - gleichschenkliger Winkelstahl
r1
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
Désignation Designation Bezeichnung
t
r2
e
b
e
Dimensions de construction Dimensions for detailing Konstruktionsmaße
Dimensions Abmessungen G
h=b
t
r1
A
kg/m
mm
mm
mm
mm2
Ø
emin
emax
Anet
mm
mm
mm2
x102
x102
L 60 x 60 x 4
3,70
60
4
8
4,71
M 12
34
40,5
4,15
L 60 x 60 x 5-/
4,57
60
5
8
5,82
M 12
35
40,5
5,12
L 60 x 60 x 6-/
5,42
60
6
8
6,91
M 12
36
40,5
6,07
L 60 x 60 x 7*
6.26
60
7
8
7,98
M12
28
37
7,00
L 60 x 60 x 8-/
7,09
60
8
8
9,03
M 12
29
37
7,91
L 60 x 60 x 10*
8,69
60
10
8
11,1
M12
31
37
9,67
L63 x 63 x 5*
4,82
63
5
9
6,14
M 16
30
34
5,24
L63 x 63 x 6*
5,72
63
6
9
7,29
M 16
31
34
6,21
L63 x 63 x 6,5*
6,17
63
6,5
9
7,85
M 16
32
34
6,68
L 65 x 65 x 4*
4,02
65
4
9
5,13
M 16
29
36
4,41
L 65 x 65 x 5*
4,97
65
5
9
6,34
M 16
30
36
5,44
L 65 x 65 x 6*/
5,91
65
6
9
7,53
M 16
31
36
6,45
L 65 x 65 x 7-
6,83
65
7
9
8,70
M 16
32
36
7,44
L 65 x 65 x 8*/
7,73
65
8
9
9,85
M 16
33
36
8,41
L 65 x 65 x 9*
8,62
65
9
9
11,0
M 16
34
36
9,36
L 65 x 65 x 10*
9,49
65
10
9
12,1
M 16
35
36
10,3
L 65 x 65 x 11*
10,3
65
11
9
13,2
M 16
36
36
11,2
L 70 x 70 x 5
5,37
70
5
9
6,84
M 16
30
41
5,94
L 70 x 70 x 6-
6,38
70
6
9
8,13
M 16
31
41
7,05
L 70 x 70 x 7-
7,38
70
7
9
9,40
M 16
32
41
8,14
L 70 x 70 x 8
8,37
70
8
10
10,7
M 16
34
41
9,23
L 70 x 70 x 9
9,32
70
9
9
11,9
M 16
34
41
10,3
L 70 x 70 x 10*
10,3
70
10
9
13,1
M 16
35
41
11,3
L 75 x 75 x 4*
4,65
75
4
9
5,93
M 16
29
46
5,21
L 75 x 75 x 5*
5,76
75
5
9
7,34
M 16
30
46
6,44
L 75 x 75 x 6-/*
6,85
75
6
9
8,73
M 16
31
46
7,65
L 75 x 75 x 7*
7,93
75
7
9
10,1
M 16
32
46
8,84
L 75 x 75 x 8-
8,99
75
8
9
11,4
M 16
33
46
10,0
L 75 x 75 x 9*
10,0
75
9
9
12,8
M 16
34
46
11,2
L 75 x 75 x 10*
11,1
75
10
9
14,1
M 16
35
46
12,3
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 Profilé conforme à DIN 1028: 1994 Profilé conforme à CSN 42 5541: 1974. Avec arêtes vives sur demande.
* + -
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges.
* + -
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich.
L Notations pages 215-219 / Bezeichnungen Seiten 215-219
Désignation Designation Bezeichnung
Dimensions de construction Dimensions for detailing Konstruktionsmaße
Dimensions Abmessungen G
h=b
t
r1
A
kg/m
mm
mm
mm
mm2
Ø
emin
emax
Anet
mm
mm
mm2
x102
x102
L 80 x 80 x 5*
6,17
80
5
10
7,86
M 16
31
51
6,96
L 80 x 80 x 6
7,34
80
6
10
9,35
M 16
32
51
8,27 9,56
L 80 x 80 x 7*
8,49
80
7
10
10,8
M 16
33
51
L 80 x 80 x 8-
9,63
80
8
10
12,3
M 16
34
51
10,8
L 80 x 80 x 9*
10,8
80
9
10
13,7
M 16
35
51
12,1
L 80 x 80 x 10-/*
11,9
80
10
10
15,1
M 16
36
51
13,3
L 90 x 90 x 5*
6,97
90
5
10
8,88
M20
35
55
7,78
L 90 x 90 x 6
8,28
90
6
10
10,5
M 20
36
55
9,23
L 90 x 90 x 7-
9,61
90
7
11
12,2
M 20
38
55
10,7
L 90 x 90 x 8-
10,9
90
8
11
13,9
M 20
39
55
12,1
L 90 x 90 x 9-
12,2
90
9
11
15,5
M 20
40
55
13,5
L 90 x 90 x 10-/*
13,4
90
10
11
17,1
M 20
41
55
14,9
L 90 x 90 x 11*
14,7
90
11
11
18,7
M 20
42
55
16,3
L 90 x 90 x 16
20,7
90
16
11
26,4
M 20
47
55
22,8
L 100 x 100 x 6
9,26
100
6
12
11,8
M 24
41
59
10,2
L 100 x 100 x 7
10,7
100
7
12
13,7
M 24
42
59
11,8
L 100 x 100 x 8-
12,2
100
8
12
15,5
M 24
43
59
13,4
L 100 x 100 x 9
13,6
100
9
12
17,3
M 24
44
59
15,0
L 100 x 100 x 10-
15,0
100
10
12
19,2
M 24
45
59
16,60
L 100 x 100 x 11
16,4
100
11
12
20,9
M 24
46
59
18,1
L 100 x 100 x 12-
17,8
100
12
12
22,7
M 24
47
59
19,6
L 100 x 100 x 14*
20,6
100
14
12
26,2
M 24
49
59
22,6
L 100 x 100 x 16
23,2
100
16
12
29,6
M24
52
59
25,4
L 110 x 110 x 6
10,2
110
6
12
13,0
M 27
45
62
11,2
L 110 x 110 x 7
11,8
110
7
12
15,1
M 27
45
62
13,0
L 110 x 110 x 8
13,4
110
8
12
17,1
M 27
46
62
14,7
L 110 x 110 x 9
15,0
110
9
12
19,1
M 27
47
62
16,4
L 110 x 110 x 10
16,6
110
10
13
21,2
M 27
49
62
18,2
L 110 x 110 x 11
18,2
110
11
13
23,2
M27
50
62
19,9
L 110 x 110 x 12
19,7
110
12
13
25,1
M 27
51
62
21,5
117
Dimensions de construction - cornières à ailes égales (suite) Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
r2
Dimensions for detailing - equal leg angles(continued)
t h
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
Konstruktionsmaße - gleichschenkliger Winkelstahl (Fortsetzung)
t
r2
e
b
e
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
Désignation Designation Bezeichnung
Dimensions de construction Dimensions for detailing Konstruktionsmaße
Dimensions Abmessungen G
h=b
t
r1
A
kg/m
mm
mm
mm
mm2
Ø
emin
emax
Anet
mm
mm
mm2
x102
x102
L 120 x 120 x 7x
12,9
120
7
13
16,5
M 27
46
72
14,4
L 120 x 120 x 8/x
14,7
120
8
13
18,7
M 27
48
72
16,3
L 120 x 120 x 9x
16,5
120
9
13
21,0
M 27
48
72
18,3
L 120 x 120 x 10-/x
18,2
120
10
13
23,2
M 27
49
72
20,2
L 120 x 120 x 11/x
19,9
120
11
13
25,4
M 27
50
72
22,1
L 120 x 120 x 12-/x
21,6
120
12
13
27,5
M 27
51
72
23,9
L 120 x 120 x 13x
23,3
120
13
13
29,7
M 27
52
72
25,8
L 120 x 120 x 14
25,0
120
14
13
31,8
M 27
53
72
27,6
L 120 x 120 x 15x
26,6
120
15
13
33,9
M 27
54
72
29,4
L 120 x 120 x 16*/x
28,3
120
16
13
36,0
M 27
56
72
31,2
L 130 x 130 x 8
16,0
130
8
14
20,4
M 27
48
82
18,0
L 130 x 130 x 9*
17,9
130
9
14
22,8
M 27
49
82
20,1
L 130 x 130 x 10
19,8
130
10
14
25,2
M 27
50
82
22,2
L 130 x 130 x 11
21,7
130
11
14
27,6
M 27
51
82
24,3
L 130 x 130 x 12
23,5
130
12
14
30,0
M 27
52
82
26,4
L 130 x 130 x 13x
25,4
130
13
14
32,3
M 27
53
82
28,4
L 130 x 130 x 14
27,2
130
14
14
34,7
M 27
54
82
30,5
L 130 x 130 x 15
29,0
130
15
14
37,0
M 27
57
82
32,5
L 130 x 130 x 16*
30,8
130
16
14
39,3
M 27
27
82
34,5 21,9
L 140 x 140 x 9
19,3
140
9
15
24,6
M27
50
92
L 140 x 140 x 10
21,4
140
10
15
27,2
M27
51
92
24,2
L 140 x 140 x 11
23,4
140
11
15
29,8
M27
52
92
26,5
L 140 x 140 x 12
25,4
140
12
15
32,4
M27
53
92
28,8
L 140 x 140 x 13
27,5
140
13
15
35,0
M27
54
92
31,1
L 140 x 140 x 14
29,4
140
14
15
37,5
M27
55
92
33,3
L 140 x 140 x 15
31,4
140
15
15
40,0
M27
56
92
35,5
L 140 x 140 x 16*
33,3
140
16
15
42,5
M27
58
92
37,7
L 150 x 150 x 10+/-/x
23,0
150
10
16
29,3
M 27
52
102
26,3
L 150 x 150 x 12+/-/x
27,3
150
12
16
34,8
M 27
54
102
31,2
L 150 x 150 x 13+/x
29,5
150
13
16
37,6
M 27
55
102
33,7
L 150 x 150 x 14+//x
31,6
150
14
16
40,3
M 27
56
102
36,1
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 Profilé conforme à DIN 1028: 1994 Profilé conforme à CSN 42 5541: 1974. Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord.
* + -
x
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.
* + -
x
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.
L Notations pages 215-219 / Bezeichnungen Seiten 215-219
Désignation Designation Bezeichnung
Dimensions de construction Dimensions for detailing Konstruktionsmaße
Dimensions Abmessungen G
h=b
t
r1
A
kg/m
mm
mm
mm
mm2
Ø
emin
emax
Anet
mm
mm
mm2
x102
x102
L 150 x 150 x 15+/-/x
33,8
150
15
16
43,0
M 27
57
102
38,5
L 150 x 150 x 16+/x
35,9
150
16
16
45,7
M 27
58
102
40,9
L 150 x 150 x 18+/x
40,1
150
18
16
51,0
M 27
61
102
45,6
L 150 x 150 x 20+/x
44,2
150
20
16
56,3
M 27
63
102
50,3
L 160 x 160 x 14+
33,9
160
14
17
43,2
M 27
57
111
39,0
L 160 x 160 x 15+/-
36,2
160
15
17
46,1
M 27
58
111
41,6
L 160 x 160 x 16+
38,4
160
16
17
49,0
M 27
60
111
44,2
L 160 x 160 x 17+/
40,7
160
17
17
51,8
M 27
61
111
46,7
L 160 x 160 x 18
42,9
160
18
17
54,7
M 27
62
111
49,3
L 160 x 160 x 19
45,1
160
19
17
57,5
M 27
63
111
51,8
L 180 x 180 x 13+/x
35,7
180
13
18
45,5
M 27
57
131
41,6
L 180 x 180 x 14+/x
38,3
180
14
18
48,8
M 27
58
131
44,6
L 180 x 180 x 15+/x
40,9
180
15
18
52,1
M 27
59
131
47,6
L 180 x 180 x 16+/-/x
43,5
180
16
18
55,4
M 27
61
131
50,6
L 180 x 180 x 17+/x
46,0
180
17
18
58,7
M 27
62
131
53,6
L 180 x 180 x 18+/-/x
48,6
180
18
18
61,9
M 27
63
131
56,5
L 180 x 180 x 19+/x
51,1
180
19
18
65,1
M 27
64
131
59,4
L 180 x 180 x 20+/x
53,7
180
20
18
68,3
M 27
65
131
62,3
L 200 x 200 x 13x
39,8
200
13
18
50,7
M 27
57
151
46,8
L 200 x 200 x 15+/x
45,6
200
15
18
58,1
M 27
59
151
53,6
L 200 x 200 x 16+/-/x
48,5
200
16
18
61,8
M 27
61
151
57,0
L 200 x 200 x 17+/x
51,4
200
17
18
65,5
M 27
62
151
60,4
L 200 x 200 x 18+/-/x
54,2
200
18
18
69,1
M 27
63
151
63,7
L 200 x 200 x 19+/x
57,1
200
19
18
72,7
M 27
64
151
67,0
L 200 x 200 x 20+/-/x
59,9
200
20
18
76,3
M 27
65
151
70,3
L 200 x 200 x 21+/x
62,8
200
21
18
79,9
M 27
66
151
73,6
L 200 x 200 x 22+/x
65,6
200
22
18
83,5
M 27
67
151
76,9
L 200 x 200 x 23+/x
68,3
200
23
18
87,1
M 27
68
151
80,2
L 200 x 200 x 24+/-/x
71,1
200
24
18
90,6
M 27
69
151
83,4
L 200 x 200 x 25+/x
73,9
200
25
18
94,1
M 27
70
151
86,6
L 200 x 200 x 26+/x
76,6
200
26
18
97,6
M 27
71
151
89,8
L 200 x 200 x 28x
82,0
200
28
18
105
M 27
73
151
96,1
119
Dimensions de construction - cornières à ailes égales (suite) Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
r2
u
t h
r3
t
r2
y zs ys
r2
b
45o
u2
u
Konstruktionsmaße - gleichschenkliger Winkelstahl (Fortsetzung)
r1
v
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
u1
z
v
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
Désignation Designation Bezeichnung
v
v
Dimensions for detailing - equal leg angles(continued)
r2
Dimensions de construction Dimensions for detailing Konstruktionsmaße
Dimensions Abmessungen G
h=b
t
r1
r2
r3
A
kg/m
mm
mm
mm
mm
mm
mm2
Ø
emin
emax
Anet
mm
mm
mm2
x102
x102
L 250 x 250 x 17*
64,4
250
17
18
9,0
3
82,1
M27
62
201
77,0
L 250 x 250 x 18*
68,1
250
18
18
9,0
3
86,7
M 27
63
201
81,3
L 250 x 250 x 19*
71,7
250
19
18
9,0
3
91,4
M 27
64
201
85,7
L 250 x 250 x 20*
75,3
250
20
18
9,0
3
96,0
M 27
65
201
90,0
L 250 x 250 x 21*
78,9
250
21
18
9,0
3
100,6
M 27
66
201
94,3
L 250 x 250 x 22*
82,5
250
22
18
9,0
3
105,1
M 27
67
201
98,5
L 250 x 250 x 23*
86,1
250
23
18
9,0
3
109,7
M 27
68
201
103
L 250 x 250 x 24*
89,7
250
24
18
9,0
3
114,2
M 27
69
201
107
L 250 x 250 x 25*
93,2
250
25
18
9,0
3
118,7
M 27
70
201
111
L 250 x 250 x 26*
96,7
250
26
18
9,0
3
123,2
M 27
71
201
115
L 250 x 250 x 27*
101
250
27
18
9,0
3
127,7
M 27
72
201
120
L 250 x 250 x 28*/L 250 x 250 x 29*
104
250
28
18
9,0
3
137,1
M 27
73
201
124
107
250
29
18
9,0
3
136,6
M 27
74
201
128
L 250 x 250 x 30* L 250 x 250 x 31*
111
250
30
18
9,0
3
141,0
M 27
75
201
132
114
250
31
18
9,0
3
145,4
M 27
76
201
136
L 250 x 250 x 32* L 250 x 250 x 33*
118
250
32
18
9,0
3
149,7
M 27
77
201
140
121
250
33
18
9,0
3
154,1
M 27
78
201
144
L 250 x 250 x 34*
124
250
34
18
9,0
3
158,4
M 27
79
201
148
L 250 x 250 x 35*/-
128
250
35
18
9,0
3
162,7
M 27
80
201
152
L 300 x 300 x 25* L 300 x 300 x 26*
112
300
25
18
12,0
15
142,7
M 27
70
251
135
116
300
26
18
12,0
15
148,2
M 27
71
251
140
L 300 x 300 x 27* L 300 x 300 x 28*
121
300
27
18
12,0
15
153,7
M 27
72
251
146
125
300
28
18
12,0
15
159,1
M 27
73
251
151
L 300 x 300 x 29* L 300 x 300 x 30*
129
300
29
18
12,0
15
164,6
M 27
74
251
156
133
300
30
18
12,0
15
170,0
M 27
75
251
161
L 300 x 300 x 31* L 300 x 300 x 32*
138
300
31
18
12,0
15
175,4
M 27
76
251
166
142
300
32
18
12,0
15
180,7
M 27
77
251
171
L 300 x 300 x 33* L 300 x 300 x 34*
146
300
33
18
12,0
15
186,1
M 27
78
251
176
150
300
34
18
12,0
15
191,4
M 27
79
251
181
L 300 x 300 x 35*
154
300
35
18
12,0
15
196,7
M 27
80
251
186
Autres dimensions sur demande. Les rayons r1, r2, r3
peuvent être inférieur en fonction du procédé de laminage. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 Profilé conforme à DIN 1028: 1994 Profilé conforme à CSN 42 5541: 1974. Avec arêtes vives sur demande. x Profilé disponible en S460M suivant accord.
* + -
x
Other dimensions on request. The r1, r2, r3 radius may be smaller depending on the rolling process. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. Section in accordance with EN 10056-1: 1998. Section in accordance with DIN 1028: 1994. Section in accordance with CSN 42 5541: 1974. Available with sharp edges. Section available in S460M upon agreement.
* + -
x
Andere Abmessungen auf Anfrage. Die Radien r1, r2, r3 können je nach Walzprozess kleiner sein. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. Profil gemäß EN 10056-1: 1998. Profil gemäß DIN 1028: 1994. Profil gemäß CSN 42 5541: 1974. Auch mit scharfen Kanten erhältlich. Profil in S460M nach Vereinbarung.
