For students and parents/guardians In the Elements Handbook, you’ll find useful information about the properties of the main group elements from the periodic table. You’ll also learn about real-world applications for many of the elements. The Math Handbook helps you review and sharpen your math skills so you get the most out of understanding how to solve math problems involving chemistry. Reviewing the rules for mathematical operations such as scientific notation, fractions, and logarithms can also help you boost your test scores. The reference tables are another tool that will assist you. The practice problems and solutions are resources that will help increase your comprehension.
Table of Contents Elements Handbook . . . . . . . . . 901 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 904 Group 1: Alkali Metals. . . . . . . . . . . . . . . 906 Group 2: Alkaline Earth Metals . . . . . . . 910 Groups 3–12: Transition Elements . . . . 916 Group 13: Boron Group . . . . . . . . . . . . . 922 Group 14: Carbon Group . . . . . . . . . . . . 926 Group 15: Nitrogen Group . . . . . . . . . . . 932 Group 16: Oxygen Group . . . . . . . . . . . . 936 Group 17: Halogen Group . . . . . . . . . . . 940 Group 18: Noble Gases . . . . . . . . . . . . . . 944
Math Handbook . . . . . . . . . . . . 946 Scientific Notation . . . . . . . . . . . . . . . . . . 946 Operations with Scientific Notation . . . 948 Square and Cube Roots . . . . . . . . . . . . . . 949 Significant Figures . . . . . . . . . . . . . . . . . . 949 Solving Algebraic Equations . . . . . . . . . . 954 Dimensional Analysis . . . . . . . . . . . . . . . 956 Unit Conversion . . . . . . . . . . . . . . . . . . . . 957 Drawing Line Graphs. . . . . . . . . . . . . . . . 959 Using Line Graphs . . . . . . . . . . . . . . . . . . 961 Ratios, Fractions, and Percents. . . . . . . . 964 Operations Involving Fractions . . . . . . . 965 Logarithms and Antilogarithms. . . . . . . 966
Reference Tables. . . . . . . . . . . . 968 R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8 R-9 R-10
R-11
Color Key. . . . . . . . . . . . . . . . . . . . . 968 Symbols and Abbreviations. . . . . . 968 Solubility Product Constants . . . . 969 Physical Constants . . . . . . . . . . . . . 969 Names and Charges of Polyatomic Ions . . . . . . . . . . . . . . . 970 Ionization Constants . . . . . . . . . . . 970 Properties of Elements. . . . . . . . . . 971 Solubility Guidelines . . . . . . . . . . . 974 Specific Heat Values . . . . . . . . . . . . 975 Molal Freezing Point Depression and Boiling Point Elevation Constants . . . . . . . . . . . . . . . . . . . . . 975 Heat of Formation Values . . . . . . . 975
Supplemental Practice Problems . . . . . . .976 Solutions to Selected Practice Problems. . . . . . . . . . . . . . . . . . . . . . . . . .992 Glossary/Glosario . . . . . . . . . . . . . . . . . . .1005 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1031 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051
900
Student Resources
Elements Handbook Elements in Earth’s Atmosphere Argon 0.93%
Other 0.04%
Oxygen 20.95%
Nitrogen 78.08%
Elements in Earth’s Crust Iron 5.63%
Calcium 4.15%
Other 7.69% Aluminum 8.23%
Silicon 28.20%
Oxygen 46.10%
Elements Dissolved in Earth’s Oceans Sulfur 2.70% Magnesium 3.90%
Sodium 32.40%
Other 1.50%
Calcium 1.20%
Chlorine 58.30%
Elements Handbook 901 CORBIS
Elements Handbook Table of Contents How This Handbook Is Organized The Elements Handbook is divided into 10 sections: hydrogen and groups 1, 2, 3–12, 13, 14, 15, 16, 17, and 18. You will discover physical and atomic properties, common reactions, analytical tests, and real-world applications of the elements in each section. Questions at the end of each section will assess your understanding of the elements. Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .904 Group 1: Alkali Metals . . . . . . . . . . . . . . . . . . . . . .906 Group 2: Alkaline Earth Metals . . . . . . . . . . . . . . .910 Groups 3–12: Transition Elements . . . . . . . . . . . .916 Group 13: Boron Group . . . . . . . . . . . . . . . . . . . . .922
Group 14: Carbon Group . . . . . . . . . . . . . . . . . . . .926 Group 15: Nitrogen Group . . . . . . . . . . . . . . . . . . .932 Group 16: Oxygen Group . . . . . . . . . . . . . . . . . . . .936 Group 17: Halogen Group . . . . . . . . . . . . . . . . . . .940 Group 18: Noble Gases . . . . . . . . . . . . . . . . . . . . . .944
How to Use Element Boxes Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name, symbol, atomic number, and electron configuration. At the beginning of each section, each element box also identifies the state of matter at 25°C and 1 atm. A typical box from the handbook is shown below.
