Graphing Summer School

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Graphing Summer School as PDF for free.

More details

  • Words: 1,138
  • Pages: 28
Functions and Their Properties Restricted Domains 1. y =- 4x - 3 2. y = √(4x - 3) 3. y = 1 4x - 3 4. A(s) = √(3) s2 4 where A(s) is the area of an equilateral triangle with sides of length s. 5. y = log (2x) 6. y = 4x

Title: Jul 22­7:05 AM (1 of 28)

Title: Jul 22­10:07 AM (2 of 28)

Title: Jul 22­10:19 AM (3 of 28)

Finding Range y= 4 x-1

Title: Jul 22­7:07 AM (4 of 28)

Continuity: continuous at all x

removable discontinuity

jump discontinuity

infinite discontinuity

Title: Jul 22­7:07 AM (5 of 28)

A function f is continuous at x = a if lim f(x) = f(a). A function f is discontinuous at x = a if it is not continuous at x = a.

Title: Jul 22­7:08 AM (6 of 28)

Increasing and Decreasing Functions Increasing

Decreasing

Constant

Mixed

Title: Jul 22­7:09 AM (7 of 28)

Increasing on an interval if, for any two points in the interval, a positive change in x results in a positive change in y. Decreasing on an interval if, for any two points in the interval, a positive change in x results in a negative change in y. Constant on an interval, if for any two points in the interval, a positive change in x results in a zero change in y.

Title: Jul 22­7:09 AM (8 of 28)

Boundedness Bounded below - if there is a number b less than or equal to every number in the range of f. That number b is called a lower bound of f. Bounded above - if there is a number B greater than or equal to every number in the range of f. That number B is called an upper bound of f.

f is bounded if it is bounded both above and below.

Title: Jul 22­7:10 AM (9 of 28)

Look at these examples: y = 3x2 - 4 y= x 1 + x2

Title: Jul 22­7:11 AM (10 of 28)

Local and Absolute Extrema Local Maximum f(c) that is greater than or equal to all of the range values of f on some open interval containing c. If f(c) > all of the range values of f, then f(c) is a maximum (or absolute maximum) value of f.

Local Minimum f(c) < all of the range values of f on some open interval containing c. If f(c) < all of the range values of f, the f(c) is a minimum (or absolute minimum) value of f.

Local extrema are also called relative extrema

Title: Jul 22­7:11 AM (11 of 28)

Look at the graphs: y = (x - 1)2 + 4 y = x4 - 7x2 + 6

Title: Jul 22­7:12 AM (12 of 28)

Symmetry symmetric with respect to the y-axis even functions f(-x) = f(x)

symmetric with respect to the origin odd functions -f(x) = f(-x)

symmetric with respect to the x-axis not a function (x, -y) whenever (x, y)

Title: Jul 22­7:13 AM (13 of 28)

Examples 1. y = -x2 + 5 2. y =

x3 4 - x2

3. y = (x - 5)2 + 1 4. y2 = x - 2

Title: Jul 22­7:14 AM (14 of 28)

Asymptotes:

y = 2x2 4 - x2 vertical: horizontal:

Title: Jul 22­7:14 AM (15 of 28)

horizontal: y = b if f(x) → b as x → + ∞ lim f(x) = b lim f(x) = b x→∞ -

y=

x→∞+

x x2 - x - 2

Title: Jul 22­7:15 AM (16 of 28)

vertical: x = a if f(x) → + ∞ as x → a lim f(x) = + ∞ lim f(x) = + ∞ x→a-

x→a+

End Behavior: 1. y = 3x x2 + 1 2. y = 3x2 x2 + 1 3. y = 3x3 x2 + 1 4. y = 3x4 x2 + 1

Title: Jul 22­7:17 AM (17 of 28)

12 Basic Functions f(x) = x

f(x) = x2

f(x) = x3

f(x) = 1 x

f(x) = x

f(x) = ex

f(x) = ln x

f(x) = sin x

f(x) = cos x

f(x) = |x|

f(x) = int (x)

f(x) =

Title: Jul 22­7:18 AM (18 of 28)

1 1 + e-x

Look at the 1. domain and range 2. continuity 3. boundedness 4. symmetry

Title: Jul 22­7:20 AM (19 of 28)

Practice domain and range: 1. f(x) = x2 - 5

2. f(x) = |x - 4|

3. h(x) = ln(x + 6)

4. f(x) = 1 + 3 x

5. m(x) = int (x/2)

6. p(x) = (x + 3)2

Title: Jul 22­7:20 AM (20 of 28)

Find a. the interval where it is increasing or decreasing b. even, odd, neither c. extrema 1. f(x) = √(x - 10)

2. f(x) = 4sin x

3. f(x) =

4. q(x) = ex + 2

5. f(x) = |x| - 10

1 + e-x 6. f(x) = 4 cos x

7. m(x) = |x - 2|

8. f(x) = 2 - |x|

Title: Jul 22­7:21 AM (21 of 28)

3

Graphs

Translations horizontal y = f(x - c) y = f(x + c) vertical

Title: Jul 22­7:22 AM (22 of 28)

y = f(x) + c y = f(x) - c

y = (x + 2)2 - 4

Reflections x-axis y-axis

(x, y) → (x, -y) (x, y) → (-x, y)

Find the equation of the reflection of y = 5x - 9 x2 + 3 across the x-axis and the y-axis.

Title: Jul 22­7:23 AM (23 of 28)

Vertical and Horizontal Stretches and Shrinks horizontal stretches and shrinks y = f(cx) if c < 1, stretches horizontal by a factor of 1/c if c > 1, shrinks horizontal by a factor of 1/c

vertical stretches and shrinks y = cf(x) if c > 1, stretches vertical by a factor of c if c < 1, shrinks vertical by a factor of c

Title: Jul 22­7:24 AM (24 of 28)

Example: f(x) = x3 - 16x a. find an equation that is a vertical stretch of f(x) by a factor of 3

b. find an equation that is a horizontal shrink of f(x) by a factor of ½

Title: Jul 22­7:25 AM (25 of 28)

Combine the Transformations y = x2 horizontal shift 2 to the right vertical stretch by a factor of 3 vertical translation 5 units up

Title: Jul 22­7:25 AM (26 of 28)

What transformations are taking place and in what order? 1. y = 2 + 3 f(x + 1) 2. y = -f(x + 1) + 1

3. y = f(2x)

5. y = 3f(2x - 1) + 4

Title: Jul 22­7:25 AM (27 of 28)

4. y = 2f(x - 1) + 2

Title: Jul 22­7:24 AM (28 of 28)

Related Documents

Summer School
May 2020 10
Summer School
April 2020 9
Summer School
May 2020 7
Graphing
October 2019 33
Graphing
October 2019 29