Dimensions de construction - cornières à ailes inégales Dimensions: EN 10056-1: 1998 Tolérances: EN 10056-2: 1993 Etat de surface: conforme à EN 10163-3: 2004, classe C, sous-classe 1
r2
Dimensions for detailing - unequal leg angles
t h
Dimensions: EN 10056-1: 1998 Tolerances: EN 10056-2: 1993 Surface condition: according to EN 10163-3: 2004, class C, subclass 1
r1
Konstruktionsmaße - ungleichschenkliger Winkelstahl
t
ez
r2
b
ey
Abmessungen: EN 10056-1: 1998 Toleranzen: EN 10056-2: 1993 Oberflächenbeschaffenheit: Gemäß EN 10163-3: 2004, Klasse C, Untergruppe 1
Notations pages 215-219 / Bezeichnungen Seiten 215-219
Désignation Designation Bezeichnung
Dimensions de construction /Dimensions for detailing /Konstruktionsmaße
Dimensions Abmessungen
aile longue / long leg / langer Schenkel
G
h
b
t
r1
A
kg/m
mm
mm
mm
mm
mm2
Øz
aile courte / short leg / kurzer Schenkel
ez,min
ez,max
Az,net
mm
mm
mm2
x102
Øy
ey,min
ey,max
Ay,net
mm
mm
mm2
x102
x102
L 100 x 65 x 7-
8,77
100
65
7
10
11,2
M 27
47
54
9,07
M 16
37
38
9,91
L 100 x 65 x 8-
9,94
100
65
8
10
12,7
M 27
48
54
10,3
M 16
38
38
11,2
L 100 x 65 x 9♣
11,1
100
65
9
10
14,1
M 27
49
54
11,4
M 16
39
38
12,5
L 100 x 65 x 10-
12,3
100
65
10
10
15,6
M 27
50
54
12,6
M 16
40
38
13,8
L 100 x 65 x 12
14,5
100
65
12
10
18,5
M 27
52
54
14,9
M 16
42
38
16,3
L 110 x 70 x 10/*
13,4
110
70
10
10
17,1
M 27
50
64
14,1
M 16
40
43
15,3
L 110 x 70 x 12/*
15,9
110
70
12
10
20,3
M 27
52
64
16,7
M 16
42
43
18,1
L 120 x 80 x 8-
12,2
120
80
8
11
15,5
M 27
48
72
13,1
M 16
38
50
14,0
L 120 x 80 x 10-
15,0
120
80
10
11
19,1
M 27
50
72
16,1
M 16
40
50
17,3
L 120 x 80 x 12-
17,8
120
80
12
11
22,7
M 27
52
72
19,1
M 16
42
50
20,5
L 130 x 90 x 10
16,6
130
90
10
11
21,2
M 27
50
84
18,2
M 24
50
51
18,6
L 130 x 90 x 12♣
19,7
130
90
12
11
25,1
M 27
52
83
21,5
M 24
52
51
22,0
L 130 x 90 x 14
22,8
130
90
14
11
29,0
M 27
54
84
24,8
M 24
54
51
25,4
L 140 x 90 x 8
14,0
140
90
8
11
17,9
M 27
48
93
15,5
M 24
48
51
15,8
L 140 x 90 x 10
17,4
140
90
10
11
22,1
M 27
50
93
19,1
M 24
50
51
19,5
L 140 x 90 x 12
20,6
140
90
12
11
26,3
M 27
52
93
22,7
M 24
52
51
23,2
L 140 x 90 x 14
23,8
140
90
14
11
30,4
M 27
54
93
26,2
M 24
54
51
26,7
L 150 x 90 x 10+/-/x
18,2
150
90
10
12
23,2
M 27
50
102
20,2
M 24
47
49
20,6
L 150 x 90 x 11+/x
19,9
150
90
11
12
25,3
M 27
51
102
22,0
M 24
48
49
22,5
L 150 x 90 x 12+/-/x
21,6
150
90
12
12
27,5
M 27
52
102
23,9
M 24
48
49
24,4
L 150 x 100 x 10+/-/x
19,0
150
100
10
12
24,2
M 27
50
102
21,2
M 24
47
58
21,6
L 150 x 100 x 12+/-/x
22,5
150
100
12
12
28,7
M 27
52
102
25,1
M 24
49
58
25,6
L 150 x 100 x 14+/♣/x
26,1
150
100
14
12
33,2
M 27
54
102
29,0
M 24
51
58
29,6
L 200 x 100 x 10+/-/x
23,0
200
100
10
15
29,2
M 27
54
150
26,2
M 24
48
57
26,6
L 200 x 100 x 12+/-/x
27,3
200
100
12
15
34,8
M 27
54
150
31,2
M 24
50
57
31,7
L 200 x 100 x 14+/♣/x
31,6
200
100
14
15
40,3
M 27
55
151
36,1
M 24
50
57
37,2
L 200 x 100 x 15+/-/x
33,7
200
100
15
15
43,0
M 27
56
151
38,5
M 24
50
57
39,9
L 200 x 100 x 16+/x
35,9
200
100
16
15
45,7
M 27
58
151
40,9
M 24
51
57
42,6
Autres dimensions sur demande. * Tonnage minimum et conditions de livraison nécessitent un accord préalable. + Commande minimale: 40t par profilé et qualité ou suivant accord. - Profilé conforme à EN 10056-1: 1998 ♣ Profilé conforme à DIN 1029: 1994 Profilé conforme à CSN 42 5545: 1977. x Profilé disponible en S460M suivant accord.
* +
Other dimensions on request. Minimum tonnage and delivery conditions upon agreement. Minimum order: 40t per section and grade or upon agreement. - Section in accordance with EN 10056-1: 1998. ♣ Section in accordance with DIN 1029: 1994 Section in accordance with CSN 42 5545: 1977. x Section available in S460M upon agreement.
Andere Abmessungen auf Anfrage. Mindestbestellmenge und Lieferbedingungen nach Vereinbarung. + Mindestbestellmenge: 40t pro Profil und Güte oder nach Vereinbarung. - Profil gemäß EN 10056-1: 1998. ♣ Profil gemäß DIN 1029: 1994 Profil gemäß CSN 42 5545: 1977. x Profil in S460M nach Vereinbarung. *
121
HSS BIM Solutions Pvt Ltd (A unit of HSS group of companies)
BUILDING INFORMATION MODELING What is BIM? Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle; defined as existing from earliest conception to demolition. Building information modeling extends this beyond 3D, augmenting the three primary spatial dimensions (width, height and depth - X, Y and Z) with time as the fourth dimension and cost as the fifth. BIM therefore covers more than just geometry. It also covers spatial relationships, light analysis, geographic information,
BIM OUTPUTS
and quantities and properties of building components.
3D MODEL AND COLLISION DETECTION Clash detection enables the effective identification, inspection, and reporting of interferences in the composite project model. Clash detection can be used as a one-time sanity check for completed design work or as part of an ongoing project audit and quality control process.
ACCURATE BOQ BIM models can be used to accurate generate quantitytakeoffs and assist in the creation of cost estimates throughout the lifecycle of a project. Using BIM models in this manner enables the project team to see the cost effects of their design decisions and proposed changes during all phases of the project, and this feedback supports better design decision-making and can help curb excessive budget overruns due to project modifications.
HSS BIM Solutions Pvt Ltd
www.hssbim.com
BUILDING INFORMATION MODELING CONSTRUCTION SIMULATION The ability to forecast and anticipate problems before they occur is essential for effective project management. Traditional scheduling methods do not address the spatial aspect to the construction activities nor are they directly linked to a design or building model. Traditional bar charts or Critical Path Method network diagrams can be difficult to understand or interpret. Having the ability to watch the elementsof a design come together onscreen gives the design and construction team improved accuracy in construction
sequencing.
Week 8
Week 10
Week 12
MARKETING PRESENTATION
D
AS BUILT MODEL Tracking and maintaining life cycle information about the building structure (wall, floors, roof, etc.) as well as the equipment serving the building mechanical, electrical, plumbing, etc.) to plan and schedule a program of maintenance activities that will improve building performance, reduce repairs, and reduce overall maintenance costs.
OUR SERVICES BIM SOLUTION BIM Solutions has a compiled a list of services for the most pressing needs of companies in our industry across several disciplines. We also have the ability to make a customized match of our capabilities to the needs of your organization.
BIM IMPLEMENTATION We start out by assisting you in creating your firm's BIM Technology Implementation Plan, making sure we have the support of the Principals and upper management. The Technology Implementation Plan is our guide throughout the transition process and will help us assign the appropriate Expert Team Member(s) to meet your firm's goals.
BIM TRAINING We understand that making the shift to BIM requires a resource that is knowledgeable and available for consultation. We have mentors on-staff that are available to participate in on-site and online sessions to get you over hurdles.
BIM CONTENT CREATION Revit Families are pre-made, precision engineered reusable objects compiled with similar parameters and visual graphical representations that can be organized into the same class or group. These families are very useful for the firms who always search for custom or manufacturer specific content.
HSS BIM Solutions Pvt Ltd
www.hssbim.com
India HSS BIM Solutions Pvt Ltd
3rd Floor, Ganesh Tower, B-1 ,1st Avenue, 100 Ft Road, Ashok Nagar, Chennai - 600083, Tamil Nadu, India.
Tel : + 91 44 49181100(100 lines)
GROUP OF COMPANIES HSS ENGINEERING SDN BHD TOTAL ENGINEERING SERVICES
HSS INTEGRATED SDN BHD ENGINEERING CONSULTANCY SERVICES
Fax : + 91 44 49181199
HSS PROJECTS SDN BHD
Mob: + 91 9444918325 Mail:
[email protected]
HSS PROJECT MANAGEMENT SDN BHD
TURNKEY CONTRACTORS
PROJECT / CONSTRUCTION MANAGEMENT
Malaysia BIM GLOBAL VENTURES SDN BHD
B-1 (1-4) Block B, Plaza Dwitasik, No. 21, Jalan 5/106, Bandar Sri Permaisuri, 56000 Kuala Lumpur,Malaysia Mail:
[email protected] UAE ConsultantHSS P.O Box: 183921, Dubai, U.A.E. Mail:
[email protected] Singapore HSS BIM Global Pte Ltd 77A, Boat Quay, Singapore 049865 Tel : +65 63272490 Fax: +65 63272465 Mail:
[email protected]
Partner
HSS URUS HARTA SDN BHD FACILITIES MANAGEMENT
HSS INTESYS SDN BHD ENGINEERING IT SERVICES
HSS MEKANIKAL & ELEKTRIKAL SDN BHD
PREFACE This master thesis represent the final part of my study, master degree in structural and material technology with specialization in offshore structure engineering at the Faculty of science and material technology at University of Stavanger. The thesis was proposed by the Structural Department of Aker Solution in Stavanger. The work was carried out under the supervision of Mr. Sudath Siriwardane at the University of Stavanger in the spring 2015. The aim of this thesis was to do the whole process of designing, modeling, calculation and analyzing of an offshore module structure. This includes all relevant conditions, such as transport, offshore lifting, inplace and accidental dropped object scenario. I would like to take this opportunity to thank Mr. Christian Brun at Aker Solutions for providing the thesis, and also my internal supervisor Associate Professor Mr. Sudath Siriwardane at the faculty of Science and Material technology at University of Stavanger for his valuable support and guidance throughout the writing and working on this thesis. Finally I would like to thank my all family members, relatives, and friends and specially to thank my wife for her support and encouragement during all these five years study program at the University of Stavanger.
Gholam Sakhi Sakha
Stavanger
8-June-2015
Page 1
Table of Contents PREFACE .................................................................................................................................................. 1 1.0
INTRODUCTION ........................................................................................................................... 4
1.1
BACKGROUND OF THE THESIS ................................................................................................. 4
1.2
AIM OF THE THESIS.................................................................................................................. 5
1.3
ABBREVIATIONS....................................................................................................................... 7
2.0
SUMMARY ................................................................................................................................... 8
3.0
COMPUTER MODELING ............................................................................................................. 12
3.1
GENERAL ................................................................................................................................ 12
3.2
UNITS ..................................................................................................................................... 13
3.3
STAAD.ProV8i ........................................................................................................................ 13
3.4
MATHCAD 15.0 ...................................................................................................................... 13
4.0
DESIGN CONSIDERATION .......................................................................................................... 14
4.1
MATERIAL QUALITY AND PROPERTIES .................................................................................. 14
4.2
DESISGN BASIS AND ACCEPTANCE CRITERIA......................................................................... 15
4.3
LIMIT STATE ACCEPTANCE CRITERIA ..................................................................................... 15
4.4
DESIGN LOAD CATAGORIES ................................................................................................... 16
4.5
LOAD AND MATERIAL FACTORS ............................................................................................ 17
4.6
PERMENANT LOAD ................................................................................................................ 19
4.7
LIVE LOAD .............................................................................................................................. 21
4.8
ENVIRONMENTAL ACTION .................................................................................................... 24
4.8.1
WIND ACTION .................................................................................................................... 25
4.8.2
EARTHQUAKE ACTION ....................................................................................................... 27
4.9
ACCIDENTAL LOADS............................................................................................................... 29
4.9.1
Dropped object .................................................................................................................. 30
4.9.2
Explosion loads .................................................................................................................. 30
4.9.3
Fire loads ........................................................................................................................... 32
5.0
DESIGN CONSIDERATION TRANSPORT PHASE .......................................................................... 33
5.1
BARGE ACTION IN TRANSPORT ............................................................................................. 34
5.2
WIND ACTION IN TRANSPORT ............................................................................................... 34
6.0
GLOBAL STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION ................................................. 35
6.1
INPLACE CONDITION ............................................................................................................. 36
6.1.1
ULS INPLACE DESIGN CHECK ACCORDING TO EC3 ............................................................ 36
6.1.2
SLS DESIGN CHECK ............................................................................................................. 37 Page 2
6.2
LIFTING CONDITION............................................................................................................... 37
6.2.1 6.3 70 7.1 8.0
LIFTING DESIGN LOAD FACTOR ......................................................................................... 41 TRANSPORT CONDITION ....................................................................................................... 44
DESIGN CHECK OF PADEYES ...................................................................................................... 46 LOCAL ANALYSIS OF PADEYES ............................................................................................... 46 DESIGN CHECK OF CONNECTIONS ............................................................................................. 49
8.1
BOLTED CONNECTIONS ......................................................................................................... 49
8.2
WELDED CONNECTIONS ........................................................................................................ 50
9.0
CONCLUSIONS ........................................................................................................................... 51
10.0
REFRENCES ............................................................................................................................ 54
11.0
APPENDICES............................................................................................................................... 55
Page 3
1.0
INTRODUCTION
The analysis, design and construction of offshores structures is arguably one of the most demanding set of task faced by the engineering profession. Over and above the usual conditions and situations met by land based structures offshore structures have the added complication of being placed in an ocean environment where hydrodynamic interaction effects and dynamic response become major consideration in their design.
1.1
BACKGROUND OF THE THESIS
Norwegian offshore petroleum industries are in the period in which modifications of existing platforms are often the chosen solution for the realization of development needs. As fields will age well pressure often drops, and this can be compensated by the injection of water or gas. As part of modification work on “Black Gold PH” platform a new gas injection module shall be installed on the one side of existing platform. The offshore module needs to be protected from accidental dropped objects due to crane operations on the weather deck of platform. The new offshore module shall measure 10.0m, 5.50m, 9.50m (length, width, height).
Figure 1.1 “Black Gold PH” (source: design brief) Page 4
This thesis covers design and analysis of the offshore module structure. Design, modeling, analysis and calculation are done according to prevailing standards regulations and industry practices.
1.2
AIM OF THE THESIS
The main object of this thesis is design, analyses and calculation of an offshore module structure to ensure the required safety and serviceability requirements against different loads and load combination (i.e. dropped object impact load, explosion load, live load, dead load, wind load, barge acceleration load and earthquake load) by considering all phases such as transportation, installation and normal operation. The structure shall be designed for housing 12 gas injection pumps, each estimated of weigh around 1500kg. The 12 gas injection pumps must be installed on the first and second floor of module and each floor shall be housing for 6 pumps. Pumps shall be installed on onshore and the module shall be transported and lifted. Apart to above major objective, other goals of this thesis are,
Learn to use FES (finite element software) Staad.ProV8i and Mathcad 14.0 programs for structural analysis, design and calculation.
Evaluation and implementation of relevant rules, standard and regulations for offshore construction and offshore activities in Norwegian continental shelf (NCF).
Design optimization of profile types to achieve economical design with respect to strength and weight considering, inplace, lift and transport condition.
Design of lifting accessories equipment and pad eyes.
Use of Microsoft word 2010 and Microsoft excel 2010 programs
Page 5
Figure 1.2 (3D) view offshore module structure (source: Staad.Pro)
Figure 1.3 offshore module with members number (source: Staad. Pro) Page 6
1.3
ABBREVIATIONS
ALS
Accidental Limit State
BLC
Basic Load Case
COG
Centre of Gravity
COGE
Centre of Gravity Envelope
EQ
Earthquake
FES
Finite Element Software
DAF
Dynamic Amplification Factor
DC
Design Class
DNV
Det Norske Veritas
DOP
Dropped Objects Protection
EC3
Euro Code 3
LC
Load Combination
MF
Material Factor
NS
Norwegian Standard
N-001
Norsok Standard N-001
N-003
Norsok Standard N-003
N-004
Norsok Standard N-004
NPD
Norwegian Petroleum Department
SI
System International
SKL
Skew Load Factor
SLS
Serviceability limit state
SWL
Still Water Level
UF
Utilization Factor
ULS
Ultimate Limit State
WLL
Working Limit Load
WCF
Weight Contingency Factor
Page 7
2.0
SUMMARY
This master thesis based on a design brief which is issued by Aker Solutions. In connection with modification work on “Black Gold PH” production platform, a new gas injection module shall be installed on the existing production platform. The module needs to be protected from accidental dropped objects due to crane activities on weather deck. The main objective of this thesis is design, modeling, structural analysis and calculation of an offshore module structure to ensure the required safety and serviceability requirements against different loads and load combination (i.e. dropped object impact load, explosion load, fire load, live load, dead load, wind load and earthquake) by considering all phases such as transportation, installation and normal operation. For this purpose a Design Brief was issued by Aker Solutions [ref./1/]. In addition to the main purpose of this thesis these goals were achieved:
Learned to use Staad.ProV8i and Mathcad 14.0 programs for structural analysis, design and calculations.
Evaluation and implementation of relevant rules and regulations for offshore construction.
Optimize and selection of profile types to achieve optimal design with respect to strength and weight considering, inplace, lift and transport condition.
Design of lifting points and pad eyes.
Plastic analysis and design of dropped object protection (ALS).
The structural design and analyses were done in three phases First the offshore module structure had to be proven adequate for the normal operational conditional, including an accidental dropped object scenario, explosion scenario and fire action. Secondly it had to withstand the strain imposed by barge during transportation and finally it had to be lifted inplace. The analyses show that the designed offshore module structure has enough capacity to withstand all conditions with good safety margin. Analyses result show that the most critical condition is the accidental dropped object, with a resulting UF=1.00. Normal operating condition inplace with resulted in a utilization factor 0.984. Page 8
Transport condition resulted in a UF of 0.973. In lifting condition the highest utilization factor is 0.996. All utilization factors are well within the acceptable limit criteria, UF≤1.00. The members with highest utilization factors for all conditions are presented in the following tables. Inplace condition: Table 2.1 members with highest utilization ratios wind action ULS-a/b.
Table 2.2 members with highest utilization ratio earthquake action ULS-a/b
Table 2.3 members with highest utilization ratios earthquake action ALS
Page 9
Table 2.4 members with highest utilization ratios explosion action ALS
Table 2.5 members with highest utilization ratios fire action ALS
Transport condition:
Table 2.6 members with highest utilization ratios barge acceleration ULS-a
Page 10
Table 2.7 members with highest utilization ratios barge acceleration ULS-b
Lifting condition: Table 2.8 members with highest utilizations ratios ULS-a
The accidental dropped object UF= 1.00 refers to the deck beams on top of the structure.
Page 11
3.0
COMPUTER MODELING
3.1
GENERAL
The offshore module structure is analyzed and designed by use of the FES (finite element software) Staad.ProV8i.engineering program. The coordinate system used is such that y is pointing upwards, x is pointing horizontal (East) and z is pointing also horizontal (South). The modeling in Staad.ProV8i is done in the system lines which means that all profiles and plates are placed at the section centroid line and the connection between the profiles are as default full strength (rigid) connection. Loading orientation on the structural member usually influence the selection of section profile types of the structural members. Selection of section properties are based on the structural member responses during transverse- and axial loading. The designed model represented in this thesis is result of a long process and some profiles were replaced during modeling and designing of offshore module structure until achieved the suitable profiles to meet the design limit criteria specially profiles which are used on the top of offshore module must be designed and analyzed to withstand dropped object load. Profiles used for designing of module structure are standard profiles which are available in Staad.ProV8i.database. Finally the following cross sections have been used in this thesis.
1. TUB 250*250* 16 (mm) for top of module 2. TUB 300*300*16 (mm) for main columns to be connected to the platform 3. TUB
250*250*8 (mm) for columns at front view at two corners
4. TUB 120*120*10(mm) for columns at the middle of module 5. TUB 120*120*6 (mm) braces at east and west side of module 6. TUB 140*140*8 (mm) braces at north and south side of module 7. HE-A 140*133*5.5 (mm) longitudinal beams in all floor 8. HE-B 240*240*10 (mm) edge beams on first and second floor 9. HE-B 220*220*9 (mm) transvers beams on first and second floor
Page 12
3.2
UNITS
The fundamental units (database unites) that used in the analyses are the following SI unites or multiples of: Length:
meter (m)
Mass:
Kilo gram (kg)
Time:
seconds (s)
3.3
STAAD.ProV8i
Staad.Pro (structural analysis and design for professionals), is a finite element software developed by Bentley. The program is capable of analyzing advanced structures in almost every kind of material. It calculates stress, deformation and internal force. Different codes can be used to check the structure stability. Staad.Pro is the structural engineering professional’s choice for steel and concrete structures. This structural software enables structural modeling designing and analysis for a wide variety of steel and concrete structures including commercial, residential building, industrial structures, pipe-racks, bridges and towers [ref/16].