Strontium 38
Atomic number
Sr
Symbol
[Kr]5s2
Color Key Metal
Element State of matter Electron configuration
States of Matter Key Gas Liquid
Metalloid Solid Nonmetal
Interactive Figure To see animations of the elements, visit glencoe.com.
902 Elements Handbook
Synthetic
To find links to information on the elements, visit glencoe.com.
How to Use the Elements Handbook When you read the Elements Handbook, you need to read for information. Here are some tools that the Elements Handbook has to help you find that information.
See how a group fits in the Periodic Table.
Group 2: Alkaline Earth Metals Beryllium 4
Be [He]2s2
Magnesium 12
Mg [Ne]3s2
Discover the Physical Properties and Atomic Properties of the elements in a group.
Calcium 20
Element Facts
Physical Properties
Atomic Properties
• Most of the alkaline earth metals have a silvery-white, metallic appearance. When exposed to oxygen, a thin oxide coating forms on the surface. • The alkaline earth metals are harder, denser, and stronger than many of the group 1 elements, but are still relatively soft compared to other metals. • Most alkaline earth metals have higher melting points and boiling points than alkali metals.
Be 112
Be2+ 31
• Atomic radii and ionic radii increase moving down the group but are smaller than the corresponding alkali metal.
Mg 160
Mg2+ 72
• Ionization energies and electronegativities generally decrease moving down the group but are larger than the corresponding alkali metal.
Ca 197
Ca2+ 100
• Moving down the group, densities generally increase.
Ca Melting Points and Boiling Points
[Ar]4s2
Strontium 38
Sr [Kr]5s2
650
Mg
1090
MP
Barium 56
Sr
Ba
Ba
727
Ra
700
Ra
1737
0
1000
Ra
2000
1
2
3
4
200
400
600
1.31 1.00
Ba2+ 135
Ra 220
0.90
0
800
Sr2+ 118
Ba 222
0.89
0.5
1.0
1.5
2.0
Pauling units
kJ/mol
g/mL
Sr 215
0.95
Ra
509
0
5
Mg
Ba
503
Ra
5.000
0
3000
Temperature (ºC)
1.57
Sr
550
Ba
3.510
Be
Ca
590
Sr
2.630
Ba
1870
[Xe]6s2
738
Ca
1.550
Sr
1382
900
Mg
1.738
Ca
1484
Be
1.848
Mg
BP
842
Ca
777
Radium 88
Be
2469
Electronegativities
First Ionization Energies
Densities
1287
Be
Ionic radius (pm)
Atomic radius (pm)
• Each element in group 2 has two valence electrons and an electron configuration ending with ns 2. • Alkaline earth metals often lose their two valence electrons to form ions with a 2+ charge.
[Rn]7s2
Common Reactions
Summarize Common Reactions for the elements within a group.
• Mg, Ca, Sr, and Ba react with oxygen to form oxides, such as magnesium oxide.
• Mg, Ca, Sr, and Ba react with halogens to form salts, such as magnesium chloride, and hydrogen gas.
Example: 2Mg(s) + O 2(g) → 2MgO(s) • Sr and Ba react with oxygen to form peroxides, such as strontium peroxide.
Example: Mg(s) + 2HCl (g) → MgCl 2(s) + H 2(g)
Example: Sr(s) + O 2(g) → SrO 2(s) • Mg, Ca, Sr, and Ba react with water to form bases, such as barium hydroxide, and hydrogen gas.
