Chapter 12 Harmonic Oscillators Definition: Electronic Oscillators = Electronic circuits that produces repetitive signals. Observations: 1. They transform DC energy into AC energy 2. According to output signal, the electronic oscillators are divided into two major classes: •harmonic oscillators - sinusoidal output; •relaxation oscillators – non-sinusoidal output.
Lucian Balut
1
Chapter 12 Harmonic Oscillators 12.1 Preliminary 12.1.1 Classification 12.1.2 Principle of Operation. Barkhausen Relationship 12.2 RC Oscillators 12.2.1 Wien Oscillators 12.2.2 Phase Shift Oscillators 12.3 LC Oscillators 12.3.1 Hartley Oscillators (inductive feedback) 12.3.2 Colpitts Oscillators (capacitive feedback) 12.4 Cristal Oscillators 12.4.1 Quartz 12.4.2 Pierce Oscillator Lucian Balut
2
Harmonic Oscillators
12.1 Preliminary 12.1.1 Classification
Principal Characteristics: •Oscillation frequency; •The amplitude of the oscillation; •Oscillation condition; •Degree of distortion; •Amplitude stability; •Frequency stability. Principal problems: •Condition of priming oscillations; •Oscillation frequency evaluation; •Oscillation amplitude evaluation; •Distortion factor evaluation.
Lucian Balut
3
Harmonic Oscillators
12.1 Preliminary 12.1.1 Classification
The main classes of oscillators are defined by: - reactive type of elements contained in the structure; - frequency range of operation. According to reactive type of elements contained in the structure the oscillators are divided into: •RC oscillators; •LC oscillators. •Cristal oscillators According to frequency range of operation •Audio frequency; •Radio frequency; •Microwave.
Lucian Balut
4
Harmonic Oscillators 12.1 Preliminary 12.1.2 Principle of Operation. Barkhausen Criterion Xi 0
a.) Block Diagram
X
b.) Notation
+
Xi Xo Xε Xf
a-
f
- input signal - output signal - error signal - feedback signal
X0
Xf
Xo +
a
f
- transfer function of the basic amplifier
X
Xf
- transfer function of the feedback network
Xo
Lucian Balut
5
Harmonic Oscillators 12.1 Preliminary 12.1.2 Principle of Operation. Barkhausen Criterion c.) Barkhausen Criterion Xi 0
Problem:
X +
Find the relationship between a and f if Xo ≠ 0 and Xi = 0
Xf
Xo +
a
f
Solution: Let it be: A
X0 Xi
- transfer factor of the amplifier (with feedback)
A
X0 Xi
A
Xi 0 Lucian Balut
6
Harmonic Oscillators 12.1 Preliminary 12.1.2 Principle of Operation. Barkhausen Criterion c.) Barkhausen Criterion Observation:
Xi 0 Xo 0
Xi 0
X
A
+
X Xi Xf
+
Xf
A Calculus
Xo
a
Xi Xf X
A
f
X0 Xi
A
X0 X X f
1 X Xo
Lucian Balut
Xf Xo
1 1 f a
a 1 af
7
Oscilatoare armonice 12.1 Preliminary 12.1.2 Principle of Operation. Barkhausen Criterion c.) Barkhausen Criterion (cont.) Xi 0
X +
A A
a 1 af
Xf
af 1
Xo +
a
f
a a exp ja
a f 1
f f exp jf
a f 2k
Amplitude condition kZ
Phase condition
af 1
Lucian Balut
8
Harmonic Oscillators
12.1 Preliminary 12.1.2 Principle of Operation. Barkhausen Criterion c.) Barkhausen Criterion (cont.)
af 1
Observations
a f 1 a f 2k
Amplitude condition kZ
Phase condition
- The minimum value of the amplifier gain in order to start-up oscillation may be evaluated using the amplitude condition. - The frequency of oscillation may be evaluated using phase condition.
Lucian Balut
9
12.2 RC Oscillators
Harmonic Oscillators
They are used in low frequency range. Only two types of RC oscillators are presented: - Wien Oscillators - Phase Shift Oscillators
Lucian Balut
10
Harmonic Oscillators 12.2 RC Oscillators 12.2.1 Wien Oscillators a.) circuit b.) parts duties R1 , R2 , C 1 , C2
Wien network
c.) circuit analysis Problems: •Oscillation frequency evaluation; •Amplifier gain evaluation. Simplification - the basic amplifier is an ideal amplifier, thus: •Input impedance very high; •Output impedance very low; •Voltage gain av is real.