3.4
MATHCAD 15.0
Mathcad is the most comprehensive, yet practical, engineering calculation software available. Mathcad 14.0 is designed to help engineers achieve best practices within the overall Product Development process through increased productivity, collaboration enablement and process improvement [ref/17].
Page 13
4.0
DESIGN CONSIDERATION
GENERAL
All the analyses and calculations are based according to the regulations, specification and standards related to design of offshore structure and some of them listed as follow. NORSOK N-001
Structural design
NORSOK N-003
Action and action effect
NORSOK N-004
Design of steel structures
NORSOK R-002
Lifting equipment
EC3, NS-EN 1993-1-1
Design of steel structures: general rules and rules for building
EC3, NS-EN 1993-1-5
Design of steel structure: plated structural elements
EC3, NS-EN 1993-1-8
Design of steel structure: design of joints
4.1
MATERIAL QUALITY AND PROPERTIES
Table 4.1 steel quality [ref /13/] (table 3.1, EC3 NS EN 1993-1-1, design of steel structure) Steel class
fy
fu
S355
355 Mpa
490 Mpa
S420
420 Mpa
520 Mpa
All standards profiles have steel quality of S355. Plates and welded profiles have steel quality of S420. Material properties: Design Brief [ref /1/] kg/m3
Density
ρ = 7850
Young’s modulus
E = 210000 N/mm2
Poisson ratio
ʋ = 0.3
Shear modulus
G = 81000
Page 14
N/mm2
Details of bolts Bolt class
Fyb
fub
8.8
640 Mpa
800 Mpa
Bolt details are taken from table 3.1 EC3 1-8, [ref. /5/]
4.2
DESISGN BASIS AND ACCEPTANCE CRITERIA
The following categories of limit states have been considered in this thesis according to the structural design brief: SLS- serviceability limit state ULS- Ultimate Limit State ALS- Accident Limit State The initial design of offshore module structure is done considering the ALS dropped object scenario (impact effect of dropped object, overall plastic collapse and local damage to plastic deformation), by means of theoretical approach. Staad.ProV8i was used to analyze the other ULS and ALS conditions.
4.3
LIMIT STATE ACCEPTANCE CRITERIA 1. SLS- which is determined on the basis of criteria applicable to functional capability or to durability properties under normal operations and deformation for ordinary live load shall not exceed L/200. 2. ULS- utilizations factor shall not exceed 1.00, which is determined on the basis of criteria applicable to functional capability or properties under normal operations. 3. ALS- accidental condition does not specify any limit for deformations other than the structure shall not collapse. The limit state is that the offshore module structure must withstand and absorb the impact energy without damaging the instrument unit that has been installed on the first and second floor of the module. Page 15
4.4
DESIGN LOAD CATAGORIES
Fixed offshore platform are unique structure since they extend to the ocean floor and their main function is to hold industrial equipment that services oil and gas production and drilling. Robust design of offshore structure depends on accurate specification of the applied load and the strength of the construction material used. Most loads that laterally affect the platform, such as wind and waves are variable, so the location of the platform determines the metocean data. In general, the loads that act on the platform are:
Gravity loads Live loads Wind loads Wave loads Current loads Earthquakes load Installation loads Accidental loads
Four kinds of basic loads have been evaluated in this analysis and design. These are: -
Permanent loads
-
Variable loads
-
Environmental loads
-
Accidental loads
Table 4.4 load categories
P
Permanents loads
Self-weight of structure
L
Live loads
Variable operating loads
E
Environmental loads
Wind and earthquake
A
Accidental loads
Dropped object load
Page 16
4.5
LOAD AND MATERIAL FACTORS
The design factors applied to different actions for different limit state and analyses are
according to NORSOK N-001 [ref/2/] and are listed in the table 4.5.
Table 4.5 load and material factor Limit state ULS-a ULS-b ALS
Loading condition Ordinary Extreme
P 1.30 1.00 1.00
L 1.30 1.00 1.00
E 0.70 1.30 -
A 1.00
Material coefficient 1.15 1.15 1.00
Combination action Environmental action intensities for ULS and ALS combination based on annual exceedance probabilities. Earthquake actions are combined with other environmental actions according to the NORSOK N-003 [ref /3/]. Table 4.5.1 combination of environmental actions Limit state ULS ALS
Wind 10
Earthquake
-2
10-2 10-4
All the load cases have been considered for design and analyses of new offshore module structure listed in following tables. Table 4.5.2 all dead load cases from different directions for in place design phase
Page 17
Table 4.5.3 all live load cases from different directions in inplace
Table 4.5.4 all live load cases from different directions for transport design phase
Page 18
4.6
PERMENANT LOAD
Permanents loads are gravity loads that will not vary in magnitude, position or direction during the period considered. Examples are: -
Mass of structure Mass of permanent ballast and equipment Cabling Dry weight of piping Fireproofing/insulation
Permanent loads are used in this thesis are the self-weight of the module structure, the outfitting steel structure, and the dead weight of equipment which are the dry weight of 12 gas injection pumps each estimated to weight around 1500 kg with a 20% contingency has been used. All permanent loads will be multiplied with weight contingency factor of 1.10.
Basic Load case 1, 11, 21 structural self-weight: The self-weight of the module structure is generated by Staad.ProV8i automatically, based on the cross sections and the steel weight. This load is achieved by applying an acceleration of 1.0g in the negative y-direction for the whole structure. The values of self-weight of the module are same inn all 3 directions and must be taken in account for earthquake action calculation.
Basic Load case 2, 12, 22 secondary/ or outfitting steel:
The self-weight of the module structure generated by Staad Pro must be multiplied by a factor of 0.25g to count for the secondary or outfitting steel. Secondary or outfitting steel counts for the weight of the structure generated by taking in consideration welding and fire protection. The value of secondary or outfitting steel is same in all 3 directions and must be taken in account for earthquake action calculation.
Page 19
Basic load case 4, 14, 24 equipment load:
The offshore module structure must be designed for housing 12 gas injection pumps, each estimated to weigh around 1500kg. The equipment load is total dry weight of these 12 pumps which shall be located on the first and second floor of the module. A 20% contingency factor should be included to cover uncertainties in the equipment load. The pumps have foot print measures 2.0*0.75m and located on transvers beams as shown in the following figure. Equipment load applied as evenly distributed load over a length 2.0 m on the mentioned beams. The value of equipment load is same in all 3 directions and must be taken in account for earthquake action calculation.
Figure 4.1 equipment load, (source: Staad Pro)
Page 20
4.7
LIVE LOAD
General Live loads are loads which may vary in magnitude, position and direction during the life of structure. Variable Functional loads Variable functional loads are loads which may vary magnitude, position and direction during the period under consideration, and which are related to operation and normal use of the structure. Examples are: -
Personnel
-
Stored materials, equipment, gas, fluid and fluid pressure
-
Crane operational loads
-
Loads associated with installation operations
-
Loads associated with drilling operations
-
Loads from variable ballast and equipment
During the life of the platform, generally all floor and roof area can be subjected to operational loads in addition to known permanent equipment loads. Since the exact nature of these live load is not known at the state design, all deck area designed to carry some general live loads in addition to permanent loads of equipment, piping etc. The characteristics value of a variable functional load is the maximum (or minimum) specified value, which produce the most unfavorable load effects in the structure under consideration. The specified value shall be determined on the basis of relevant specifications. Variable functional loads on the deck area of topside structure are based on Table D1from offshore standard DNV- OS-C101, 2011. Variable functional loads have been used for design analysis in this thesis are as 5.0kN/m2 distributed load for area between equipment in first and second floor of offshore module, and 15.0kN/m2 distributed load on lay down areas on the top deck of module structure.
Page 21
Basic load case 4-14-24 variable functional loads: The variable functional load according to DNV-OS-C101 [ref/15] is 5.0kN/m2 and this load has applied on the area between equipment in the first and second floor of offshore module where the 12 gas injection pumps located. The variable functional load applied in such a way that value of load varying from where pumps are located comparing to the rest of area. Detailed calculation of variable functional load is presented in appendix B.
Figure 4.1 variable functional load (source: Staad. Pro)
Variable functional load has the same value in all 3 directions and must be taken in account in case of earthquake action calculation.
Page 22
Basic Load case 5, 15, 25 laydown load: The laydown load according to DNV-OS-C101 [ref/9] Table D1 shall be 15.0kN/m2. This load applied to the top of the module structure. The total load is 15.0 kN/m2 multiplied to A, where A is the laydown area. The total load is divided by the total length of all beams located, an applied as evenly distributed line load on all relevant members. Detail calculation of laydown load presented in appendix B
Figure 4.3 laydown load (source: Staad.ProV8i) Laydown loads have the same value in 3 directions and must be taken in account case of earthquake action calculation.
Page 23
4.8
ENVIRONMENTAL ACTION
Environmental loads are loads caused by environmental phenomena, which may vary in magnitude, position and direction during the period under consideration, and which are related to operation and normal use of the installation. Environmental loads to be used for design shall be based on environmental data for specific location and operation question, and are to be determined by use of relevant methods applicable for the location /operation talking into account type of structure, size, shape and response characteristics. According to the regulation, the environmental actions shall be determined with the stipulated probabilities of exceedance. Characteristic actions for the design of structure in the in-place condition are defined by annual exceedance probabilities of 10-2 and 10-4. Examples are: -
Hydrodynamic loads induced by wave and current
-
Inertia forces
-
Wind
-
Earthquake
-
Tidal effect
-
Marine growth
-
Ice and snow
Environmental loads are considered in these thesis include wind, and earthquake. Ice and snow loads are not considered relevant for these analyses. Ice from sea spray is only relevant for structures located below 25.0 meters above sea level. Snow loads according to NORSOK N-003 [ref. /3/] shall be 0.5kN/m2. Snow loads are only to be combined with 10 year wind and therefore considered negligible. Wave load is not relevant for structures positioned higher than 25.0 meters above sea level. It is considered that the offshore module structure presented on this report has sufficient height above sea level to avoid direct wave action.
Page 24
4.8.1 WIND ACTION
Basic Load case, 11- 14 wind load The most important design consideration for an offshore platform are the storm wind and storm wave loadings it will be subjected to during its service life. Structure or structural components that are not very sensetive to wind gusts may be calculated by considering the wind action as static. In the case of structure or structural parts where the maximum dimenstion is less than approximately 50 m, 3 s wind gusts used when calculating static wind action. In case of structure or structural parts where the maximum length is greather than 50 m,the mean period for wind may be increased to 15 s. The wind load which is applied on the module structure is based on static wind load and basic information is presented below. The global ULS inplace analyses will be based on the 3-second gust wind (L < 50m). For simplicity the wind load in the module analyses will be based on a constant wind speed at an elevation located 2/3 of the module structure height, and module can be assumed to 50% solid. It means that wind load acting on the structure in practice is 50 % total wind load. The static wind load is calculated in accordance to NORSOK N-003 section 6.3.3. For extreme conditions, variation of the wind velocity as a function of height and the mean period is calculated by use of the following formulas: The wind loads are calculated by the following formula: =
½ · ρ · Cs · A · Um2 · sin (α)
ρ
=
1.225 kg/m3 mass density of air
Cs
=
shape coefficient shall be obtained from DNV-RP-C205,
A
=
area of a member or surface area normal to the direction of the force
Um
=
wind speed
P Where:
Page 25
α
=
angle between wind and exposed area
The characteristic wind velocity u (z,t)(m/s) at a height z(m) above sea level and corresponding averaging time period t less than or equal to may be calculated as: U(z,t) = Uz [1-0.41Iu(z) ln (t/t0)] Where, the 1 h mean wind speed U(z)(m/s) is given by U(z) = U0[1+C ln(z/10)] C = 5.73 * 10 -2 (1 + 0.15 U0) 0.5 The turbulence intensity factor Iu (z) is given by Iu(z) =0.061[1+0.043U0](z/10)-0.22 U0 (m/s) is the 1 h mean wind speed at 10m Calculation of static wind and wind action on offshore module structure is presented in appendix B.
Figure 4.4 reference wind speeds for design of wind action (source design brief) Page 26
Wave loads Wave loads are not relevant for the new module which is located above 25 m mean water level and has sufficient air gap to avoid wave action on offshore module structure. Ice and snow loads Ice from sea spray is not relevant for structure located higher than 25m above sea level. The new offshore module is about 33m above sea level and therefore ice loads are ignored in this thesis. Ice from atmospheric action according to design brief shall be 90 N/m2 is small when compared with other loads and has not been considered in analysis. Snow load according to design brief shall be taken as 250N/m2. The snow load is relatively small compared to the other loads on the deck area and concluded that snow load will not affect global analysis in this thesis and can be neglected.
4.8.2 EARTHQUAKE ACTION Basic Load case, 41- 46 10-2 year(ULS) and Basic Load case, 51-56 10-4 year(ALS) Earthquake action should be determined on the basis of the relevant tectonic condition, and the historical seismological data. Measured time histories of earthquakes in the relevant area or other area with similar tectonic conditions may be adopted. Earthquake motion at the location described by means of response spectra or standardized time histories with the peak ground acceleration to characterize the maximum motion. The earthquake motion can be described by two orthogonally horizontal oscillatory motions and one vertical motion acting simultaneously. These motion components are assumed to be statically independent. One of the horizontal excitations should be parallel to the main structural axis, with the major component directed to obtain the maximum value for the response quantity considered. Unless more accurate calculations are performed, the orthogonal horizontal component may be set equal to 2/3 of the major component and the vertical component equal to 2/3 of major component, referred to bedrock.
Page 27
When determining earthquake action on to the structure, interaction between the soil, the structure and surrounding water should be taken into consideration. When time histories are used, the load effect should be calculated for at least three sets of time histories. The mean value of the maximum values of calculated action effects from the time history analysis may be taken as basis for design. The time series shall be selected in such a way that they are representative of earthquake on the Norwegian continental shelf at the given probability of exceedance. Earthquake design include ULS check of components based on earthquake with annual probability of occurrence 10-2 and appropriate action and material factor as well as an ALS check of overall structure to prevent its collapse during earthquakes with an annual probability of exceedance of 10-4 with appropriate action in and material factors. Normally the ALS requirement will be governing, implying that earthquakes with annual probability of exceedance of 10-2 can be disregarded. The assessment of earthquake effects should be carried out with a refinement of analysis methodology that is consistent with the importance of such effects. Structures shall resist accelerations due to earthquake. The 102 years ULS earthquake and 104 years ALS earthquake are both considered in the analysis. The considered values for accelerations respect to the elevation of the structure are listed in table 3-4 below. Reference earthquake accelerations were given in the design brief [ref. /1/] and applied accordingly in the analysis. Table 4.8.2 earthquake acceleration Earthquake acceleration 10-2 year
Earthquake acceleration 10-4.year
X= 0.0441g Y= 0.0390g Z= 0.0133g
X= 0.2176g Y= 0.2523g Z= 0.0589g
The values of earthquake accelerations presented in the above table were calculated from the reference earthquake acceleration given in design brief. For detailed calculation refer to appendix B.
Page 28
Figure 4.5 reference earthquake accelerations (source: design brief).
4.9
ACCIDENTAL LOADS
Accidental loads can be defined as fires and explosions, impact from ships, dropped object and helicopter crash. Impacts loads from ships and helicopter crash have not been considered in these analyses. The accidental loads have been considered in these thesis are dropped object accidental load which is defined as a 7.0 tons container falling from a height of 3.0 meters, explosion load and fire loads. The module structure must withstand the impact force and prevent damaging of instruments which are located inside of the module structure. The initial plastic design of module structure is based on the impact effect of a dropped object, plastic hinge development and local damage due to the plastic deformation.
Page 29
4.9.1 Dropped object The dropped object action is characterized by kinetic energy governed by the mass of the object and the velocity of the object at the instant of impact. In most cases the major part of the kinetic energy has to be dissipated as strain energy in the impacted component and possibly in the dropped object. Generally this involves large plastic strain and significant structural damage to the impacted component. The strain energy dissipation is estimated from force deformation relationship for the component and object, where the deformations in the component shall comply with ductility and stability requirements. The load bearing functions of the structure shall remain with the damages imposed by a dropped object. Dropped objects are rarely critical to global integrity of the installation and will mostly cause local damage. The structural effect from dropped object may either be determined by nonlinear dynamic finite element analyses or by energy consideration combined with simple elastic plastic methods as given in A.4.2 to A4.5 in NORSOK N-004, [ref/4/]. In this thesis impact effect of dropped object calculation done by using energy considerations combined with simple elastic-plastic method. This method is the most conservative method and based on fully plastic collapse mechanism. Dropped object impact detailed calculations are presented in Appendix C.
4.9.2 Explosion loads Explosion loads are characterized by temporal and spatial pressure distribution. The most important temporal parameters are rise time, maximum pressure and pulse duration. For components and sub structure the explosion pressure shall normally be considered uniformly distributed. On global level the spatial distribution is normally non-uniform both with respect to pressure and duration. The response to loads may either be determined by non-linear dynamic finite element analysis or by simple calculation model based on SDOF (single degree of freedom) analogies and elastic- plastic methods of analysis.
Page 30
If none-linear dynamic finite element analysis is applied all effect described in the following paragraphs shall either be implicitly covered the modelling adopted or subjected to special consideration, whenever relevant. In the sample calculation models the component is transformed to a single spring-mass system exposed to an equivalent load pulse by means suitable shape function for the displacements in the elastic and elastic-plastic range. The shape function allow calculation of the characteristic resistance curve and equivalent mass in the elastic and elastic-plastic range as well as the fundamental period of vibration for the SDOF system in the elastic range. Provided that the temporal variation of the pressure can be assumed to be triangular, the maximum displacement of the component can be calculated from design charts for the (SDOF) single degree of freedom system as a function of pressure duration versus fundamental period of vibration and equivalent load amplitude versus maximum resistance in the elastic range. The maximum displacement shall comply with ductility and stability requirements for the component. The load bearing function of the structure shall remain intact with the damage imposed by the explosion loads. In addition, the residual strength requirements given in section A.7
NORSOK N-004 shall be comply with. In this thesis explosion action calculation based on the simple method (SDOF) analysis and the explosion loads have been defined in design brief. The module is subjected to internal blast pressure of 0.06Mpa. In analysis of explosion loads on offshore module two different scenarios have been considered. It has been assumed that the explosion will happen in first floor or in the second floor. Calculation results are presented in appendix C.
Page 31
4.9.3 Fire loads The characteristic fire structural action is temperature rise in exposed member. The temporal and spatial variation of temperature depends on the fire intensity, whether or not the structural members are fully or partly engulfed by the flame and what extend the members are insulted. Structural steel expands at elevated temperature and internal stresses are developed in redundant structures. These stresses are most often a moderate significance with respect to global integrity. The heating cause also progressive loss of strength and stiffness and is, in redundant structures, accompanied by redistribution of forces on from members with low strength to members that retain their load bearing capacity. A substantial loss of load bearing capacity of individual members and subassemblies may take place, but load bearing function of the installation shall remain intact with during exposure to the fire action. Structural analysis may be performed on either
individual members
Subassemblies entire system.
The assessment of fire load effect and mechanical response shall be based on either
simple calculation methods applied to individual member,
general calculation method or combination
Simple calculation methods may give overly conservative results. General calculation methods in which engineering principle are applied in a realistic methods to specific applications. In this thesis simple calculation method has been used for analysis of fire action on new offshore module structure as temperature domain and results are presented in appendix C. Calculation done according to EC3 NS-EN 1993-1-2:2005 + NA: 2009 .Design of steel structures part 1-2: general rules structural fire design. [ref/14].