• Mg, Ca, Sr, and Ba react with hydrogen to form hydrides, such as barium hydride.
Analytical Tests Three of the alkaline earth metals can be identified by flame tests. Calcium produces a scarlet color, while strontium produces a crimson color. Barium, which if present in a sample can mask the colors of both calcium and strontium, produces a yellow-green color.
Example: Ba(s) + 2H 2O(l) → Ba(OH) 2(aq) + H 2(g)
Example: Ba(s) + H 2(g) → BaH 2(s) • Be, Mg, Sr, and Ca react with nitrogen to form nitrides, such as magnesium nitride. Example: 3Mg(s) + N 2(g) → Mg 3N 2(s)
Identify elements by Analytical Tests.
910
Barium reacts with water to form Ba 2+ ions, OH - ions, and hydrogen gas.
A ribbon of magnesium reacts with HCl in an aqueous solution to produce Mg 2+ ions, Cl ions, and hydrogen gas.
Elements Handbook
Calcium
Strontium
Barium
Elements Handbook 911
Source: Elements Handbook, p. 910–911
Group 2: Alkaline Earth Metals
Ca [Ar]4s2
Strontium 38
Real-World Applications
Gypsum
Calcium 20
A layer of plaster of paris protects fossils during shipment.
Drywall is made from gypsum, which is a soft mineral composed of calcium sulfate dihydrate (CaSO 4·2H 2O). Drywall boards are used in building construction because the gypsum provides fire protection. Gypsum contains large amounts of water in its crystal form, which vaporizes when heated. The boards remain at 100°C until all of the water evaporates, protecting the wood frame of the building. Gypsum that has had most of its water removed is known as plaster of paris. Most minerals form pastes when mixed with water. When plaster of paris is mixed with water, it forms a rigid crystal structure, so it is often used for casts to set broken bones and for molds.
Crystals formed from strontium chloride and saliva fill in pores in the root of a tooth and block access to the nerve.
Sr
Nerve
[Kr]5s2
Radium 88
Ra [Rn]7s2
The Discovery of Radioactivity Marie Curie’s discovery of the atomic property she called radioactivity paved the way for present-day advancements in science and medicine. Curie and her husband, Pierre, unveiled the characteristics and capabilities of radiation, revolutionizing scientific thinking and laying the groundwork for present-day cancer treatments, genetics, and nuclear energy. Today, many cancers are treated with radiation therapy.
Toothpaste containing strontium chloride
Vent pipe
Pore to root canal and nerves
Barium 56
Ba
Root canal
Decay of radium-226 in soil and rock produces radon gas. The radioactive radon gas can seep through cracks in a home’s foundation or can be dissolved in water pumped into the house from a well. High concentrations of radon can increase the risk of cancer. In many homes, installing a radon-reduction system reduces the concentration of radon gas by using a fan to draw the gas through pipes that vent to the outside of the home.
Root
nerve through openings called pores. Toothpastes that contain strontium chloride (SrCl 2) help reduce the sensitivity. The compound reacts with a person’s saliva to create crystals that fill in the pores so stimuli cannot reach the nerves.
After being coated with barium liquid, the large intestine shows up clearly on an X ray.
[Xe]6s2
Medical X Rays Barium is used by medical professionals to examine a person’s gastrointestinal tract. Patients drink barium liquid, which coats the tract, and are then X-rayed. Barium is almost completely insoluble in water and acids and appears as a bright white color in X rays. This allows doctors and radiologists to locate tumors, ulcers, areas of reflux, and other abnormalities in the digestive tract. 914
Radon Gas
Dentine
Almost 40 million people in the United States have teeth that are hypersensitive to touch and temperature. Sensitivity occurs when the dentine and roots of teeth are exposed due to receding gums or thinning of the tooth enamel. This is the result of poor oral hygiene or, in many instances, from brushing too hard. Exposing the root enables stimuli, such as cold temperatures, to reach the
Elements Handbook
Marie Curie died at the age of 67 from aplastic anemia, probably caused by her exposure to massive amounts of radiation. Today, the effects of radiation on health are well known, and suitable safety precautions are taken when using radioactive materials.