Lucian Balut
11
Harmonic Oscillators 12.2 RC Oscillators 12.2.1 Wien Oscillators c.) circuit analysis - Barkhausen criterion is used: R1 fv evaluation
C2
Vt
f v ( j )
Vo Vt
C1
R2
Vo
1
1
R1 C2 1 j R 1C 2 R 2 C1 R 2 C1
Lucian Balut
12
Harmonic Oscillators 12.2 RC Oscillators 12.2.1 Wien Oscillators c.) circuit analysis Calculul frecventei de oscilatie
f v ( j )
Vo Vt
1
1
a v f v ( josc ) 1
R1 C2 1 j R 1C 2 R 2 C1 R 2 C1
fv (jωosc) is real
f osc
oscR 1C 2
1 2 R 1R 2C1C 2
R1 R 2 R
1 0 oscR 2 C1
f osc
osc
1 R1R 2C1C2
1 2RC
C1 C2 C
Lucian Balut
13
Harmonic Oscillators 12.2 RC Oscillators 12.2.1 Wien Oscillators c.) circuit analysis av Evaluation f v ( josc )
1 1
R1 R 2 R
R1 C2 R 2 C1
f v ( josc )
1 3
C1 C2 C
a v f v ( josc ) 1 1 f v ( josc ) 3
av 3
Lucian Balut
Harmonic Oscillators 12.2 RC Oscillators 12.2.1 Wien Oscillators d.) example
C
d1). circuit
+EC R1
RC1
r
RC2
C1 T1 C2
R2
T2
T 3 CO
RE1 RE
CE RE2
RL
Vo
d2). parts duties; R1 , C1 , R2 , C2
(Wien network)
Lucian Balut
15
Harmonic Oscillators
12.2 RC Oscillators 12.2.2 Phase Shift Oscillators Observation: Two types of phase shift network +
Vt
+
C R
-
Vo
High pass network
Vt
R C
-
Vo
Low pass network
Observation Only phase shift oscillator with high-pass network will be presented
Lucian Balut
16
Harmonic Oscillators
12.2 RC Oscillators 12.2.2 Phase Shift Oscillators a.) circuit
b.) parts duties R, C feedback network
Lucian Balut
17
Harmonic Oscillators
12.2 RC Oscillators 12.2.2 Phase Shift Oscillators c.) circuit analysis Problems: •Oscillation frequency evaluation; •Amplifier gain evaluation.
Simplification - the basic amplifier is an ideal amplifier, thus: •Input impedance very high; •Output impedance very low; •Voltage gain av is real.
Lucian Balut
18
Harmonic Oscillators
12.2 RC Oscillators 12.2.2 Phase Shift Oscillators
I1 C
c.) circuit analysis fv Evaluation
+
Vt
I2 C
I3 C
I4
I5
R
R
-
R
Vo
I1 I 4 I 2
I 2 I3 I5 Vt I1
1 I4R jC
1 I5 R I 4 R jC 1 0 I3 I3R I5 R jC Vo I3R 0 I2
f v ( j )
Vo Vt
1 180 1 6 1 2 2 2 j 3 3 3 R C R C RC
Lucian Balut
19
Harmonic Oscillators
12.2 RC Oscillators 12.2.2 Phase Shift Oscillators
I1 C
c.) circuit analysis
+
Vo
1 f v ( j ) 180 1 6 Vt 1 2 2 2 j 3 3 3 R C R C RC
a v f v ( josc ) 1
fv (jωosc) is real
0
Vt
I2 C
I3 C
I4
I5
R
R
R
-
1 6 osc3R 3C3 oscRC
osc
Vo
1 6RC
av evaluation f v ( josc )
1 180 1 2 R 2C2 osc 1 osc 6RC
f v (osc )
1 29
a v 29
Lucian Balut
20
Harmonic Oscillators
12.2 RC Oscillators 12.2.2 Phase Shift Oscillators d.) example +EC R1
RC T2
C1
C
C
C
T1
R2
RE
RO
R
R
R
Lucian Balut
vO
21
12.3 LC Oscillators
Harmonic Oscillators
They are used in radio frequency range. presented:
Only two types of LC oscillators are
- Hartley Oscillators (inductive feedback) - Colpitts Oscillators (capacitive feedback)
Lucian Balut
22
12.3 LC Oscillators
Harmonic Oscillators
12.3.1 Hartley Oscillators (inductive feedback) a.) circuit b.) parts duties Rp resistance loss of the oscillating circuit C, L1, L2 feedback network. c.) circuit analysis Barkhausen criterion will be used. The feedback network will be cut. A voltage test Vt source will be introduced at the amplifier input. The output signal Vf will be picked from the feedback network output. Barkhausen criterion leads to:
Vt V f V V t
f
Lucian Balut
23
12.3 LC Oscillators
Harmonic Oscillators
12.3.1 Hartley Oscillators (inductive feedback) c.) circuit analysis (cont.)
Hartley Oscillator
Hartley Oscillator – mesh cut
24
12.3 LC Oscillators
Harmonic Oscillators
12.3.1 Hartley Oscillators (inductive feedback) c.) circuit analysis (cont.)
V f aY Vt Z e
L2 L1 L2
1 1 1 jC Ze Rp j ( L1 L2 ) V f aY Vt
jR p ( L1 L2 )
L2 R p 1 2C ( L1 L2 ) j ( L1 L2 ) L1 L2
Hartley Oscillator – mesh cut
Tacking into account that the shift frequency of the amplifier is 1800, one can say:
aY aY
Vt V f
V f aY Vt
jRp ( L1 L2 )
L2 Rp 1 2C ( L1 L2 ) j ( L1 L2 ) L1 L2
1 2C(L1 L2 ) 0
osc
1 ( L1 L2 )C
Vf a Y Vt R p
L2 L1 L 2 25
12.3 LC Oscillators
Harmonic Oscillators
12.3.1 Hartley Oscillators (inductive feedback) d.) example Where: •RB1. RB2. RE
+EC
bias network
RB1
C
RL
L1
•L1, L2
inductive divider
•RL
load
• CE
coupling capacitor
CE L2
RE
T RB2
CB
Hartley oscillator
26
12.3 LC Oscillators
Harmonic Oscillators
12.3.2 Colpitts Oscillators (capacitive feedback) a.) circuit
b.) parts duties Rp resistance loss of the oscillating circuit. L, C1, C2 feedback network.
27
12.3 LC Oscillators
Harmonic Oscillators
12.3.2 Colpitts Oscillators (capacitive feedback) c.) circuit analysis
Colpitts Oscillator
Colpitts Oscillator – mesh cut
28
12.3 LC Oscillators
Harmonic Oscillators
12.3.2 Colpitts Oscillators (capacitive feedback) c.) circuit analysis (cont.) V f aY Vt Z e
C1 C1 C2
1 1 CC 1 j 1 2 Ze Rp C1 C2 jL
jRp L
V f aY Vt
C1 C1 C2
CC Colpitts Oscillator – mesh cut Rp 1 2 1 2 L jL C1 C2 Tacking into account that the shift frequency of the amplifier is 1800, one can say:
aY aY
Vt V f
V f aY Vt
jRp L CC Rp 1 2 1 2 C1 C2
C1C 2 1 L0 C1 C 2 2
L jL
osc
C1 C1 C2
1 CC L 1 2 C1 C2
Vf a Y Vt R p
C1 C1 C 2 29
12.3 LC Oscillators
Harmonic Oscillators
12.3.2 Colpitts Oscillators (capacitive feedback) d.) example C1 L C2
RL
Colpitts oscillator - common base
Harmonic Oscillators
12.4 Cristal Oscillators
Previous subsections showed that RC-type cells or LC-type cells were used as resonant circuits. But it must be said that the quality factor (Q) of such circuits are relatively low, leading to low stability of the frequency oscillation. One of the methods used to improve the frequency stability of the oscillating circuit is to use quartz crystal.
+
Figura 12.16
Figura 12.17
Figura 12.18
Common quartz oscillator configurations
Harmonic Oscillators
12.4 Cristal Oscillators
.Observation: According to rules controlling the oscillation frequency and its stability, the literature reveals four subclasses oscillators also:
•Crystal Oscillator XO; also called timer or clock; The simplest oscillator (); stability ± 10 ppm. •Voltage Controlled Crystal Oscillator VCXO; stability ± 10 ppm •Temperature Compensated Crystal Oscillator TCXO; stability ± 1÷5 ppm •Oven Controlled Cystal Oscillator OCXO; stability ± 1 ppm .
There are also two other types: •Digitally Compensated Crystal Oscillators DCXO). •Microcomputer Compensated Crystal Oscillator MCXO).
Harmonic Oscillators
12.4 Cristal Oscillators 12.4.1 Quartz Crystal
R Cp
Cs L
Equivalent circuit
Equivalent impedance
s
1 LC s
1
p L
C sC p Cs Cp
Harmonic Oscillators
12.4 Cristal Oscillators
12.4.2 Oscilator Pierce EC
a.) circuit R1
LC
CC
X
R2
b.) parts duties R1 , R2 RE CE LC, CC X, C1
bias divider; thermal stability; decoupling capacitor; oscillating circuit; feedback.
C1
RE
CE
Harmonic Oscillators
12.4 Cristal Oscillators
12.4.2 Oscilator Pierce 1 1 Z X R jL jC s jC p
c.) circuit analysis EC
R1
LC
CC
X
R2
C1
RE
CE
Z B R1 R2
Pierce Oscillator
1 r jC1
Z LC jL C
1 jC C
Pierce Oscillator – equivalent circuit
Harmonic Oscillators
12.4 Cristal Oscillators
12.4.2 Oscilator Pierce c.) circuit analysis
Pierce Oscillator – equivalent circuit
VB g mU t Z LC Z x Z B
Z
ZB B
ZX
Pierce Oscillator - mesh cut
g m Z LC Z x Z B
Z
ZB B
ZX
Developing of these relationships determine the oscillation frequency and priming condition
1