Page 32
5.0
DESIGN CONSIDERATION TRANSPORT PHASE
During transportation of the module structure from the fabrication yard to its offshore location, the forces that will affect structure depend upon the structure’s weight and geometry and the support condition supplied by the barge or by buoyancy, as well as on the environmental condition that prevail during transportation. The transport analysis will consider ULS-a/b load conditions. Relevant loads are the module self-weight, secondary/ or outfitting steel, dead weight of pumps, barge accelerations and wind. Barge accelerations calculation are done in according to the simplified motion criteria presented in (DNV 1996) rules for planning and execution of marine operation part 2 and chapter 2 section 2.2.3.[ref/6]. The conditions for using simplified criteria are; -
towing in open sea on a flat top barge with length greater than 80m,
-
barge natural period in roll equal or less than 7 sec.,
-
object positioned closed to middle of the ship and with no part overhanging the barge sides, and
-
object weight less than 500 tons
Wind loads and barge accelerations are applied in eight directions at 45 degrees interval covering the complete rosette. They will always be applied in the same direction
Page 33
5.1
BARGE ACTION IN TRANSPORT
Basic Load case, 41-46 barge acceleration in transport: The barge acceleration calculated according to (DNV 1996) Marine Operation part2. Refer to appendix B, for detailed calculation.
Table 4.1 barge accelerations in transport
Direction +x -x +z -z +y -y
5.2
Acceleration 0.5945g -0.5945g 0.8668g -0.8668g 0.35g -0.45g
Axis Horizontal Horizontal Horizontal Horizontal Vertical Vertical
WIND ACTION IN TRANSPORT
Basic Load case, 61- 64 wind action in transport: During the transportation of module from onshore to the offshore field the module will be subjected to wind from all directions. The wind pressure (1.0 KN/m2) in transport is taken form (DNV 1996) Marine Operations part 2. Result of wind action calculation represented in appendix B.
Page 34
6.0
GLOBAL STRUCTURAL ANALYSIS AND DESIGN OPTIMIZATION
The aim of structural design analysis is to obtain a structure that will be able to withstand all loads and deformations to which it is likely to be subjected throughout its expected life with a suitable margin of safety. The offshore module structure must also fit the serviceability requirements during normal operation. It is necessary to consider all three stages as different members may be critical in different conditions. In practice the offshore module structure must be analyzed for all three conditions. Structural analyses were therefore carried out for three primary load conditions, inplace, lift and transportation. The structural analysis and design optimization flow chart presented below shows procedure has been done to overcome optimized and well integrated structure for inplace, transport and lifting condition.
Page 35
6.1
INPLACE CONDITION
Inplace load combinations shall consider ULS-a, ULS-b and ALS load conditions with contribution from relevant load types as defined in chapter 4. Load combinations are established to give maximum footing reactions at the interface between the offshore module structure and the existing production platform structure, and resulting stresses in the structure. Environmental loads, wind and earthquake, shall be considered acting from eight different directions at 45 degrees interval covering the complete rosette, but in this thesis wind action has been considered for five directions during in place design. The module structure is analyzed for wind with average recurrence period of 100 years. Considering the module structure height above water level, Ice load is neglected in these analyses. Considering the small load magnitude of 0.5 KN/m2 it is concluded that the snow load can be neglected in the global analyses. Load combinations for inplace analyses are performed in Staad.ProV8i.
6.1.1 ULS INPLACE DESIGN CHECK ACCORDING TO EC3
The objective of structural analysis is to determine load effects on the structure such as displacement, deformation, stress and other structural responses. These load effects define the sizing of structural components and are used for checking resistance strength of these components. The structure shall comply with limit state criteria defined by design rules and codes. The structural analysis of the module structure for inplace condition is based on the linear elastic behavior of the structure. As mentioned earlier the module structure is exposed to different loads. The structural weight and permanent loads are considered as time-independent loads. Further, the environmental loads are considered as time-dependent loads. Different wind durations are calculated and 3.0 second wind gust is selected and applied to compute the static wind load for 100 year return period.
Page 36
These analyses are performed and results presented for each condition and all members of the structure have utilization factor less than UF≤1.00 for the applied loads in inplace operational condition. This means that the members have sufficient capacity to withstand the applied loads.
6.1.2 SLS DESIGN CHECK The objective of this analysis is to satisfy the service ability limit criteria of the new offshore module structure to make sure that the module remains functional for its intended use. The new module structure has sufficient capacity under ULS design check and the analysis is conservative. This result indicates that the structure has sufficient capacity under service limit state too. Because the SLS criteria states that the load and material factor is 1.0 for dead and live load and no environmental load will be included. Therefore it has been concluded that the SLS criteria satisfied during normal use and no need for further check.
6.2
LIFTING CONDITION
The purpose of lifting analysis is to ensure that lifting operation offshore shall be performed in safe manner and in accordance with the prevailing regulations. The module will be lifted onto the platform by a heavy lift vessel. All lifting factors and design of lifting pad eyes shall be according to NORSOK R-002. There are several lifting methods such as single hook, multiple hooks, spreader bar, no spreader, lifting frame, three part sling arrangement, four part sling arrangement etc. In this case the lifting arrangement used is steel wire with four-sling arrangement which is directly hooked on to a single hook on the crane vessel. Vessel motion, crane motion and object motion are important issues that must be considered carefully during lifting operation.
Page 37
Vessel motion Vessel motion can be defined by the six degrees of freedom (DOF) that is experienced by a vessel at sea. The six DOF motions comprise of three translation and three rotational motions. The importance of each of the six DOF in marine operation varies, depending on the type of operation, for instance:
Heave is most important for vertical operations.
Roll is most important for crane operation over the side.
The rotational motions (roll, yaw and pitch) are the same for all point of vessel, while the translational motions (heave, surge and sway) are coupled and dependent on the motions of the other degrees of freedom.
Crane motion Motion in the carne can be a challenging issue during lifting and installing new equipment on platforms. The motion can be caused by several different factors where wind, wave and snap load are the most common. Wind can cause some motion in the crane, but in cases of strong wind the lifting operation will be postponed. Object motion The motion of object can be caused by the same factor as motion in the crane. Wind will cause movement on the object depending on the design and area of the object. For the offshore module structure there are no large surfaces hence the motion caused by the wind can be neglected. These motions are topics that are too broad to explain in this thesis and therefore mentioned here very briefly. In according to the design brief the offshore module structure will be lifted by using four points sling arrangement which is shown in the following figure.
Page 38
Figure 6.1 Four point sling arrangement (source: NORSOK R-002) For lifting condition the governing load condition is ULS-a. Load factors such as Center Of Gravity factor, Dynamic amplification factor, Skew load factor, Design factor and Center of Gravity envelope factor must be calculated and applied to find the total lifting load. An additional consequence factor is applied to various part of the module structure depending on their criticality during lifting operations. In this report all calculations are done according to the lifting equipment standard NORSOK R-002 [ref. /7/].
Page 39
The members are categorized in three groups: 1. Single critical members, these are members connected to the lifting point and are assigned a consequence factor of 1.25 2. Reduced critical members, these are main members not connected to the lifting points, and assigned a factor of 1.10. 3. None critical members, these are members considered to have no impact on the lifting operation, and are assigned a consequence factor of 1.00.
Figure 6.2 lifting design model (source: Staad.ProV8i)
Page 40
6.2.1 LIFTING DESIGN LOAD FACTOR Load factors relevant for lifting design are summarized and presented as follows:
Center of gravity (COG)
When completing lift operation of a structure it desirable to have lifting hook placed above the object’s center of gravity to ensure that vertical the hook to prevent the object from tilting when it’s lifted into the air. To cover the uncertainties in weight and center of gravity a factor is multiplied with the estimated weight of structure to obtain a design weight to be used for further analysis in lifting. From NORSOK R-002 we can find two different COG factors can be used for lifting analysis. For weighed object or object with a sample weight pattern:
WCOG = 1.0
For un-weighted object or object with a complex weight pattern: WCOG = 1.1 In this thesis factor of WCOG = 1.1 is used in lifting analysis.
Dynamic Amplification Factor (DAF)
Offshore lifting is exposed to significant dynamic effects that shall be taken into account by applying an appropriate dynamic amplification factor. The NORSOK R-002 uses different DAF factors for offshore and onshore lifts. Offshore lift means the lift from the boat on to the platform, every lift operation inside the platform is classified as onshore. From section F.2.3.5 in NORSOK R-002 we can see that onshore lift under 50 tones should use 1.5 as DAF factor. For offshore lifts over 50 tones the following equation shall be used to obtain DAF factor. DAF = 1.70-0.004*WLL for WLL> 50 tones (F.2-2)
Page 41
Working load limit The working load limit (WLL) for the complete is defined as follow: WLL = W* W.CF Where WLL = weight of the lifted object W including weight contingency factor and excluding the sling set W = estimated weight of the lifted object WCF = weight contingency factor
Skew Load Factor (SKL)
Skew loads are additional loads from redistribution due to equipment and fabrication tolerances and other uncertainties with respect to force distribution in the rigging arrangement. The skew load (SKL) is used as a safety factor to secure extra loads which are encountered because of mismatches in sling length. This may arise as a consequence of human failure or fabrication failure. Single hook four point lift without spreader bar the skew load factor can be taken 1.25 according to NORSOK R-002 section F.7.2.3.4 (Table F.3).
Design Factor (DF)
Design factor is combination of the consequence factor (ᵞc) and partial load factor (ᵞp). The partial load factor is 1.34 for all cases from the NORSOK R-002, but the consequence factor varies from 1.00 to 1.25. In this present case and most other cases when the lifting pad eyes are attached directly to the object, the consequence factor will be 1.25 which resulting that the design factor will be 1.68. Design load factor DF defined as:
ᵞ ᵞ
DF = p * c
Where:
Page 42
ᵞp = partial load factor ᵞ
C=
consequence factor
These factors (DF) are variable for different members of module structure. They have been selected as listed below in table 6.2.1 Table 6.2.1 DF factors (NORSOK R-002)
ᵞp
ᵞc
DF = p * c
1.34
1.25
1.68
Lifting equipment (spreader bar, shackles, sling etc.)
1.34
1.25
1.68
Main elements which are supporting the lift point
1.34
1.10
1.48
Other structural elements of the lifted object
1.34
1.00
1.34
ELEMENT CATEGORY Lifting points including attachment to object
ᵞ ᵞ
Single critical elements supporting the lifting point
Finally these factors were used for analysis of module structure under lifting condition. WCF = 1.10 COG = 1.10 DAF = 1.4316 SKL = 1.25 ULS-a = 1.30
ᵞ
C
= 1.00/1.10/1.25
ᵞtot = WCF*COG*DAF*SKL*ULS-a*ᵞc = 3.5186 Main element ᵞtot= WCF*COG*DAF*SKL*ULS-a*ᵞc = 3.1000 Other element ᵞtot =WCF*COG*DAF*SKL*ULS-a*ᵞc =2.8149 Lifting points
Page 43
6.3
TRANSPORT CONDITION
The new structure shall be fabricated on onshore, and transported to the” Block Gold filed PH” on a barge where wind load and barge acceleration shall be calculated according to (DNV1996) Rules for planning and execution of marine operation. Marine operations shall be properly planned at all stages of a project or operation. The marine operation shall as far as feasible be based on the use of well proven principles, techniques, system and equipment. The feasibility of extending proven technology shall be thoroughly documented. Marine operation manuals shall be prepared and shall cover all phases of the work, from start of operations for the operation to completed demobilizations, and including organization and communication and a program for familiarization of personnel, a description of and procedure and acceptance criteria for testing/commission of all equipment to be used for the operations, description of Vessel and sites, detailed procedure for all stages of the operations, towing routes with estimated sailing time and possible ports of refuge , definition of decision , hold and approval points and criteria for starting of each phase of the operation, acceptable tolerances, monitoring and reporting details, verification that the operation have been completed in accordance with the design and requirement stated in standard and regulation for marine operations. Environmental criteria to be adopted for the planning of transportation shall have a return period of 10 years for the pertinent season and area. Less severe criteria may be used for inshore transportation routes where suitable ports of refuge along the route have been identified, provided an equivalent overall safety is maintained. Design of grillages and sea-fastening shall facilitate load out and subsequent release, shall provide adequate vertical and horizontal support and shall be such that the welding and flamecutting do not inflict damage to the transported object. The contribution from friction shall be disregarded in the design of sea-fastening and grillage. The transportation barge shall be equipped with access ladders, minimum one on each side. The sea fastenings fix the offshore module structure to the barge that transports it from the fabrication yard to its offshore location. The module must be fixed to the barge in order to withstand barge motions in rough sea. The sea fastenings are determined by the positions of Page 44
the framing in the module as well as the hard points of the barge. A structural analysis will be run again, taking into consideration the fixation points and the movement of the barge. This phase requires cooperation between the installation company and the engineering firm that performed the design. Cooperation between the installation’s company and engineering company in early phase of the project is important for safe transportation and installation of the module. Transportation in open sea is a challenging phase in offshore projects. Careful planning is required to achieve a safe transport. Transporting can be done on a flattop barge or on the deck of the heavy lift vessel [HLV]. In this thesis a standard North Sea Barge, UGLAND UR 171, has been selected for the transportation of the module structure. E-mail: from Aker Solutions,[ref /10/].
Figure 6.3 Standard barge uses in North Sea Oil industry (Aker Solutions). Barge accelerations are action loads which will be applied on the module structure in transportation condition. The intention with barge acceleration calculation is to identify applicable accelerations for the barge tow and to calculate the acceleration load that will be imposed on the structure. The applicable barge accelerations are calculated and applied according to DNV, Guidelines for marine transportations [ref./6/] Page 45
During transport the module structure will be subjected to both wind and barge acceleration action. The governing loads action during transport is self-weight of offshore module structure, wind load and barge accelerations. The calculation results for wind and barge accelerations in transport condition are presented in appendix B.
70
DESIGN CHECK OF PADEYES
7.1
LOCAL ANALYSIS OF PADEYES
The lifting arrangement chosen for the new offshore module structure calls for 4 pad eyes to be installed on top of the structure. The pad eyes are to be considered as temporary and removed before the module structure enters in its normal use. Several calculation methods are available, but in this thesis NORSOK R-002 lifting equipment design used. In this thesis the pad eyes TYPE 2 (WLL≤ 50T) [ref. /7/] is used for lifting of offshore module structure. The following stresses are evaluated and presented: •
Pin hole stress
•
Main plate stress
•
Cheek plate stress
•
welds
Pad eye body is usually welded to main structure. In some occasion main body may be welded to a plate and bolted to main structure for easier removal. Stress checks shall be done on body and welded connection. In this thesis the pad eyes will be welded to main beam on the top of the module structure.
Page 46
Figure 7.1 pad eyes (Autodesk) All loads are to be transferred from main structure to the pad eye structures. The pad eyes have been designed in according NORSOK R-002 lifting equipment design. The lifting slings must have sufficient length so that angle of the slings meets the criteria set. To minimize transverse loading on the pad eyes, they should be tilted to match the angle of sling. Lifting gear such as sling and shackles are not part of this report. Pin size is based on the highest sling load and a green pin is chosen from www.greenpin [ref. /9/]. Offshore module structure has a total self-weight under lifting 77.31 tones and therefore has been chosen a standard shackles for working load limit of 85 tones. A copy of data sheet of a standard green pin and shackle is shown in the following figure.
Page 47
Figure 7.2 standard shackles. (greenpin.com) Calculation result of local analysis of pad eyes presented in appendix D. Page 48
8.0
DESIGN CHECK OF CONNECTIONS
8.1
BOLTED CONNECTIONS
The module structure will be connected by bolts to the main column of existing production platform by their two lower support point. The bolt connection is checked according to NSEN EC3 1993 1-8 [ref. /5/] section 3.4.1 and 3.6.1. Results are presented in appendix E.
Figure 7.2 Sketch of plate and bolts for bottom support of new module (Auto desk) Page 49
8.2
WELDED CONNECTIONS
All welds on the module structure are in general full pen welds and not subjected to further checks. However, the welded connection between the column and plates which are going to connect the bottom support of the new module to the existing platform are 8 mm fillet welds. These welds are checked according to EC3 1993-1-8 section 4.5 and have enough capacity to withstand to the prevailing forces. The highest joint force will be resulted in inplace phase from earthquake 10-4 years (ALS) load combination and therefore weld capacity has been checked in the most critical joint with highest axial force on each member. Analyses result from Staad. Prov8i show that highest tensile axial force happen at node 9. For calculation results refer to the appendix E.
Figure 7.3 sketch of joint between braces and main beams (Auto desk)
Page 50
9.0
CONCLUSIONS
The main objective of this thesis was to do design, analysis and calculation of an offshore module to obtain a proper weighed structure that has sufficient capacity and strength with respect to normal operation, transportation and installation phases. Apart from these factors the goal of design analysis and optimization of profile types in this structure is to achieve that has high safety with respect to life, environment and economic risk.
In this master thesis structural analysis and design of the gas injection module structure to ensure the required safety and serviceability requirements against different load and load combinations (i.e. dropped object impact load, explosion load, fire load, live load, wind load and earthquake) by considering all phases such as inplace, transport and lifting condition, were done to obtain the main goals. The module structure was designed, modeled and analyzed by using the Staad. ProV8i. New offshore module structure designed and analyzed for three different conditions, inplace, transport and offshore lifting condition. In inplace the module structure has been designed and modeled to withstand against all loads and load combination assumed to occur during the estimated life period for normal operation. Global structural analysis is done in Staad.Pro.V8i and results show that the designed offshore module structure has sufficient capacity to withstand normal operating loads, such as wind, laydown loads, earthquake loads. Highest utilization factor from the Staad.Pro analyses is 0.941 which is less than the design limit criteria, UF≤1.00. In inplace the module structure is going to be subjected dropped object impact load scenario, explosion loads and fire loads. The calculation of affected beams in case of dropped object impact load based on fully plastic criteria were done to show that the module structure has enough capacity to withstand dropped object impact load without damaging the instruments which are going to be installed under the offshore module structure. Resulting UF from hand calculations is 1.00. Explosion loads are the second accidental loads that have been considered that might be happen in inplce phase. Structural analysis was done by Staad Pro and results obtained by analysis shows that the UF in this cases are within the acceptance limit criteria set in design basis and highest UF = 0.984 which is less than the UF≤1.00. Page 51
Fire action is the last accidental loads which have been considered for inplace condition, simple calculation method has been used to check module capacity against fire action. Hand calculations were done for the most effected beams with the highest bending moment and results shows that the new offshore module structure must be protected against fire loads to fulfill the design limit criteria basis. Transport was the second step in the analysis. This condition was also analyzed by the Staad.Pro.V8i. Structural analysis of this model shows that the designed model has enough capacity in most of the members to withstand the imposed loads during transportation. But braces are used in the south and north part of the module had utilization factors more than their capacity (UF>1.00) and therefore some temporary braces used to prevent failing of the members and fulfill the criteria was set in design limit criteria. The temporary braces used only during the transportation and shall be removed before the module will be placed to its final position. After putting two extra braces structural analysis was run again for transportation phase the result shows that module has enough capacity and the highest utilization factor is (UF= 0.973) which is small compared to design limit criteria UF≤1.00 analysis results are presented in appendix A. Third step comprise the lifting condition and design of pad eyes. The structural analysis was run for lifting condition and analysis results shows that the module has enough capacity during offshore lifting, the highest utilization factor for lifting analysis is 0.996 which is fairly modest compared design limit criteria UF≤1.00. Suitable pad eyes were chosen according NORSOK R-002 lifting equipment for lifting design and necessary calculations were done to check that pad eyes have enough capacity to withstand subjected load during lifting of module structure. Calculation results show that pad eyes have utilization factors as (UF= 0.595) which are less than UF≤1.00 defined in design limit criteria. Finally a check of bolted connections sewing the module structure to the main column of existing production platform “Black Gold Filed PH” had to be done. Calculation and design check were done in according to Euro code3-1-8[Table 3.3] section 3.4.1 and 3.6.1 Calculation results show that bolted connections have enough capacity to withstand imposed load. According to my experience on working with this thesis i would like to mention some steps to be considered during the design and analysis of such offshore module until we reach to the suitable cross section for initial design. Page 52
It is advisable to do analysis for each condition separately, by starting with initial design for inplace condition and identify the most critical load cases that might have great impact on selection of profile types such as accidental loads (dropped object impact load on top of module, explosion loads).