Fan
Crystals
Sensitive Teeth
Learn how elements are used every day in RealWorld Applications.
A radon-reduction system lowers the concentration of radon in homes by venting the radon gas from the home to the outside environment.
Assessment 13. Describe the general trend in first ionization energies in group 2, and explain why this trend occurs. 14. Explain What is the charge on alkaline earth metal ions? Explain your answer. 15. Compare and contrast the physical properties of the alkaline earth metals and the alkali metals. 16. Evaluate why magnesium is used in emergency flares instead of other alkaline earth metals. 17. Analyze Use the atomic properties of the alkali metals and alkaline earth metals to explain why calcium is less reactive than potassium.
18. Infer The alkaline earth metals are usually found combined with oxygen and other nonmetals in Earth’s crust. Based on the atomic properties of this group, explain why alkaline earth metals are so reactive.
Test your knowledge of the elements by answering Assessment questions.
19. Calculate Calcium makes up about 1.5% of a human’s body mass. Calculate the amount of calcium found in a person who weighs 68 kg. 20. Calculate Radium-226 has a half-life of 1600 years. After 8000 years, how much of a 500.0-g sample of radium-226 would be left?
Elements Handbook
915
Source: Elements Handbook, p. 914–915
Elements Handbook 903
Hydrogen: Element Facts Physical and Atomic Properties • At constant temperature and pressure, hydrogen gas (H 2) has the lowest density of any gas. Hydrogen 1
H 1s1
• At very high pressures, such as the interior of planet Jupiter, hydrogen might exist as a solid metal. • Hydrogen is placed in group 1 because it has one valence electron. • Hydrogen shares some properties with the group 1 metals. It can lose an electron to form a hydrogen ion (H +). • Hydrogen also shares some properties with the group 17 nonmetals. It can gain an electron to form a hydride ion (H −). • There are three common hydrogen isotopes. Protium, the most common isotope, has one proton, one electron, and no neutrons. Deuterium, also called heavy hydrogen, has one proton, one neutron, and one electron. Tritium, which is radioactive, has one proton, two neutrons, and one electron.
Physical and Atomic Properties of Hydrogen Melting point
-259°C
Boiling point
-253°C
Density
8.98 × 10 -5 g/mL
Atomic radius
78 pm
First ionization energy
1312 kJ/mol
Electronegativity
2.2 Pauling units
Common Reactions
Analytical Tests
• When ignited, hydrogen reacts with oxygen to form water.
pH is a measure of the hydrogen ion (H +) concentration of aqueous solutions. When the hydrogen ion concentration is expressed in moles per liter, pH is the negative logarithm of the hydrogen ion concentration, −log[H +]. For example, if the hydrogen ion concentration is 1 × 10 -2 mol/L, the pH is 2.
Example: H 2(g) + O 2(g) → 2H 2O(l) • Hydrogen reacts with sulfur to form hydrogen sulfide. Example: 2H 2(g) + S(g) → H 2S(g) • Hydrogen reacts with nitrogen at high temperatures and pressures to form ammonia. Example: 3H 2(g) + N 2(g) → 2NH 3(g)
Hydrogen gas in the red tube and nitrogen gas in the blue tube are mixed, then compressed under high pressure and temperature to form liquid ammonia in the orange tube at bottom right. 904
Elements Handbook
(l)©SPL/Photo Researchers, Inc., (r)Matt Meadows
Common household items are bases or acids, depending on their H + concentrations: the greater the H + concentration, the lower the pH.
Real-World Applications Hydrogen 1
H 1s1
Identifying Hydrogen in Stars Spectroscopy is the study of the spectral lines present in an electromagnetic spectrum. The colored lines in an emission spectrum represent the emission of energy. How do scientists know that more than 90% of the atoms in the universe are hydrogen atoms? By recording the emission spectra of light from stars or galaxies, astronomers can identify hydrogen. The spectrum of hydrogen consists of four distinct color lines at different wavelengths. They are produced when electrons in a gas move to different energy levels in an atom by absorbing and then emitting energy. Each element can be identified by characteristic patterns of spectral lines.
The colorful cloud that makes up this nebula is composed of hydrogen gas.
Hydrogen Fuel Cells Hydrogen fuel cells produce electricity by combining hydrogen (H 2) and oxygen (O 2) without burning. Water and heat are the only by-products of this process. Current demonstration projects that use hydrogen fuel cells as their energy sources include laptop computers, cars, buses, classrooms, and musical instruments. In the future, it might be possible to use a pen-sized container filled with hydrogen gas to power a laptop computer. Or, you might drive a fuel cell car to a filling station and fill a high-pressure gas cylinder with hydrogen gas. Hydrogen fuel cells provide the energy to power this electric guitar.
Assessment 1. Compare and contrast hydrogen isotopes. 2. Write the balanced equation for the reaction between hydrogen gas and oxygen gas in a fuel cell. 3. Explain what happens when hydrogen reacts with a nonmetal element. 4. Evaluate at least one advantage and one possible disadvantage of hydrogen fuel cells compared to conventional petroleum engines.
5. Infer Hydrogen can gain one electron to reach a stable electron configuration. Why isn’t hydrogen placed with the group 17 elements that share this behavior? 6. Apply A solution’s hydrogen ion concentration is 3.2 × 10 -4 mol/L. Refer to Chapter 19 to determine if this solution is an acid or a base. What is the pH of this solution?
Elements Handbook 905 (t)©European Southern Observatory/Photo Researchers, Inc., (b)©Melanie Stetson Freeman/The Christian Science Monitor via Getty Images
Group 1: Alkali Metals Lithium 3
Li [He]2s1
Sodium 11
Na [Ne]3s1
Physical Properties • Pure alkali metals have a silvery, metallic appearance. • Solid alkali metals are soft enough to cut with a knife. • Most of the alkali metals have low densities compared to the solid form of elements from other groups. Lithium, sodium, and potassium metals are less dense than water. • Compared to other metals, such as silver or gold, alkali metals have low melting points.
Potassium 19
K [Ar]4s1
181
Li
98
K
63
[Kr]5s1
Rb
39
Cesium 55
Cs
28
Rb
Cs [Xe]6s1
Li
1342
Na
Rubidium 37
Densities
Melting Points and Boiling Points
MP
883
BP
759
0.856
K
1.532
Cs
671 500
0.968
Na
Rb
668
0
0.535
1000
1500
1.879 0
Temperature (°C)
0.5
1.0
1.5
2.0
g/mL
Francium 87
Fr [Rn]7s1
Common Reactions • Li, Na, K, Rb, and Cs react vigorously with halogens to form salts, such as lithium chloride. Example: 2Li(s) + Cl 2(g) → 2LiCl(s) • Li, Na, K, Rb, and Cs react with oxygen to form oxides, such as sodium oxide. Example: 4Na(s) + O 2(g) → 2Na 2O(s) • Li, Na, K, Rb, and Cs react vigorously with water to form metal hydroxides, such as potassium hydroxide, and hydrogen gas. Example: 2K(s) + 2H 2O(l) → 2KOH(aq) + H 2(g)
Potassium reacts violently with water, producing enough heat to ignite the hydrogen gas produced. 906
Elements Handbook
©Richard Megna/Fundamental Photographs, NYC
Element Facts Atomic Properties • Each element in group 1 has one valence electron and an electron configuration ending with ns 1. • Group 1 elements lose their valence electrons to form ions with a 1+ charge. • Going down the elements in group 1, the atomic radii and ionic radii increase. • Electronegativity decreases going down the elements in group 1. • The alkali metals are so reactive that they are not found in nature as free metals. • All the alkali metals have at least one radioactive isotope. • Because francium is rare and decays rapidly, its properties are not well known. First Ionization Energies 520 496
Na 419 403
Rb
Li
0.98
Na
0.93
K
0.82
Rb
0.82 0.79
Cs
376
Cs
Fr
380
Fr
0
100
200
300
400
Ionic radius (pm)
Li 152
Li1 76
Na 186
Na1 102
K 227
K1 138
Rb 248
Rb1 152
Cs 265
Cs1 167
+
+
+
+
+
Electronegativities
Li
K
Atomic radius (pm)
500
Fr 270
0.70 0
0.5
kJ/mol
1.0
1.5
2.0
Pauling units
Analytical Tests Alkali metals can be qualitatively identified by flame tests. Lithium produces a red flame. Sodium produces an orange flame. Potassium, rubidium, and cesium produce violet flames.