Secondly we shall run analyses for all load cases that might happen during the life of offshore module for normal use of structure and guess initial cross section for this condition.
The module shall be analyzed and checked for transportation condition to show that offshore module with the selected profiles is suitable for this phase ae well. If the results from different analyses are acceptable then we can run analyses for lifting condition to check the module capacity for this phase.
When we get some initial profiles then we can follow the structural analysis and optimization flow chart which was presented in chapter 6. This proposed methodology in this thesis provides a very good platform for practicing engineers who are going to analysis and design of offshore module structures in future. The accuracy and the efficiency are the main advantages of proposed methodology.
Page 53
10.0 REFRENCES
[1]
STRUCTURAL DESIGN BRIEF, AKER SOLUTIONS 19.12.2014
[2]
NORSOK STANDARD N-001 STRUCTURAL DESIGN Rev.4 Feb. 2004
[3]
NORSOK STANDARD N-003 ACTIONS AND ACTIONS EFFECTS Edition 2, Sep. 2007
[4]
NORSOK STANDARD N-004 DESIGN OF STEEL STRUCTURES Rev.2 Oct2004
[5]
NS-EN 1993 -1-8 NA 2005, Euro Code 3 DESIGN OF STEEL STRUCTURES Rev. May 2005
[6]
DET NORSK VERITAS (DNV) RULES FOR MARINE OPERATIONS Rev. Jan.1996
[7]
NORSOOK STANDARD LIFTING EQUIPMENT (R-002) EDITION 2 Sep.2012
[8]
NS 3472 DESIGN OF STEEL STRUCTURES–CALCULATION AND DIMENSIONERING Rev.3 Sep. 2001
[9]
WWW.GREENPIN.COM
[10]
E-MAIL: FROM JOHAN CHRISTIAN BRUN, AKERSOLUTIONS.REGARDING
CHOICE OF BARGE FOR TRANSPORTATION OF STRUCTURE. March 2015 [11]
COLBEAM NS3472-.2.5
[12]
STÅLHÅNDBOK DEL 3 V.2010
[13]
DESIGN OF STEEL STRUCTURES NSEN 1993-1-1: 2005 NA 2008.
[14]
DESIGN OF STEEL STRUCTURES,PART 1-2: GENERAL RULES
STRUCTURAL FIRE DESIGN.
Page 54
[15]
DNV-OS-C101 OFFSORE STEEL STRUCTURES GENERAL (LRFD METHOD) JULY 2014
[16]
WWW.BENTLEY.COM
[17]
WWW.PTC.COM
(STAAD PROV8i)
(MATHCAD 15)
11.0 APPENDICES
APPENDIX A
STAAD.ProV8i ANALYSIS- INPUT AND OUTPUT FILES
APPENDIX B
BASIC LOAD CASES AND LOAD COMBINATION
APPENDIX C
ALS CONDITION AND DOP IMPACT CALCULATION
APPENDIX D
DESIGN CHECK OF PAD EYES
APPENDIX E
DESIGN CHECK OF CONNECTION
Page 55
APENDICES APENDIX A ......................................................................................................................................... 57 A.1
GEOMETRY ............................................................................................................................ 58
A.2
STAAD. Pro INPUTFILE INPLACE DESIGN ............................................................................... 74
A.3
STAAD.Pro INPUT FILE TRANSPORT DESIGN ......................................................................... 88
A.4
STAAD. Pro INPUT FILE LIFTING DESIGN................................................................................ 95
A.5
STAAD. Pro OUTPUT FILE ANALYSIS INPLACE DESIGN ........................................................ 101
A.5.1
Utilization table, reaction summary and displacement summary .............................. 101
A.5.2
Inplace, ULS-a/b wind, LC101-115 ............................................................................... 101
A.5.1.2
Inplace, earthquake ULS-a/b, LC121-158 .................................................................... 112
A.5.1.3
Inplace, earthquake,(ALS), LC161-178......................................................................... 118
A.5.1.4
Explosion loads inplace LC 311-312............................................................................. 124
A.5.1.5
Fire action inplace (ALS) LC 411................................................................................... 129
A.5.1.6
Transport, ULS-a/b, LC181-198 ................................................................................... 134
A.5.1.7
Transport, ULS-b, LC 201-218 ...................................................................................... 140
A.5.1.8
Lift, ULS-a, LC511, LC 512, LC 513 ................................................................................ 146
APENDIX B ....................................................................................................................................... 151 B.1
LAYDOWN LOAD CALCULATION .......................................................................................... 152
B.2
STATIC WIND CALCULATION ............................................................................................... 153
B.3
EARTHQUAKE ACCELERATION CALCULATION ..................................................................... 155
B.4
BARGE ACCELERATION CALCULATION ................................................................................ 158
B.5
VARIABLE FUNCTIONAL LOADS ........................................................................................... 161
B.6
COMBINATION ACTIONS TABLE .......................................................................................... 163
APENDIXC ........................................................................................................................................ 166 C.1
DROPPED OBJECT IMPACT LOAD CALCULATION................................................................. 167
C.2
EXPLOSION LOADS CALCULATION ....................................................................................... 174
C.3
FIRE LOADS DESIGN CALCULATION CHE CK......................................................................... 175
APENDIX D ....................................................................................................................................... 184 D.1
CALCULATION AND DESIGN CHECK OF PAD EYES ............................................................... 185
APENDIX E........................................................................................................................................ 196 E.1
DESING CHECK OF BOLTS AND WELDS CONNECTION ......................................................... 197
Page 56
APENDIX A GEOMETRY
STAAD PRO INPUT FILE INPLACE DESIG
STAAD PRO INPUT FILE TRANSPORT DESIGN
STAAD PRO INPUT LIFTING DESIN
STAAD PRO OUT PUT FILE ANALYSIS INPLACE DESIGN
Page 57
A.1
GEOMETRY
Figure Error! No text of specified style in document.-1a beam local coordinate axes
Figure Error! No text of specified style in document.-2b All members with nod numbers
Page 58
BASIC LOAD CASES in inplace
Figure Error! No text of specified style in document.-3
LC1, self- weight accelerated downwards
LC11and LC21are identical to LC 1, but accelerated horizontally.
Figure Error! No text of specified style in document.-4
LC2 secondary steel, -y direction
LC12 and LC22 are identical to LC 2, but accelerated horizontally Page 59
Figure Error! No text of specified style in document.-4 downward, -y direction
LC3 equipment dead load accelerated
LC13 and LC23 are identical to LC 3, but accelerated horizontally
Figure Error! No text of specified style in document.-5 downward, -y direction
LC4 Functional live load accelerated
LC14 and LC24 are identical to LC4, but accelerated horizontally
Page 60
Figure Error! No text of specified style in document.-6 direction
LC5
Laydown load accelerated downward, -y
Figure Error! No text of specified style in document.-7
LC5
Laydown load, + x direction
Page 61
Figure Error! No text of specified style in document.-8
LC5
Figure Error! No text of specified style in document.-9
LC31 wind action inplace, +X direction
Page 62
Laydown load, + Z direction
Figure Error! No text of specified style in document.-10
LC32 wind action inplace, -X direction
Figure Error! No text of specified style in document.-1
L33 wind action inplace, +Z direction
Page 63
Figure Error! No text of specified style in document.-12
LC34 wind action inplace, -Z direction
Figure Error! No text of specified style in document.-13
LC41 earthquake 100 year , +X direction
Page 64
Figure Error! No text of specified style in document.-14
LC42 earthquake 100year, -X direction
Figure Error! No text of specified style in document.-15
LC43 earthquake 100 year, +Z direction
Page 65
Figure Error! No text of specified style in document.-16
LC44 earthquake 100 year, -Z direction
Figure Error! No text of specified style in document.-17
LC45 earthquake 100 year, +Y direction
Page 66
Figure Error! No text of specified style in document.-8
LC46 earthquake 100 year, -Y direction
Figure Error! No text of specified style in document.-19
LC 51 earthquake 10000 year, +X direction
Page 67
Figure Error! No text of specified style in document.-20
LC52 earthquake 10000 year, -X direction
Figure Error! No text of specified style in document.-21
LC53 earthquake 10000 year, +Z direction
Page 68
Figure Error! No text of specified style in document.-22
LC54 earthquake 10000 year, -Z direction
Figure Error! No text of specified style in document.-23
LC55 earthquake 10000 year, +Y direction
Page 69
Figure Error! No text of specified style in document.-24
LC56 earthquake 10000 year, -Y direction
Figure Error! No text of specified style in document.-25
LC 300 explosion loads at second floor
Page 70
Figure Error! No text of specified style in document.-26
LC 301 explosion loads at first floor
Basic load cases in transport
Figure Error! No text of specified style in document.-27
Page 71
LC61 wind action transport, +X direction
Figure Error! No text of specified style in document.-28
LC62 wind action transport, -X direction
Figure Error! No text of specified style in document.-29
LC53 wind action transport, + Z direction
Page 72
Figure Error! No text of specified style in document.-30
LC54 wind action transport, -Z direction
Figure Error! No text of specified style in document.-31
LC1 self-weight lifting phase
Page 73
A.2
STAAD. Pro INPUTFILE INPLACE DESIGN
STAAD SPACE START JOB INFORMATION ENGINEER DATE 5-Jan-15 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 9.5 0; 3 10 9.5 0; 4 10 0 0; 5 0 0 5.5; 6 0 9.5 5.5; 7 10 9.5 5.5; 8 10 0 5.5; 9 0 4.75 5.5; 10 10 4.75 5.5; 11 0 4.75 0; 12 10 4.75 0; 13 5 9.5 5.5; 14 5 4.75 5.5; 15 5 0 5.5; 16 5 9.5 0; 17 5 4.75 0; 18 5 0 0; 19 2 9.5 0; 20 2 9.5 5.5; 21 4 9.5 0; 22 4 9.5 5.5; 23 6 9.5 0; 24 6 9.5 5.5; 25 8 9.5 0; 26 8 9.5 5.5; 43 0 9.5 2.75; 44 10 9.5 2.75; 45 2 9.5 2.75; 46 4 9.5 2.75; 47 6 9.5 2.75; 48 8 9.5 2.75; 63 1.429 0 0; 64 1.429 0 5.5; 65 2.858 0 0; 66 2.858 0 5.5; 67 4.287 0 0; 68 4.287 0 5.5; 69 5.716 0 0; 70 5.716 0 5.5; 71 7.145 0 0; 72 7.145 0 5.5; 73 8.574 0 0; 74 8.574 0 5.5; 75 0 0 2.75; 76 1.429 0 2.75; 77 2.858 0 2.75; 78 4.287 0 2.75; 79 5.716 0 2.75; 80 7.145 0 2.75; 81 8.574 0 2.75; 82 10 0 2.75; 83 1.429 4.75 5.5; 84 1.429 4.75 0; 85 2.858 4.75 5.5; 86 2.858 4.75 0; 87 4.287 4.75 5.5; 88 4.287 4.75 0; 89 5.716 4.75 5.5; 90 5.716 4.75 0; 91 7.145 4.75 5.5; 92 7.145 4.75 0; 93 8.574 4.75 5.5; 94 8.574 4.75 0; 95 10 4.75 2.75; 96 0 4.75 2.75; 97 1.429 4.75 2.75; 98 2.858 4.75 2.75; 99 4.287 4.75 2.75; 100 5.716 4.75 2.75; 101 7.145 4.75 2.75; 102 8.574 4.75 2.75; 128 0 0 -0.5; 129 10 0 -0.5; 130 0 9.5 -0.5; 131 10 9.5 -0.5; 132 3 9.5 0; 133 3 9.5 5.5; 134 7 9.5 0; 135 7 9.5 5.5; 136 9 9.5 0; 137 9 9.5 5.5; 138 3 9.5 2.75; 139 5 9.5 2.75; 140 7 9.5 2.75; 141 9 9.5 2.75; 142 1 9.5 0; 143 1 9.5 5.5; 144 1 9.5 2.75; 145 0 7.125 0; 146 10 7.125 0; MEMBER INCIDENCES 1 1 11; 2 2 142; 4 5 9; 5 6 143; 6 7 10; 7 2 43; 8 3 44; 13 9 6; 14 10 8; 17 12 4; 21 13 24; 23 14 13; 25 15 14; 26 16 23; 28 17 16; 30 18 17; 31 19 132; 32 20 133; 33 19 45; 34 21 16; 35 22 13; 36 21 46; 37 23 134; 38 24 135; 39 23 47; 40 25 136; 41 26 137; 42 25 48; 67 43 6; 68 44 7; 73 43 144; 74 45 138; 75 46 139; 76 47 140; 77 48 141; 103 6 14; 106 9 15; 107 2 9; 108 11 5; 109 3 10; 110 12 8; 116 5 64; 117 15 70; 119 18 69; 120 1 63; 121 63 65; 122 64 66; 124 65 67; 125 66 68; 127 67 18; 128 68 15; 130 69 71; 131 70 72; 133 71 73; 134 72 74; 136 73 4; 138 1 75; 145 4 82; 146 75 5; 153 82 8; 154 75 76; 155 76 77; 156 77 78; 157 78 79; 158 79 80; 159 80 81; 160 81 82; 161 74 8; 162 11 84; 163 17 90; 164 12 95; 165 10 93; 166 14 87; 167 9 96; 168 83 9; 169 84 86; 171 85 83; 172 86 88; 174 87 85; 175 88 17; 177 89 14; 178 90 92; 180 91 89; 181 92 94; 183 93 91; 184 94 12; 186 95 10; 194 96 97; 195 97 98; 196 98 99; 197 99 100; 198 100 101; 199 101 102; 200 102 95; 256 96 11; 269 20 45; 270 22 46; 271 24 47; 272 26 48; 273 128 1; 274 129 4; 275 130 2; 276 131 3; 301 132 21; 302 133 22; 303 134 25; 304 135 26; 305 136 3; 306 137 7; 307 138 46; 308 139 47; 309 140 48; 310 141 44; 311 132 138; 312 16 139; 313 134 140; 314 136 141; 315 133 138; 316 13 139; 317 135 140; 318 137 141; 319 142 19; 320 143 20; 321 144 45; 322 142 144; 323 143 144; 372 97 84; 373 97 83; 374 98 86; 375 98 85; 376 99 88; 377 99 87; 378 100 90; 379 100 89; 380 101 92; 381 101 91; 382 102 94; 383 102 93; 384 76 63; 385 76 64; 386 77 65; 387 77 66; 388 78 67; 389 78 68; 390 79 69; 391 79 70; 392 80 71; 393 80 72; 394 81 73; 395 81 74;
Page 74
444 15 10; 445 14 7; 446 11 145; 447 12 146; 448 145 2; 449 146 3; 450 145 142; 451 146 136; ELEMENT INCIDENCES SHELL 396 2 142 144 43; 397 142 19 45 144; 398 19 132 138 45; 399 132 21 46 138; 400 21 16 139 46; 401 16 23 47 139; 402 23 134 140 47; 403 134 25 48 140; 404 25 136 141 48; 405 136 3 44 141; 406 43 144 143 6; 407 144 45 20 143; 408 45 138 133 20; 409 138 46 22 133; 410 46 139 13 22; 411 139 47 24 13; 412 47 140 135 24; 413 140 48 26 135; 414 48 141 137 26; 415 141 44 7 137; 416 11 84 97 96; 417 84 86 98 97; 418 86 88 99 98; 419 88 90 100 99; 420 90 92 101 100; 421 92 94 102 101; 422 94 12 95 102; 423 96 97 83 9; 424 97 98 85 83; 425 98 99 87 85; 426 99 100 89 87; 427 100 101 91 89; 428 101 102 93 91; 429 102 95 10 93; 430 1 63 76 75; 431 63 65 77 76; 432 65 67 78 77; 433 67 69 79 78; 434 69 71 80 79; 435 71 73 81 80; 436 73 4 82 81; 437 75 76 64 5; 438 76 77 66 64; 439 77 78 68 66; 440 78 79 70 68; 441 79 80 72 70; 442 80 81 74 72; 443 81 82 8 74; ***** ELEMENT PROPERTY 396 TO 443THICKNESS 0.01 DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 78.5 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL ***** MEMBER PROPERTY EUROPEAN 1 17 446 TO 449 TABLE ST TUB30030016 103 106 444 445 TABLE ST TUB1201206 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 161 162 TO 169 171 172 174 175 177 178 180 181 183 184 186 256 TABLE ST HE240B 73 TO 77 154 TO 160 194 TO 200 307 TO 310 321 TABLE ST HE140A 372 TO 395 TABLE ST HE220B 273 TO 276 TABLE ST TUB20020010 2 5 7 8 21 26 31 TO 42 67 68 269 TO 272 301 TO 306 311 TO 320 322 323 TABLE ST TUB25025016 23 25 28 30 450 451 TABLE ST TUB12012010 4 6 13 14 TABLE ST TUB2502508 107 TO 110 TABLE ST TUB1401408 CONSTANTS MATERIAL STEEL ALL **** SUPPORTS 128 129 ENFORCED BUT FY MX MY MZ 2 3 ENFORCED BUT FX MX MY MZ ************************************* * SYETEM GENERATED SELF WEIGHT * ************************************* MEMBER RELEASE 110 START MY
Page 75
110 END MY 109 START MY 109 END MY 108 START MY 108 END MY 107 START MY 107 END MY 444 START MY 444 END MY 106 START MY 106 END MY 103 START MY 103 END MY 445 START MY 445 END MY LOAD 1 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT - Y SELFWEIGHT Y -1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 11 LOADTYPE Dead TITLE SYSTEM GENERATED SELFWEIGHT + X SELFWEIGHT X 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 21 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT + Z SELFWEIGHT Z 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 2 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL - Y SELFWEIGHT Y -0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 12 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + X SELFWEIGHT X 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 LOAD 22 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + Z SELFWEIGHT Z 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 ******************** * EQUIPMENT LOAD * ******************** LOAD 3LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT - Y MEMBER LOAD 372 TO 395 UNI GY -8.829 0 1
Page 76
LOAD 13LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + X MEMBER LOAD 372 TO 395 UNI GX 8.829 0 1 LOAD 23LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + Z MEMBER LOAD 372 TO 395 UNI GZ 8.829 0 1
********************************* * FUNCTIONNAL VARIABLE LOAD* ********************************* LOAD 4 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS - Y MEMBER LOAD 374 TO 381 386 TO 393 UNI GY -3.4 0 1 372 373 382 TO 385 394 395 UNI GY -6.975 0 1 374 TO 381 386 TO 393 UNI GY -7.15 1 2.75 372 373 382 TO 385 394 395 UNI GY -10.725 1 2.75 LOAD 14 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + X MEMBER LOAD 374 TO 381 386 TO 393 UNI GX 3.4 0 1 372 373 382 TO 385 394 395 UNI GX 6.975 0 1 374 TO 381 386 TO 393 UNI GX 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GX 10.725 1 2.75 LOAD 24 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + Z MEMBER LOAD 374 TO 381 386 TO 393 UNI GZ 3.4 0 1 372 373 382 TO 385 394 395 UNI GZ 6.975 0 1 374 TO 381 386 TO 393 UNI GZ 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GZ 10.725 1 2.75 ******************* * LAY DOWN LOAD* ******************* LOAD 5 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD - Y MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -13.87 LOAD 15 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + X MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 13.87 LOAD 25 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + Z MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 13.87 ********************** * WIND LOAD INPLACE* ********************** LOAD 31 LOADTYPE Live TITLE WIND + X MEMBER LOAD 1 4 7 13 67 107 108 138 146 167 256 446 448 UNI GX 1.1 6 8 14 17 68 109 110 145 153 164 186 447 449 UNI GX 0.7765 LOAD 32 LOADTYPE Live TITLE WIND - X MEMBER LOAD 6 8 14 17 68 109 110 145 153 164 186 447 449 UNI GX -1.1 1 4 7 13 67 107 108 138 146 167 256 446 448 UNI GX -0.7765
Page 77
LOAD 33 LOADTYPE Live TITLE WIND + Z MEMBER LOAD 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 446 TO 449 UNI GZ 1.1 4 TO 6 13 14 21 23 25 32 35 38 41 103 106 116 117 122 125 128 131 134 161 302 304 306 320 444 445 UNI GZ 0.7765 LOAD 34 LOADTYPE Live TITLE WIND - Z MEMBER LOAD 4 TO 6 13 14 21 23 25 32 35 38 41 103 106 116 117 122 125 128 131 134 161 165 166 168 171 174 177 180 183 302 304 306 320 444 445 UNI GZ -1.1 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 446 TO 449 UNI GZ -0.7765 ***************************** * SEISMIC LOAD EQ 100 YEAR * ***************************** LOAD 41 LOADTYPE Seismic TITLE EQ 100 + X SELFWEIGHT X 0.04412 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X 0.011 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX 0.39 0 1 374 TO 381 386 TO 393 UNI GX 0.15 0 1 372 373 382 TO 385 394 395 UNI GX 0.3077 0 1 374 TO 381 386 TO 393 UNI GX 0.3154 1 2.75 372 373 382 TO 385 394 395 UNI GX 0.4732 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 0.612 LOAD 42 LOADTYPE Seismic TITLE EQ 100 - X SELFWEIGHT X -0.04412 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X -0.011 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX -0.39 0 1 374 TO 381 386 TO 393 UNI GX -0.15 0 1 372 373 382 TO 385 394 395 UNI GX -0.3077 0 1 374 TO 381 386 TO 393 UNI GX -0.3154 1 2.75 372 373 382 TO 385 394 395 UNI GX -0.4732 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX -0.612 LOAD 43 LOADTYPE Seismic TITLE EQ 100 + Z SELFWEIGHT Z 0.0133 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 -
Page 78
195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z 0.003325 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 TO 276 301 TO 323 372 TO 447 MEMBER LOAD 372 TO 395 UNI GZ 0.1174 0 1 374 TO 381 386 TO 393 UNI GZ 0.045 0 1 372 373 382 TO 385 394 395 UNI GZ 0.093 0 1 374 TO 381 386 TO 393 UNI GZ 0.095 1 2.75 372 373 382 TO 385 394 395 UNI GZ 0.1426 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 0.1844 LOAD 44 LOADTYPE Seismic TITLE EQ 100 - Z SELFWEIGHT Z -0.0133 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z -0.003325 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GZ -0.1174 0 1 374 TO 381 386 TO 393 UNI GZ -0.045 0 1 372 373 382 TO 385 394 395 UNI GZ -0.093 0 1 374 TO 381 386 TO 393 UNI GZ -0.095 1 2.75 372 373 382 TO 385 394 395 UNI GZ -0.1426 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ -0.1844 LOAD 45 LOADTYPE Seismic TITLE EQ 100 + Y SELFWEIGHT Y 0.039 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y 0.0097 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GY 0.3447 0 1 374 TO 381 386 TO 393 UNI GY 0.1327 0 1 372 373 382 TO 385 394 395 UNI GY 0.272 0 1 374 TO 381 386 TO 393 UNI GY 0.2788 1 2.75 372 373 382 TO 385 394 395 UNI GY 0.418 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY 0.54 LOAD 46 LOADTYPE Seismic TITLE EQ 100 - Y SELFWEIGHT Y -0.039 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y -0.0097 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 -
Page 79
136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GY -0.3447 0 1 374 TO 381 386 TO 393 UNI GY -0.1327 0 1 372 373 382 TO 385 394 395 UNI GY -0.272 0 1 374 TO 381 386 TO 393 UNI GY -0.2788 1 2.75 372 373 382 TO 385 394 395 UNI GY -0.418 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -0.54 ******************************* * SEISMIC LOAD EQ 10000 YEAR * ******************************* LOAD 51 LOADTYPE Seismic TITLE EQ 10000 + X SELFWEIGHT X 0.218 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X 0.0545 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX 1.9251 0 1 374 TO 381 386 TO 393 UNI GX 0.9376 0 1 372 373 382 TO 385 394 395 UNI GX 1.5206 0 1 374 TO 381 386 TO 393 UNI GX 1.5587 1 2.75 372 373 382 TO 385 394 395 UNI GX 2.338 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 3.0237 LOAD 52 LOADTYPE Seismic TITLE EQ 10000 - X SELFWEIGHT X -0.218 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT X -0.0545 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GX -1.9251 0 1 374 TO 381 386 TO 393 UNI GX -0.9376 0 1 372 373 382 TO 385 394 395 UNI GX -1.5206 0 1 374 TO 381 386 TO 393 UNI GX -1.5587 1 2.75 372 373 382 TO 385 394 395 UNI GX -2.338 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX -3.0237 LOAD 53 LOADTYPE Seismic TITLE EQ 10000 + Z SELFWEIGHT Z 0.06 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z 0.015 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 -
Page 80
136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GZ 0.53 0 1 374 TO 381 386 TO 393 UNI GZ 0.26 0 1 372 373 382 TO 385 394 395 UNI GZ 0.42 0 1 374 TO 381 386 TO 393 UNI GZ 0.43 1 2.75 372 373 382 TO 385 394 395 UNI GZ 0.6435 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 0.8322 LOAD 54 LOADTYPE Seismic TITLE EQ 10000 - Z SELFWEIGHT Z -0.06 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Z -0.015 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GZ -0.53 0 1 374 TO 381 386 TO 393 UNI GZ -0.26 0 1 372 373 382 TO 385 394 395 UNI GZ -0.42 0 1 374 TO 381 386 TO 393 UNI GZ -0.43 1 2.75 372 373 382 TO 385 394 395 UNI GZ -0.6435 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ -0.8322 LOAD 55 LOADTYPE Seismic TITLE EQ 10000 + Y SELFWEIGHT Y 0.402 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y 0.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD 372 TO 395 UNI GY 3.5493 0 1 374 TO 381 386 TO 393 UNI GY 1.3668 0 1 372 373 382 TO 385 394 395 UNI GY 2.804 0 1 374 TO 381 386 TO 393 UNI GY 2.8743 1 2.75 372 373 382 TO 385 394 395 UNI GY 4.3115 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY 5.5757 LOAD 56 LOADTYPE Seismic TITLE EQ 10000 - Y SELFWEIGHT Y -0.402 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 SELFWEIGHT Y -0.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 103 106 TO 110 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 195 TO 200 256 269 TO 276 301 TO 323 372 TO 451 MEMBER LOAD
Page 81
372 TO 395 UNI GY -3.5493 0 1 374 TO 381 386 TO 393 UNI GY -1.3668 0 1 372 373 382 TO 385 394 395 UNI GY -2.804 0 1 374 TO 381 386 TO 393 UNI GY -2.8743 1 2.75 372 373 382 TO 385 394 395 UNI GY -4.3115 1 2.75 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -5.5757 ******************** * EXPLOSION LOAD * ******************** LOAD 300 LOADTYPE Accidental TITLE EXPLOSION LOAD MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY 22.1848 194 TO 200 372 TO 383 UNI GY -30.6977 LOAD 301 LOADTYPE Accidental TITLE EXPLOSION LOAD MEMBER LOAD 194 TO 200 372 TO 383 UNI GY 30.6977 154 TO 160 384 TO 395 UNI GY -30.6977 *********************************** * WIND LOAD COMBINATION ULS-A * ************************************ LOAD COMB 101 INPLACE: ULS-A WIND + X 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 31 0.7 LOAD COMB 102 INPLACE: ULS-A WIND + X - Z 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 31 0.495 34 0.495 LOAD COMB 103 INPLACE: ULS-A WIND - X 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 32 0.7 LOAD COMB 104 INPLACE: ULS-A WIND - X - Z 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 32 0.495 34 0.495 LOAD COMB 105 INPLACE: ULS-A WIND - Z 1 1.3 2 1.3 3 1.3 4 1.3 5 1.3 34 0.7 LOAD COMB 111 INPLACE: ULS-B WIND + X 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 31 1.3 LOAD COMB 112 INPLACE: ULS-B WIND + X - Z 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 31 0.919 34 0.919 LOAD COMB 113 INPLACE: ULS-B WIND - X 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 32 1.3 LOAD COMB 114 INPLACE: ULS-B WIND - X - Z 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 32 0.919 34 0.919 LOAD COMB 115 INPLACE: ULS-B WIND - Z 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 34 0.919 ******************************************** * EQ 100 YEAR INPLACE ULS-A COMBINATION * ********************************************* LOAD COMB 121 INPLACE: ULS-A EQ 100 + X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.7 46 0.7 LOAD COMB 122 INPLACE: ULS-A EQ 100 + X - Z - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.495 44 0.495 46 0.7 LOAD COMB 123 INPLACE: ULS-A EQ 100 - X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.7 46 0.7 LOAD COMB 124 INPLACE: ULS-A EQ 100 - X + Z - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.495 43 0.495 46 0.7
Page 82
LOAD COMB 125 INPLACE: ULS- A EQ 100 + Z - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.7 46 0.7 LOAD COMB 126 INPLACE: ULS-A EQ 100 + Z + X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.495 41 0.495 46 0.7 LOAD COMB 127 INPLACE: ULS-A EQ 100 - Z- Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.7 46 0.7 LOAD COMB 128 INPLACE: ULS-A EQ 100 - Z - X - Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.495 42 0.495 46 0.7 LOAD COMB 131 INPLACE: ULS-A EQ 100 + X +Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.7 45 0.7 LOAD COMB 132 INPLACE: ULS-A EQ 100 +X - Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 41 0.495 44 0.495 45 0.7 LOAD COMB 133 INPLACE: ULS-A EQ 100 - X + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.7 45 0.7 LOAD COMB 134 INPLACE: ULS-A EQ 100 - X + Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 42 0.495 43 0.495 45 0.7 LOAD COMB 135 INPLACE: ULS-A EQ 100 + Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.7 45 0.7 LOAD COMB 136 INPLACE: ULS-A EQ 100 +Z + X + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 43 0.495 41 0.495 45 0.7 LOAD COMB 137 INPLACE: ULS-A EQ 100 - Z + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.7 45 0.7 LOAD COMB 138 INPLACE: ULS-A EQ 100 - Z - X + Y 1 1.3 2 1.3 3 1.3 4 0.975 5 0.975 44 0.495 42 0.495 45 0.7
****************************************** * EQ 100 YEAR LOAD COMBINATION ULS-B * ****************************************** LOAD COMB 141 INPLACE: ULS-B EQ 100 + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 1.3 46 1.3 LOAD COMB 142 INPLACE: ULS-B EQ 100 + X - Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 0.919 44 0.919 46 1.3 LOAD COMB 143 INPLACE: ULS-B EQ 100 - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 1.3 46 1.3 LOAD COMB 144 INPLACE: ULS-B EQ 100 - X + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 0.919 43 0.919 46 1.3 LOAD COMB 145 INPLACE: ULS-B EQ 100 + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 43 1.3 46 1.3 LOAD COMB 146 INPLACE: ULS-B EQ 100 + Z + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 43 0.919 41 0.919 46 1.3 LOAD COMB 147 INPLACE: ULS-B EQ 100 - Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 1.3 46 1.3 LOAD COMB 148 INPLACE: ULS-B E Q 100 - Z - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 0.919 42 0.919 46 1.3 LOAD COMB 151 INPLACE: ULS-B EQ 100 + X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 1.3 45 1.3 LOAD COMB 152 INPLACE: ULS-B EQ 100 + X - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 41 0.919 44 0.919 45 1.3 LOAD COMB 153 INPLACE: ULS- B EQ 100 - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 1.3 45 1.3 LOAD COMB 154 INPLACE: ULS-B EQ 100 - X + Z + Y
Page 83
1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 42 0.919 43 0.919 45 1.3 LOAD COMB 155 INPLACE: ULS-B EQ 100 + Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 43 1.3 45 1.3 LOAD COMB 156 INPLACE: ULS-B EQ 100 + Z + X + Y 1 1.0 12 1.0 3 1.0 4 0.75 5 0.75 43 0.919 41 0.919 45 1.3 LOAD COMB 157 INPLACE: ULS-B EQ 100 - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 1.3 45 1.3 LOAD COMB 158 INPLACE: ULS-B EQ 100 - Z - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 44 0.919 42 0.919 45 1.3
****************************************** * EQ 10000 YEAR LOAD COMBINATION ALS * ****************************************** LOAD COMB 161 INPLACE: ALS EQ 10000 + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 51 1.0 56 1.0 LOAD COMB 162 INPLACE: ALS EQ 10000 + X - Z - Y 1 1.0 2 1.0 3 1.0 14 0.75 5 0.75 51 0.707 54 0.707 56 1.0 LOAD COMB 163 INPLACE: ALS EQ 10000 - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 1.0 56 1.0 LOAD COMB 164 INPLACE: ALS EQ 10000 - X + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 0.707 53 0.707 56 1.0 LOAD COMB 165 INPLACE: ALS EQ 10000 + Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 1.0 56 1.0 LOAD COMB 166 INPLACE: ALS EQ 10000 + Z + X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 0.707 51 0.707 56 1.0 LOAD COMB 167 INPLACE: ALS EQ 10000 - Z - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 1.0 56 1.0 LOAD COMB 168 INPLACE: ALS EQ 10000 - Z - X - Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 0.707 52 0.707 56 1.0 LOAD COMB 171 INPLACE: ALS EQ 10000 + X +Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 51 1.0 55 1.0 LOAD COMB 172 INPLACE: ALS EQ 10000 + X - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 51 0.707 54 0.707 55 1.0 LOAD COMB 173 INPLACE: ALS EQ 10000 - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 1.0 55 1.0 LOAD COMB 174 INPLACE: ALS EQ 10000 - X + Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 52 0.707 53 0.707 55 1.0 LOAD COMB 175 INPLACE: ALS EQ 10000 + Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 1.0 55 1.0 LOAD COMB 176 INPLACE: ALS EQ 10000 + Z + X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 53 0.707 51 0.707 55 1.0 LOAD COMB 177 INPLACE: ALS EQ 10000 - Z + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 1.0 55 1.0 LOAD COMB 178 INPLACE: ALS EQ 10000 - Z - X + Y 1 1.0 2 1.0 3 1.0 4 0.75 5 0.75 54 0.707 52 0.707 55 1.0 ********************************** * EXPLOSION LOAD COMBINATION * ********************************** LOAD COMB 311 ALS EXPLOSION LOAD 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 300 1.0 LOAD COMB 312 ALS EXPLOSION LOAD
Page 84
1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 301 1.0 *************************** * FIRE LOADCOMBINATION * *************************** LOAD COMB 411 ALS FIRE LOAD 1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 PERFORM ANALYSIS PRINT STATICS CHECK ** LOAD LIST 101 TO 105 PARAMETER 1 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 111 TO 115 PARAMETER 2 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 121 TO 128 PARAMETER 3 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 131 TO 138 PARAMETER 4 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS
Page 85
** LOAD LIST 141 TO 148 PARAMETER 5 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** LOAD LIST 151 TO 158 PARAMETER 6 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 161 TO 168 PARAMETER 7 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 171 TO 178 PARAMETER 8 CODE EC3 BEAM 1 ALL GM0 1.15 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS
LOAD LIST 311 312 PARAMETER 9 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL
Page 86
PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS ** LOAD LIST 411 PARAMETER 9 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** FINIS
Page 87
A.3
STAAD.Pro INPUT FILE TRANSPORT DESIGN