Rubidium
Sodium Lithium
Potassium
Cesium Elements Handbook 907
(l)©DAVID TAYLOR/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (c cl)©JERRY MASON/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.; (cr r)©Tom Pantages
Group 1: Alkali Metals Lithium 3 [He]2s1
The Mars rovers, Spirit and Opportunity, use solar energy to recharge lithium-ion batteries.
Environmentally Friendly Batteries Someday, electric cars might be powered by lightweight lithium-ion batteries. Lithium batteries have several advantages compared to lead-acid batteries. Unlike leadacid batteries, lithium batteries do not contain toxic metals or corrosive acids, making them safer for the environment. Lithium’s light weight is also an advantage for electric vehicles. However, lithium batteries do have some disadvantages. Researchers are trying to find ways to make lithium batteries that recharge more rapidly. Cost is also a drawback. Lithium batteries are currently used for small applications such as laptop computers, but they will need to be less expensive before they can be routinely used in larger, more energy-demanding applications such as electric or hybrid vehicles.
Sodium 11
Sodium Content of Some Common Foods
Food
Na [Ne]3s1
High sodium
Dietary Salt In 2006, the American Medical Association recommended that the amount of sodium in processed and restaurant foods be reduced by one-half over the next decade. Sodium is essential for humans, but too much might contribute to high blood pressure and heart failure. Current guidelines advise consuming less than 2400 mg of sodium per day, which is less than one teaspoon. However, Americans typically consume 4000 to 6000 mg of sodium per day. Foods that contain more than 480 mg of sodium per serving are considered high-sodium foods. To be labeled as low sodium, foods must contain 140 mg or less per serving. The table lists some common foods that are either high or low in sodium.
908
Elements Handbook
(t)©NASA/epa/Corbis, (b)©1995 Michael Dalton, Fundamental Photographs, NYC
Low sodium
Sodium Content (mg) per Serving
fast-food submarine sandwich with cold cuts
1310
canned chicken noodle soup
1106
fast-food biscuit with egg and sausage
1080
cottage cheese
851
dill pickle
833
fast-food cheeseburger
740
canned corn
571
beef hotdog
513
fried fish fillet
484
wheat bread
133
low-fat fruit yogurt
132
fast-food salad with cheese and egg, no dressing
119
pound cake
111
oatmeal cookie
96
raw carrots
76
canned peaches
16
frozen corn
2
Real-World Applications Sodium 11
Na+
Outside cell
[Ne]3s1
Na+
K+
Na+
K+
Na+
Potassium 19
K
Sodium-potassium pumps
Na+
Na
[Ar]4s1
K+
Na+
K+
Inside cell
The sodium-potassium pump brings two K + ions into a cell for every three Na + ions it moves out of a cell.
The Sodium-Potassium Pump Humans and other vertebrates need to maintain a negative potential charge inside their cells in order to survive. This process requires sodium ions, potassium ions, and a membrane-bound enzyme called sodium/potassium ATPase. Sodium/ potassium ATPase uses energy from the hydrolysis of ATP to pump sodium ions out of cells and pump potassium ions into cells. Because of the action of this pump, the sodium ion concentration is low
Cesium 55
inside cells and high outside cells. The potassium ion concentration is high inside cells and low outside cells. In fact, potassium ions are the most common ions inside living cells. For every three sodium ions pumped out of a cell, sodium/potassium ATPase pumps two potassium ions into the cell. The net result is a negative charge inside the cell and concentration gradients across the cell membrane for both potassium and sodium ions.
The cesium fountain atomic clock at NIST is accurate to about 1 second over a period of 70 million years.