STAAD SPACE START JOB INFORMATION ENGINEER DATE 5-Jan-15 JOB NAME Master Thesis Spring 2015 JOB CLIENT University of Stavanger ENGINEER NAME Gholam Sakhi Sakha END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 9.5 0; 3 10 9.5 0; 4 10 0 0; 5 0 0 5.5; 6 0 9.5 5.5; 7 10 9.5 5.5; 8 10 0 5.5; 9 0 4.75 5.5; 10 10 4.75 5.5; 11 0 4.75 0; 12 10 4.75 0; 13 5 9.5 5.5; 14 5 4.75 5.5; 15 5 0 5.5; 16 5 9.5 0; 17 5 4.75 0; 18 5 0 0; 19 2 9.5 0; 20 2 9.5 5.5; 21 4 9.5 0; 22 4 9.5 5.5; 23 6 9.5 0; 24 6 9.5 5.5; 25 8 9.5 0; 26 8 9.5 5.5; 43 0 9.5 2.75; 44 10 9.5 2.75; 45 2 9.5 2.75; 46 4 9.5 2.75; 47 6 9.5 2.75; 48 8 9.5 2.75; 63 1.429 0 0; 64 1.429 0 5.5; 65 2.858 0 0; 66 2.858 0 5.5; 67 4.287 0 0; 68 4.287 0 5.5; 69 5.716 0 0; 70 5.716 0 5.5; 71 7.145 0 0; 72 7.145 0 5.5; 73 8.574 0 0; 74 8.574 0 5.5; 75 0 0 2.75; 76 1.429 0 2.75; 77 2.858 0 2.75; 78 4.287 0 2.75; 79 5.716 0 2.75; 80 7.145 0 2.75; 81 8.574 0 2.75; 82 10 0 2.75; 83 1.429 4.75 5.5; 84 1.429 4.75 0; 85 2.858 4.75 5.5; 86 2.858 4.75 0; 87 4.287 4.75 5.5; 88 4.287 4.75 0; 89 5.716 4.75 5.5; 90 5.716 4.75 0; 91 7.145 4.75 5.5; 92 7.145 4.75 0; 93 8.574 4.75 5.5; 94 8.574 4.75 0; 95 10 4.75 2.75; 96 0 4.75 2.75; 97 1.429 4.75 2.75; 98 2.858 4.75 2.75; 99 4.287 4.75 2.75; 100 5.716 4.75 2.75; 101 7.145 4.75 2.75; 102 8.574 4.75 2.75; 128 0 0 -0.5; 129 10 0 -0.5; 130 0 9.5 -0.5; 131 10 9.5 -0.5; 132 3 9.5 0; 133 3 9.5 5.5; 134 7 9.5 0; 135 7 9.5 5.5; 136 9 9.5 0; 137 9 9.5 5.5; 138 3 9.5 2.75; 139 5 9.5 2.75; 140 7 9.5 2.75; 141 9 9.5 2.75; 142 1 9.5 0; 143 1 9.5 5.5; 144 1 9.5 2.75; 145 0 7.125 0; 146 10 7.125 0; MEMBER INCIDENCES 1 1 11; 2 2 142; 4 5 9; 5 6 143; 6 7 10; 7 2 43; 8 3 44; 13 9 6; 14 10 8; 17 12 4; 21 13 24; 23 14 13; 25 15 14; 26 16 23; 28 17 16; 30 18 17; 31 19 132; 32 20 133; 33 19 45; 34 21 16; 35 22 13; 36 21 46; 37 23 134; 38 24 135; 39 23 47; 40 25 136; 41 26 137; 42 25 48; 67 43 6; 68 44 7; 73 43 144; 74 45 138; 75 46 139; 76 47 140; 77 48 141; 116 5 64; 117 15 70; 119 18 69; 120 1 63; 121 63 65; 122 64 66; 124 65 67; 125 66 68; 127 67 18; 128 68 15; 130 69 71; 131 70 72; 133 71 73; 134 72 74; 136 73 4; 138 1 75; 145 4 82; 146 75 5; 153 82 8; 154 75 76; 155 76 77; 156 77 78; 157 78 79; 158 79 80; 159 80 81; 160 81 82; 161 74 8; 162 11 84; 163 17 90; 164 12 95; 165 10 93; 166 14 87; 167 9 96; 168 83 9; 169 84 86; 171 85 83; 172 86 88; 174 87 85; 175 88 17; 177 89 14; 178 90 92; 180 91 89; 181 92 94; 183 93 91; 184 94 12; 186 95 10; 194 96 97; 195 97 98; 196 98 99; 197 99 100; 198 100 101; 199 101 102; 200 102 95; 256 96 11; 269 20 45; 270 22 46; 271 24 47; 272 26 48; 273 128 1; 274 129 4; 275 130 2; 276 131 3; 301 132 21; 302 133 22; 303 134 25; 304 135 26; 305 136 3; 306 137 7; 307 138 46; 308 139 47; 309 140 48; 310 141 44; 311 132 138; 312 16 139; 313 134 140; 314 136 141; 315 133 138; 316 13 139; 317 135 140; 318 137 141; 319 142 19; 320 143 20; 321 144 45; 322 142 144; 323 143 144; 372 97 84; 373 97 83; 374 98 86; 375 98 85; 376 99 88; 377 99 87; 378 100 90; 379 100 89; 380 101 92; 381 101 91; 382 102 94; 383 102 93; 384 76 63; 385 76 64; 386 77 65; 387 77 66; 388 78 67; 389 78 68; 390 79 69; 391 79 70; 392 80 71; 393 80 72; 394 81 73; 395 81 74; 447 14 7; 449 9 2; 454 14 6; 455 15 10; 456 15 9; 458 5 11; 459 3 10; 460 12 8; 461 11 145; 462 12 146; 467 145 2; 468 146 3; 469 145 142; 470 146 136; 471 18 14; 472 17 13; ELEMENT INCIDENCES SHELL 396 2 142 144 43; 397 142 19 45 144; 398 19 132 138 45; 399 132 21 46 138; 400 21 16 139 46; 401 16 23 47 139; 402 23 134 140 47; 403 134 25 48 140;
Page 88
404 25 136 141 48; 405 136 3 44 141; 406 43 144 143 6; 407 144 45 20 143; 408 45 138 133 20; 409 138 46 22 133; 410 46 139 13 22; 411 139 47 24 13; 412 47 140 135 24; 413 140 48 26 135; 414 48 141 137 26; 415 141 44 7 137; 416 11 84 97 96; 417 84 86 98 97; 418 86 88 99 98; 419 88 90 100 99; 420 90 92 101 100; 421 92 94 102 101; 422 94 12 95 102; 423 96 97 83 9; 424 97 98 85 83; 425 98 99 87 85; 426 99 100 89 87; 427 100 101 91 89; 428 101 102 93 91; 429 102 95 10 93; 430 1 63 76 75; 431 63 65 77 76; 432 65 67 78 77; 433 67 69 79 78; 434 69 71 80 79; 435 71 73 81 80; 436 73 4 82 81; 437 75 76 64 5; 438 76 77 66 64; 439 77 78 68 66; 440 78 79 70 68; 441 79 80 72 70; 442 80 81 74 72; 443 81 82 8 74; * ELEMENT PROPERTY 396 TO 443 THICKNESS 0.01 DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 78.5 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL * * MEMBER PROPERTY EUROPEAN 1 17 461 462 467 468 TABLE ST TUB30030016 447 454 TO 456 471 472 TABLE ST TUB1201206 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 161 162 TO 169 171 172 174 175 177 178 180 181 183 184 186 256 TABLE ST HE240B 73 TO 77 154 TO 160 194 TO 200 307 TO 310 321 TABLE ST HE140A 372 TO 395 TABLE ST HE220B 275 276 TABLE ST TUB30030016 273 274 TABLE ST TUB1601606 2 5 7 8 21 26 31 TO 42 67 68 269 TO 272 301 TO 306 311 TO 320 322 323 TABLE ST TUB25025016 23 25 28 30 469 470 TABLE ST TUB12012010 4 6 13 14 TABLE ST TUB2502508 449 458 TO 460 TABLE ST TUB1401408 CONSTANTS MATERIAL STEEL ALL * SUPPORTS 1 4 5 8 PINNED ************************************* * SYETEM GENERATED SELF WEIGHT * ************************************* MEMBER RELEASE 447 START MY 447 END MY 449 START MY 449 END MY 454 START MY 454 END MY 455 START MY 455 END MY 456 START MY 456 END MY 459 START MY 459 END MY 460 START MY 460 END MY
Page 89
458 START MY 458 END MY 471 START MX MY 471 END MY 472 START MX MY 472 END MY LOAD 1 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT - Y SELFWEIGHT Y -1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 11 LOADTYPE Dead TITLE SYSTEM GENERATED SELFWEIGHT + X SELFWEIGHT X 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 21 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT + Z SELFWEIGHT Z 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 2 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL - Y SELFWEIGHT Y -0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 12 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + X SELFWEIGHT X 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 LOAD 22 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + Z SELFWEIGHT Z 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 ******************** * EQUIPMENT LOAD * ******************** LOAD 3 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT - Y MEMBER LOAD 372 TO 395 UNI GY -8.829 0 1 LOAD 13 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + X MEMBER LOAD 372 TO 395 UNI GX 8.829 0 1 LOAD 23 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + Z MEMBER LOAD 372 TO 395 UNI GZ 8.829 0 1 ***************************** * FUNCTION VARIABLE LOAD * ***************************** LOAD 4 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS - Y MEMBER LOAD 374 TO 381 386 TO 393 UNI GY -3.4 0 1 372 373 382 TO 385 394 395 UNI GY -6.975 0 1 374 TO 381 386 TO 393 UNI GY -7.15 1 2.75 372 373 382 TO 385 394 395 UNI GY -10.725 1 2.75 LOAD 14 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + X MEMBER LOAD 374 TO 381 386 TO 393 UNI GX 3.4 0 1
Page 90
372 373 382 TO 385 394 395 UNI GX 6.975 0 1 374 TO 381 386 TO 393 UNI GX 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GX 10.725 1 2.75 LOAD 24 LOADTYPE Live TITLE FUNCTIONAL LIVE LOADS + Z MEMBER LOAD 374 TO 381 386 TO 393 UNI GZ 3.4 0 1 372 373 382 TO 385 394 395 UNI GZ 6.975 0 1 374 TO 381 386 TO 393 UNI GZ 7.15 1 2.75 372 373 382 TO 385 394 395 UNI GZ 10.725 1 2.75 ******************* * LAY DOWN LOAD * ******************* LOAD 5 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD - Y MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GY -13.87 LOAD 15 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + X MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GX 13.87 LOAD 25 LOADTYPE Live REDUCIBLE TITLE LAYDOWN LOAD + Z MEMBER LOAD 33 36 39 42 73 TO 77 269 TO 272 307 TO 318 321 TO 323 UNI GZ 13.87 *************************** * WIND LOAD IN TRANSPORT * *************************** LOAD 61 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT + X MEMBER LOAD 1 4 7 13 67 138 146 167 256 449 458 461 467 UNI GX 0.5151 6 8 14 17 68 145 153 164 183 186 459 460 462 468 UNI GX 0.3678 LOAD 62 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT - X MEMBER LOAD 6 8 14 17 68 145 153 164 186 459 460 462 468 UNI GX -0.5151 1 4 7 13 67 138 146 167 256 449 458 461 467 UNI GX -0.3678 LOAD 63 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT + Z MEMBER LOAD 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 461 462 467 468 UNI GZ 0.5151 4 TO 6 13 14 21 23 25 32 35 38 41 116 117 122 125 128 131 134 161 165 166 168 171 174 177 180 183 302 304 306 320 447 454 TO 456 UNI GZ 0.3678 LOAD 64 LOADTYPE Live REDUCIBLE TITLE WIND ACTION IN TRANSPORT - Z MEMBER LOAD 4 TO 6 13 14 21 23 25 32 35 38 41 116 117 122 125 128 131 134 161 165 166 168 171 174 177 180 183 302 304 306 320 447 454 TO 456 UNI GZ -0.5151 1 2 17 26 28 30 31 34 37 40 119 TO 121 124 127 130 133 136 162 163 169 172 175 178 181 184 301 303 305 319 461 462 467 468 UNI GZ -0.3678 *********************************** * BARGE ACCELERATION IN TRANSPORT * *********************************** LOAD 71 LOADTYPE Dead TITLE BARGE ACCELERATION + X SELFWEIGHT X 0.5945 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT X 0.1486 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GX 5.2488 0 1 LOAD 72 LOADTYPE Dead TITLE BARGE ACCELERATION - X
Page 91
SELFWEIGHT X -0.5945 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT X -0.1486 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GX -5.2488 0 1 LOAD 73 LOADTYPE Dead TITLE BARGE ACCELERATION + Z SELFWEIGHT Z 0.8668 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Z 0.2167 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GZ 7.653 0 1 LOAD 74 LOADTYPE Dead TITLE BARGE ACCELERATION - Z SELFWEIGHT Z -0.8668 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Z -0.2167 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GZ -7.653 0 1 LOAD 75 LOADTYPE Dead TITLE BARGE ACCELERATION + Y SELFWEIGHT Y 0.35 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Y 0.0875 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GY 3.09 0 1 LOAD 76 LOADTYPE Dead TITLE BARGE ACCELERATION - Y SELFWEIGHT Y -0.45 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 SELFWEIGHT Y -0.1125 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 462 467 TO 472 MEMBER LOAD 372 TO 395 UNI GY -3.973 0 1 **************************************************** * WIND ACTION COMBINATION IN TRANSPORT ULS-A * **************************************************** LOAD COMB 181 TRANSPORT: ULS-A + X + Y 1 1.3 2 1.3 3 1.3 61 0.7 71 0.7 75 0.7 LOAD COMB 182 TRANSPORT:ULS-A + X + Z + Y
Page 92
1 1.3 2 1.3 3 1.3 61 0.495 63 0.495 71 0.495 73 0.495 75 0.7 LOAD COMB 183 TRANSPORT: ULS-A + Z + Y 1 1.3 2 1.3 3 1.3 63 0.7 73 0.7 75 0.7 LOAD COMB 184 TRANSPORT: ULS-A - X + Z + Y 1 1.3 2 1.3 3 1.3 62 0.495 63 0.495 72 0.495 73 0.495 75 0.7 LOAD COMB 185 TRANSPORT: ULS-A - X + Y 1 1.3 2 1.3 3 1.3 62 0.7 72 0.7 75 0.7 LOAD COMB 186 TRANSPORT: ULS-A - X - Z + Y 1 1.3 2 1.3 3 1.3 62 0.495 64 0.495 72 0.495 74 0.495 75 0.7 LOAD COMB 187 TRANSPORT: ULS- A - Z + Y 1 1.3 2 1.3 3 1.3 64 0.7 74 0.7 75 0.7 LOAD COMB 188 TRANSPORT: ULS-A - Z + X + Y 1 1.3 2 1.3 3 1.3 64 0.495 61 0.495 74 0.495 71 0.495 75 0.7 LOAD COMB 191 TRANSPORT: ULS-A + X - Y 1 1.3 2 1.3 3 1.3 61 0.7 71 0.7 76 0.7 LOAD COMB 192 TRANSPORT:ULS-A + X + Z - Y 1 1.3 2 1.3 3 1.3 61 0.495 63 0.495 71 0.495 73 0.495 76 0.7 LOAD COMB 193 TRANSPORT: ULS-A + Z - Y 1 1.3 2 1.3 3 1.3 63 0.7 73 0.7 76 0.7 LOAD COMB 194 TRANSPORT: ULS-A - X + Z - Y 1 1.3 2 1.3 3 1.3 62 0.495 63 0.495 72 0.495 73 0.495 76 0.7 LOAD COMB 195 TRANSPORT: ULS-A - X - Y 1 1.3 2 1.3 3 1.3 62 0.7 72 0.7 76 0.7 LOAD COMB 196 TRANSPORT: ULS-A - X - Z - Y 1 1.3 2 1.3 3 1.3 62 0.495 64 0.495 72 0.495 74 0.495 76 0.7 LOAD COMB 197 TRANSPORT: ULS- A - Z - Y 1 1.3 2 1.3 3 1.3 64 0.7 74 0.7 76 0.7 LOAD COMB 198 TRANSPORT: ULS-A - Z + X - Y 1 1.3 2 1.3 3 1.3 64 0.495 61 0.495 74 0.495 71 0.495 76 0.7 **************************************************** *WIND ACTION COMBINATION IN TRANSPORT ULS-B * **************************************************** LOAD COMB 201 TRANSPORT: ULS-B + X + Y 1 1.0 2 1.0 3 1.0 61 1.3 71 1.3 75 1.3 LOAD COMB 202 TRANSPORT: ULS-B + X + Z + Y 1 1.0 2 1.0 3 1.0 61 0.92 63 0.92 71 0.92 73 0.92 75 1.3 LOAD COMB 203 TRANSPORT: ULS-B + Z + Y 1 1.0 2 1.0 3 1.0 63 1.3 73 1.3 75 1.3 LOAD COMB 204 TRANSPORT: ULS-B - X + Z + Y 1 1.0 2 1.0 3 1.0 62 0.92 63 0.92 72 0.92 73 0.92 75 1.3 LOAD COMB 205 TRANSPORT: ULS-B - X + Y 1 1.0 2 1.0 3 1.0 62 1.3 72 1.3 75 1.3 LOAD COMB 206 TRANSPRT: ULS-B - X - Z + Y 1 1.0 2 1.0 3 1.0 62 0.92 64 0.92 72 0.92 74 0.92 75 1.3 LOAD COMB 207 TRANSPORT: ULS-B - Z + Y 1 1.0 2 1.0 3 1.0 64 1.3 74 1.3 75 1.3 LOAD COMB 208 TRANSPORT: ULS-B - Z + X + Y 1 1.0 2 1.0 3 1.0 64 0.92 61 0.92 74 0.92 71 0.92 75 1.3 LOAD COMB 211 TRANSPORT: ULS-B + X - Y 1 1.0 2 1.0 3 1.0 61 1.3 71 1.3 76 1.3 LOAD COMB 212 TRANSPORT: ULS-B + X + Z - Y 1 1.0 2 1.0 3 1.0 61 0.92 63 0.92 71 0.92 73 0.92 76 1.3 LOAD COMB 213 TRANSPORT: ULS-B + Z - Y 1 1.0 2 1.0 3 1.0 63 1.3 73 1.3 76 1.3 LOAD COMB 214 TRANSPORT: ULS-B - X + Z - Y 1 1.0 2 1.0 3 1.0 62 0.92 63 0.92 72 0.92 73 0.92 76 1.3 LOAD COMB 215 TRANSPORT: ULS-B - X - Y 1 1.0 2 1.0 3 1.0 62 1.3 72 1.3 76 1.3 LOAD COMB 216 TRANSPRT: ULS-B - Z - X - Y 1 1.0 2 1.0 3 1.0 64 0.92 62 0.92 74 0.92 72 0.92 76 1.3
Page 93
LOAD COMB 217 TRANSPORT: ULS-B - Z - Y 1 1.0 2 1.0 3 1.0 64 1.3 74 1.3 76 1.3 LOAD COMB 218 TRANSPORT: ULS-B - Z + X - Y 1 1.0 2 1.0 3 1.0 64 0.92 61 0.92 74 0.92 71 0.92 76 1.3 PERFORM ANALYSIS PRINT STATICS CHECK *** LOAD LIST 181 TO 188 PARAMETER 1 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS * LOAD LIST 191 TO 198 PARAMETER 2 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS * LOAD LIST 201 TO 208 PARAMETER 3 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS * LOAD LIST 211 TO 218 PARAMETER 4 CODE EC3 BEAM 1 ALL GM0 1 ALL TRACK 0 ALL PY 355000 ALL CHECK CODE ALL PERFORM ANALYSIS PRINT ANALYSIS RESULTS **** FINISH ****
Page 94
A.4
STAAD. Pro INPUT FILE LIFTING DESIGN
STAAD SPACE START JOB INFORMATION ENGINEER DATE 5-Jan-15 JOB NAME Master Thesis Spring 2015 JOB CLIENT Universiy of Stavanger ENGINEER NAME Gholam Sakhi Sakha END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 9.5 0; 3 10 9.5 0; 4 10 0 0; 5 0 0 5.5; 6 0 9.5 5.5; 7 10 9.5 5.5; 8 10 0 5.5; 9 0 4.75 5.5; 10 10 4.75 5.5; 11 0 4.75 0; 12 10 4.75 0; 13 5 9.5 5.5; 14 5 4.75 5.5; 15 5 0 5.5; 16 5 9.5 0; 17 5 4.75 0; 18 5 0 0; 19 2 9.5 0; 20 2 9.5 5.5; 21 4 9.5 0; 22 4 9.5 5.5; 23 6 9.5 0; 24 6 9.5 5.5; 25 8 9.5 0; 26 8 9.5 5.5; 43 0 9.5 2.75; 44 10 9.5 2.75; 45 2 9.5 2.75; 46 4 9.5 2.75; 47 6 9.5 2.75; 48 8 9.5 2.75; 63 1.429 0 0; 64 1.429 0 5.5; 65 2.858 0 0; 66 2.858 0 5.5; 67 4.287 0 0; 68 4.287 0 5.5; 69 5.716 0 0; 70 5.716 0 5.5; 71 7.145 0 0; 72 7.145 0 5.5; 73 8.574 0 0; 74 8.574 0 5.5; 75 0 0 2.75; 76 1.429 0 2.75; 77 2.858 0 2.75; 78 4.287 0 2.75; 79 5.716 0 2.75; 80 7.145 0 2.75; 81 8.574 0 2.75; 82 10 0 2.75; 83 1.429 4.75 5.5; 84 1.429 4.75 0; 85 2.858 4.75 5.5; 86 2.858 4.75 0; 87 4.287 4.75 5.5; 88 4.287 4.75 0; 89 5.716 4.75 5.5; 90 5.716 4.75 0; 91 7.145 4.75 5.5; 92 7.145 4.75 0; 93 8.574 4.75 5.5; 94 8.574 4.75 0; 95 10 4.75 2.75; 96 0 4.75 2.75; 97 1.429 4.75 2.75; 98 2.858 4.75 2.75; 99 4.287 4.75 2.75; 100 5.716 4.75 2.75; 101 7.145 4.75 2.75; 102 8.574 4.75 2.75; 128 0 0 -0.5; 129 10 0 -0.5; 130 0 9.5 -0.5; 131 10 9.5 -0.5; 132 3 9.5 0; 133 3 9.5 5.5; 134 7 9.5 0; 135 7 9.5 5.5; 136 9 9.5 0; 137 9 9.5 5.5; 138 3 9.5 2.75; 139 5 9.5 2.75; 140 7 9.5 2.75; 141 9 9.5 2.75; 142 1 9.5 0; 143 1 9.5 5.5; 144 1 9.5 2.75; 145 5 25 2.81; 146 0 7.125 0; 147 10 7.125 0; MEMBER INCIDENCES 1 1 11; 2 2 142; 4 5 9; 5 6 143; 6 7 10; 7 2 43; 8 3 44; 13 9 6; 14 10 8; 17 12 4; 21 13 24; 23 14 13; 25 15 14; 26 16 23; 28 17 16; 30 18 17; 31 19 132; 32 20 133; 33 19 45; 34 21 16; 35 22 13; 36 21 46; 37 23 134; 38 24 135; 39 23 47; 40 25 136; 41 26 137; 42 25 48; 67 43 6; 68 44 7; 73 43 144; 74 45 138; 75 46 139; 76 47 140; 77 48 141; 116 5 64; 117 15 70; 119 18 69; 120 1 63; 121 63 65; 122 64 66; 124 65 67; 125 66 68; 127 67 18; 128 68 15; 130 69 71; 131 70 72; 133 71 73; 134 72 74; 136 73 4; 138 1 75; 145 4 82; 146 75 5; 153 82 8; 154 75 76; 155 76 77; 156 77 78; 157 78 79; 158 79 80; 159 80 81; 160 81 82; 161 74 8; 162 11 84; 163 17 90; 164 12 95; 165 10 93;
Page 95
166 14 87; 167 9 96; 168 83 9; 169 84 86; 171 85 83; 172 86 88; 174 87 85; 175 88 17; 177 89 14; 178 90 92; 180 91 89; 181 92 94; 183 93 91; 184 94 12; 186 95 10; 194 96 97; 195 97 98; 196 98 99; 197 99 100; 198 100 101; 199 101 102; 200 102 95; 256 96 11; 269 20 45; 270 22 46; 271 24 47; 272 26 48; 273 128 1; 274 129 4; 275 130 2; 276 131 3; 301 132 21; 302 133 22; 303 134 25; 304 135 26; 305 136 3; 306 137 7; 307 138 46; 308 139 47; 309 140 48; 310 141 44; 311 132 138; 312 16 139; 313 134 140; 314 136 141; 315 133 138; 316 13 139; 317 135 140; 318 137 141; 319 142 19; 320 143 20; 321 144 45; 322 142 144; 323 143 144; 372 97 84; 373 97 83; 374 98 86; 375 98 85; 376 99 88; 377 99 87; 378 100 90; 379 100 89; 380 101 92; 381 101 91; 382 102 94; 383 102 93; 384 76 63; 385 76 64; 386 77 65; 387 77 66; 388 78 67; 389 78 68; 390 79 69; 391 79 70; 392 80 71; 393 80 72; 394 81 73; 395 81 74; 447 14 7; 449 9 2; 454 14 6; 455 15 10; 456 15 9; 458 5 11; 459 3 10; 460 12 8; 461 11 146; 462 12 147; 463 6 145; 464 2 145; 465 3 145; 466 7 145; 467 146 2; 468 147 3; 469 146 142; 470 147 136; 471 145 139; ELEMENT INCIDENCES SHELL 396 2 142 144 43; 397 142 19 45 144; 398 19 132 138 45; 399 132 21 46 138; 400 21 16 139 46; 401 16 23 47 139; 402 23 134 140 47; 403 134 25 48 140; 404 25 136 141 48; 405 136 3 44 141; 406 43 144 143 6; 407 144 45 20 143; 408 45 138 133 20; 409 138 46 22 133; 410 46 139 13 22; 411 139 47 24 13; 412 47 140 135 24; 413 140 48 26 135; 414 48 141 137 26; 415 141 44 7 137; 416 11 84 97 96; 417 84 86 98 97; 418 86 88 99 98; 419 88 90 100 99; 420 90 92 101 100; 421 92 94 102 101; 422 94 12 95 102; 423 96 97 83 9; 424 97 98 85 83; 425 98 99 87 85; 426 99 100 89 87; 427 100 101 91 89; 428 101 102 93 91; 429 102 95 10 93; 430 1 63 76 75; 431 63 65 77 76; 432 65 67 78 77; 433 67 69 79 78; 434 69 71 80 79; 435 71 73 81 80; 436 73 4 82 81; 437 75 76 64 5; 438 76 77 66 64; 439 77 78 68 66; 440 78 79 70 68; 441 79 80 72 70; 442 80 81 74 72; 443 81 82 8 74; *** START GROUP DEFINITION MEMBER _1.25 2 5 TO 8 13 67 68 275 276 305 306 461 462 467 TO 470 _1.15 21 23 26 28 31 TO 42 73 TO 77 269 TO 272 301 TO 304 307 TO 323 447 449 454 459 _1.00 1 4 14 17 25 30 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 273 274 276 372 TO 395 455 456 458 460 END GROUP DEFINITION *** ELEMENT PROPERTY
Page 96
396 TO 443 THICKNESS 0.01 *** DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 78.5 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL MEMBER PROPERTY EUROPEAN 1 17 461 462 467 468 TABLE ST TUB30030016 447 454 TO 456 TABLE ST TUB1201206 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 161 162 TO 169 171 172 174 175 177 178 180 181 183 184 186 256 TABLE ST HE240B 73 TO 77 154 TO 160 194 TO 200 307 TO 310 321 TABLE ST HE140A 372 TO 395 TABLE ST HE220B 275 276 TABLE ST TUB30030016 273 274 TABLE ST TUB1601606 2 5 7 8 21 26 31 TO 42 67 68 269 TO 272 301 TO 306 311 TO 320 322 323 TABLE ST TUB25025016 463 TO 466 471 TABLE ST PIPE OD 0.15 ID 0.05 23 25 28 30 469 470 TABLE ST TUB12012010 4 6 13 14 TABLE ST TUB2502508 449 458 TO 460 TABLE ST TUB1401408 CONSTANTS MATERIAL STEEL ALL ************************************* * SYETEM GENERATED SELF WEIGHT * ************************************* MEMBER RELEASE 447 START MY 447 END MY 449 START MY 449 END MY 454 START MY 454 END MY 455 START MY 455 END MY 456 START MY
Page 97
456 END MY 458 START MY 458 END MY 459 START MY 459 END MY 460 START MY 460 END MY 463 START MX MY MZ 466 START MX MY MZ 465 START MX MY MZ 464 START MX MY MZ SUPPORTS 145 FIXED LOAD 1 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT - Y SELFWEIGHT Y -1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 11 LOADTYPE Dead TITLE SYSTEM GENERATED SELFWEIGHT + X SELFWEIGHT X 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 21 LOADTYPE Dead TITLE SYSTEM GENERATED SELF WEIGHT + Z SELFWEIGHT Z 1.1 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 2 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL - Y SELFWEIGHT Y -0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 12 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + X SELFWEIGHT X 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 22 LOADTYPE Dead TITLE SECONDRY/OUTFITTING STEEL + Z SELFWEIGHT Z 0.25 LIST 1 2 4 TO 8 13 14 17 21 23 25 26 28 30 TO 42 67 68 73 -
Page 98
74 TO 77 116 117 119 TO 122 124 125 127 128 130 131 133 134 136 138 145 146 153 TO 169 171 172 174 175 177 178 180 181 183 184 186 194 TO 200 256 269 270 TO 276 301 TO 323 372 TO 443 447 449 454 TO 456 458 TO 471 LOAD 3 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT - Y MEMBER LOAD 372 TO 395 UNI GY -8.829 0 1 LOAD 13 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + X MEMBER LOAD 372 TO 395 UNI GX 8.829 0 1 LOAD 23 LOADTYPE Dead TITLE DEAD WEIGHT EQUIPMENT + Z MEMBER LOAD 372 TO 395 UNI GZ 8.829 0 1
***************************** *LOAD COMBINATION ULS-A * ***************************** LOAD COMB 511 LIFT ANALYSIS GAMMAC = 1.25 1 3.5186 2 3.5186 3 3.5186 LOAD COMB 512 LIFT ANALYSIS GAMMAC = 1.10 1 3.1 2 3.1 3 3.1 LOAD COMB 513 LIFT ANALYSIS GAMMAC = 1.00 1 2.8149 2 2.8149 3 2.8149 PERFORM ANALYSIS PRINT STATICS CHECK *** LOAD LIST 511 PARAMETER 1 CODE EC3 BEAM 1 MEMB _1.25 GM0 1.15 MEMB _1.25 TRACK 0 MEMB _1.25 PY 355000 MEMB _1.25 CHECK CODE MEMB _1.25 PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** LOAD LIST 512 PARAMETER 2 CODE EC3 BEAM 1 MEMB _1.15
Page 99
GM0 1.15 MEMB _1.15 TRACK 0 MEMB _1.15 PY 355000 MEMB _1.15 CHECK CODE MEMB _1.15 PERFORM ANALYSIS PRINT ANALYSIS RESULTS *** LOAD LIST 513 PARAMETER 3 CODE EC3 BEAM 1 MEMB _1.00 GM0 1.15 MEMB _1.00 TRACK 0 MEMB _1.00 PY 355000 MEMB _1.00 CHECK CODE MEMB _1.00 PERFORM ANALYSIS PRINT ANALYSIS RESULTS FINISH
Page 100
A.5 A.5.1 A.5.2
STAAD. Pro OUTPUT FILE ANALYSIS INPLACE DESIGN Utilization table, reaction summary and displacement summary Inplace, ULS-a/b wind, LC101-115
Page 101
Page 102
Page 103
Page 104
Page 105
Page 106
Page 107
Page 108
Page 109
Page 110
Page 111
A.5.1.2
Inplace, earthquake ULS-a/b, LC121-158
Page 112
Page 113
Page 114
Page 115
Page 116
Page 117
A.5.1.3
Inplace, earthquake,(ALS), LC161-178
Page 118
Page 119
Page 120
Page 121
Page 122
Page 123
A.5.1.4
Explosion loads inplace LC 311-312
Page 124
Page 125
Page 126
Page 127
Page 128
A.5.1.5
Fire action inplace (ALS) LC 411
Page 129
Page 130
Page 131
Page 132
Page 133
A.5.1.6
Transport, ULS-a/b, LC181-198
Page 134
Page 135
Page 136
Page 137
Page 138
Page 139
A.5.1.7
Transport, ULS-b, LC 201-218
Page 140
Page 141
Page 142
Page 143
Page 144
Page 145
A.5.1.8
Lift, ULS-a, LC511, LC 512, LC 513
Page 146
Page 147
Page 148
Page 149
Page 150
APENDIX B
LAYDOWN LOADS CALCULATION STATIC WIND LOAD CALCULATION EARTHQUAKE ACCELERATION CALCULATION BARGE ACCELERATION CALCULATION VARIABLE FUNCTIONAL LOADS CALCULATION COMBINATION ACTIONS TABLE
Page 151
B.1
LAYDOWN LOAD CALCULATION
Page 152
B.2
STATIC WIND CALCULATION
Page 153
Page 154
B.3
EARTHQUAKE ACCELERATION CALCULATION
Page 155
Page 156
Page 157
B.4
BARGE ACCELERATION CALCULATION
Page 158
Page 159
Page 160
B.5
VARIABLE FUNCTIONAL LOADS
Page 161
Page 162
B.6
COMBINATION ACTIONS TABLE
Wind load combination ULS-a/b Table B.4.1
wind load combination
Earthquake action 100 year Table B.4.2
earthquake action combination ULS-a
Page 163
Table.B.4.3
earthquake action combination ULS-b
Earthquake action 10000 year ALS
Table B.4.4
earthquake action combination
Page 164
Barge acceleration action
Table.B.4.5
barge acceleration action ULS-a
Table B.4.6
barge acceleration action ULS-b
Page 165
APENDIX.C
DROPPED OBJECT IMPACT LOAD CALCULATION
EXPLOSION LOADS CALCULATION
FIRE LOADS CALCULATION
Page 166
C.1
DROPPED OBJECT IMPACT LOAD CALCULATION
Page 167
Page 168
Page 169
Page 170
Page 171
Page 172
Page 173
C.2
EXPLOSION LOADS CALCULATION
Page 174
C.3
FIRE LOADS DESIGN CALCULATION CHE CK
Page 175
Page 176
Page 177
Page 178
Page 179
Page 180
Page 181
Page 182
Page 183
APENDIX D
CALCULATION AND DESIGN CHECK OF PAD EYES
Page 184
D.1
CALCULATION AND DESIGN CHECK OF PAD EYES
Page 185
Page 186
Page 187
Page 188
Page 189
Page 190
Page 191
Page 192
Page 193
Page 194
Page 195
APENDIX E
DESIGN CHECK OF BOLTS AND WELDED CONNECTION
Page 196
E.1
DESING CHECK OF BOLTS AND WELDS CONNECTION
Page 197
Page 198
Page 199
Page 200
Page 201
Page 202
Page 203
Page 204
Page 205
Page 206
Page 207
HSS BIM Solutions Pvt Ltd (A unit of HSS group of companies)
SD SD 100 X10 0X1 0
D DS 0S 0X1 X10 100
ISA
ISA
Modified Members
Modified Member
SD SD 100 X10 0X1 0
D DS 0S 0X1 X10 100
ISA
ISA
Modified Members
Modified Member
SD SD 100 X10 0X1 0
D DS 0S 0X1 X10 100
ISA
ISA
Modified Members
Modified Member
BUILDING INFORMATION MODELING What is BIM? Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle; defined as existing from earliest conception to demolition. Building information modeling extends this beyond 3D, augmenting the three primary spatial dimensions (width, height and depth - X, Y and Z) with time as the fourth dimension and cost as the fifth. BIM therefore covers more than just geometry. It also covers spatial relationships, light analysis, geographic information,
BIM OUTPUTS
and quantities and properties of building components.
3D MODEL AND COLLISION DETECTION Clash detection enables the effective identification, inspection, and reporting of interferences in the composite project model. Clash detection can be used as a one-time sanity check for completed design work or as part of an ongoing project audit and quality control process.
ACCURATE BOQ BIM models can be used to accurate generate quantitytakeoffs and assist in the creation of cost estimates throughout the lifecycle of a project. Using BIM models in this manner enables the project team to see the cost effects of their design decisions and proposed changes during all phases of the project, and this feedback supports better design decision-making and can help curb excessive budget overruns due to project modifications.
HSS BIM Solutions Pvt Ltd
www.hssbim.com
BUILDING INFORMATION MODELING CONSTRUCTION SIMULATION The ability to forecast and anticipate problems before they occur is essential for effective project management. Traditional scheduling methods do not address the spatial aspect to the construction activities nor are they directly linked to a design or building model. Traditional bar charts or Critical Path Method network diagrams can be difficult to understand or interpret. Having the ability to watch the elementsof a design come together onscreen gives the design and construction team improved accuracy in construction
sequencing.
Week 8
Week 10
Week 12
MARKETING PRESENTATION
D
AS BUILT MODEL Tracking and maintaining life cycle information about the building structure (wall, floors, roof, etc.) as well as the equipment serving the building mechanical, electrical, plumbing, etc.) to plan and schedule a program of maintenance activities that will improve building performance, reduce repairs, and reduce overall maintenance costs.
OUR SERVICES BIM SOLUTION BIM Solutions has a compiled a list of services for the most pressing needs of companies in our industry across several disciplines. We also have the ability to make a customized match of our capabilities to the needs of your organization.
BIM IMPLEMENTATION We start out by assisting you in creating your firm's BIM Technology Implementation Plan, making sure we have the support of the Principals and upper management. The Technology Implementation Plan is our guide throughout the transition process and will help us assign the appropriate Expert Team Member(s) to meet your firm's goals.
BIM TRAINING We understand that making the shift to BIM requires a resource that is knowledgeable and available for consultation. We have mentors on-staff that are available to participate in on-site and online sessions to get you over hurdles.
BIM CONTENT CREATION Revit Families are pre-made, precision engineered reusable objects compiled with similar parameters and visual graphical representations that can be organized into the same class or group. These families are very useful for the firms who always search for custom or manufacturer specific content.
HSS BIM Solutions Pvt Ltd
www.hssbim.com
India HSS BIM Solutions Pvt Ltd
3rd Floor, Ganesh Tower, B-1 ,1st Avenue, 100 Ft Road, Ashok Nagar, Chennai - 600083, Tamil Nadu, India.
Tel : + 91 44 49181100(100 lines)
GROUP OF COMPANIES HSS ENGINEERING SDN BHD TOTAL ENGINEERING SERVICES
HSS INTEGRATED SDN BHD ENGINEERING CONSULTANCY SERVICES
Fax : + 91 44 49181199
HSS PROJECTS SDN BHD
Mob: + 91 9444918325 Mail:
[email protected]
HSS PROJECT MANAGEMENT SDN BHD
TURNKEY CONTRACTORS
PROJECT / CONSTRUCTION MANAGEMENT
Malaysia BIM GLOBAL VENTURES SDN BHD
B-1 (1-4) Block B, Plaza Dwitasik, No. 21, Jalan 5/106, Bandar Sri Permaisuri, 56000 Kuala Lumpur,Malaysia Mail:
[email protected] UAE ConsultantHSS P.O Box: 183921, Dubai, U.A.E. Mail:
[email protected] Singapore HSS BIM Global Pte Ltd 77A, Boat Quay, Singapore 049865 Tel : +65 63272490 Fax: +65 63272465 Mail:
[email protected]
Partner
HSS URUS HARTA SDN BHD FACILITIES MANAGEMENT
HSS INTESYS SDN BHD ENGINEERING IT SERVICES
HSS MEKANIKAL & ELEKTRIKAL SDN BHD
Typical Steel Connections Dr. Seshu Adluri
Introduction Steel
Connections
Many
configurations are used for force transfer in connections. The configuration depends upon the type of connecting elements, nature and magnitude of the forces (and moments), available equipment, fabrication and erection considerations, cost, etc. Steel Connections -Dr. Seshu Adluri
Rivets
Steel Connections -Dr. Seshu Adluri
Bolts
Steel Connections -Dr. Seshu Adluri
Connections
Many types based on function
Beam-to-Beam
Connections
Beam-to-Column Connections
Column-to-Column Connections
Column Base Plates
Pocket Beam
Gusset plate connections (truss type, frame type, bracings, …)
Splices (cover plates, …)
Steel Connections -Dr. Seshu Adluri
Cover plates
Steel Connections -Dr. Seshu Adluri
Cover plates
Steel Connections -Dr. Seshu Adluri
Column splice
Steel Connections -Dr. Seshu Adluri
Gusset plate connections
Steel Connections -Dr. Seshu Adluri
Gusset plate connections
Steel Connections -Dr. Seshu Adluri
Force dispersion to gusset plates
Steel Connections -Dr. Seshu Adluri
Steel Framing Connections
Framed Connections Bolts only in web, not the flanges
Transmits only shear
Not bending moment
Accomplished with
clip angles & bolts/welds
Moment Connections Transmit shear & moment
Flanges must be connected
Bolt/Weld Flanges
May require column stiffeners
Steel Connections -Dr. Seshu Adluri
Framed connections
Only shear transfer
Equivalent
to pinned end for the beam
No moment at the beam end
Rotation is freely (?) allowed
Steel Connections -Dr. Seshu Adluri
Framed connections
End reaction only
Web
of the beam is connected
No connection for the flanges
Steel Connections -Dr. Seshu Adluri
Transfer of shear force in frames
Steel Connections -Dr. Seshu Adluri
Beam-to-beam connections
Steel Connections -Dr. Seshu Adluri
Beam-to-beam connections
Steel Connections -Dr. Seshu Adluri
Beam-to-column connections
Steel Connections -Dr. Seshu Adluri
Beam-tocolumn connections
Steel Connections -Dr. Seshu Adluri
Beam to column joints
Steel Connections -Dr. Seshu Adluri
Beam to column joints
Steel Connections -Dr. Seshu Adluri
Beam to column joints
Steel Connections -Dr. Seshu Adluri
Beam to column joints
Steel Connections -Dr. Seshu Adluri
Beam-to-column connections
Steel Connections -Dr. Seshu Adluri
Beam-to-column connections
Steel Connections -Dr. Seshu Adluri
Beam-tocolumn connections
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Beam Column
Bending moment from the beam
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
The bending moment of the beam is primarily taken by the flanges in the form of tension and compression forces
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Steel Connections -Dr. Seshu Adluri
Beam-to-column connections
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Stiffener plates are used to ‘shore up’ the column flanges against the forces transmitted by the beam flanges. The stiffeners may be full length or may extend only part of the column web depth.
Steel Connections -Dr. Seshu Adluri
Beam plate buckling Beam flange local buckling
Beam web crippling
Steel Connections -Dr. Seshu Adluri
Beam plate buckling Beam web local yielding
Beam web buckling (look closely) Steel Connections -Dr. Seshu Adluri
Concentrated forces on webs
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Steel Connections -Dr. Seshu Adluri
Beam to Column Semi-Rigid Joints
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Stiffener plates are used to ‘shore up’ the column flanges against the forces transmitted by the beam flanges. The stiffeners may be full length or may extend only part of the column web depth.
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints The bending moment of the beam is primarily taken by the flanges in the form of tension and compression forces The bending moment of the column is also resolved as a force couple
Beam
Column
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Stiffeners help in distributing the forces in the connection zone and in avoiding local rupture, crushing or buckling of the beam web.
Beam
Column
Steel Connections -Dr. Seshu Adluri
Beam to Column Rigid Joints
Steel Connections -Dr. Seshu Adluri
Beam Splices
Steel Connections -Dr. Seshu Adluri
Beam Splices
Steel Connections -Dr. Seshu Adluri
Column Splices
Steel Connections -Dr. Seshu Adluri
Column Splices
Steel Connections -Dr. Seshu Adluri
Connections for Bents (Eves)
Steel Connections -Dr. Seshu Adluri
Connections for Bents (Eves)
Steel Connections -Dr. Seshu Adluri
Connections in frames
Steel Connections -Dr. Seshu Adluri
Bracing Connections in frames
Steel Connections -Dr. Seshu Adluri
Column Bases
Steel Connections -Dr. Seshu Adluri
Column Base Anchors
Steel Connections -Dr. Seshu Adluri
Beam-to-wall connections
Steel Connections -Dr. Seshu Adluri
Beam-to-wall connections
Steel Connections -Dr. Seshu Adluri
References
Many pictures in this file are taken from various sources such as CISC, AISC, etc. The copyrights for those materials are with the original sources. No copyright is claimed or implied by Dr. Seshu Adluri for things that are already under copyright protection. This file is for teaching purposes.
Steel Connections -Dr. Seshu Adluri