Cs [Xe]6s1
Cesium Atomic Clocks One of the most accurate clocks in the world is located at the United States National Institute of Standards and Technology (NIST) in Boulder, Colorado. This cesium fountain atomic clock provides the official time for the United States. The clock is based on the natural resonance frequency of the cesium atom (9,192,631,770 Hz.), which defines the second.
Assessment 7. Describe the trend in density of the alkali metals as atomic number increases. 8. Compare lithium-ion batteries and lead-acid batteries. 9. Write a balanced equation for the reaction between lithium and water. 10. Predict the reactivity of lithium metal with water.
11. Analyze Lithium’s properties are more like magnesium in group 2 than sodium. Use what you learned about atomic sizes to explain this behavior. 12. Organize Make a table to summarize the data for physical and atomic properties of the group 1 elements according to their trends with increasing atomic number. Elements Handbook 909 ©Geoffrey Wheeler
Group 2: Alkaline Earth Metals Beryllium 4
Be [He]2s2
Magnesium 12
Mg [Ne]3s2
Calcium 20
Physical Properties • Most of the alkaline earth metals have a silvery-white, metallic appearance. When exposed to oxygen, a thin oxide coating forms on the surface. • The alkaline earth metals are harder, denser, and stronger than many of the group 1 elements, but are still relatively soft compared to other metals. • Most alkaline earth metals have higher melting points and boiling points than alkali metals. • Moving down the group, densities generally increase.
Ca
Strontium 38
Sr [Kr]5s2
1287
Be Mg Ca
650 1090
777
Ba
Ba
727
Ra
700
Ra
0
BP
1484
Sr
[Xe]6s2
MP
842
1.738
Mg
1.550
Ca
2.630
Sr
1382
5.000
Ra
1737 2000
3.510
Ba
1870
1000
1.848
Be
2469
Barium 56
Radium 88
Densities
Melting Points and Boiling Points
[Ar]4s2
3000
Temperature (ºC)
0
1
2
3
4
5
g/mL
[Rn]7s2
Common Reactions • Mg, Ca, Sr, and Ba react with halogens to form salts, such as magnesium chloride, and hydrogen gas. Example: Mg(s) + 2HCl (g) → MgCl 2(s) + H 2(g) • Mg, Ca, Sr, and Ba react with hydrogen to form hydrides, such as barium hydride. Example: Ba(s) + H 2(g) → BaH 2(s) • Be, Mg, Sr, and Ca react with nitrogen to form nitrides, such as magnesium nitride. Example: 3Mg(s) + N 2(g) → Mg 3N 2(s)
910 Elements Handbook Charles D. Winters/Photo Researchers, Inc.
A ribbon of magnesium reacts with HCl in an aqueous solution to produce Mg 2+ ions, Cl ions, and hydrogen gas.
Element Facts Atomic Properties
Atomic radius (pm)
Ionic radius (pm)
• Alkaline earth metals often lose their two valence electrons to form ions with a 2+ charge.
Be 112
Be2 31
• Atomic radii and ionic radii increase moving down the group but are smaller than the corresponding alkali metal.
Mg 160
Mg2+ 72
• Ionization energies and electronegativities generally decrease moving down the group but are larger than the corresponding alkali metal.
Ca 197
Ca2+ 100
Sr 215
Sr2 118
Ba 222
Ba2 135
• Each element in group 2 has two valence electrons and an electron configuration ending with ns 2.
Electronegativities
First Ionization Energies Be
900
Mg
738
Ca
1.57
Mg
1.31
Ca
590
Sr
Be
1.00
Sr
550 503
Ba
0.89
Ra
509
Ra
0.90
200
400
600
800
+
+
Ra 220
0.95
Ba
0
+
0
kJ/mol
• Mg, Ca, Sr, and Ba react with oxygen to form oxides, such as magnesium oxide. Example: 2Mg(s) + O 2(g) → 2MgO(s) • Sr and Ba react with oxygen to form peroxides, such as strontium peroxide. Example: Sr(s) + O 2(g) → SrO 2(s) • Mg, Ca, Sr, and Ba react with water to form bases, such as barium hydroxide, and hydrogen gas.
0.5
1.0
1.5
2.0
Pauling units
Analytical Tests Three of the alkaline earth metals can be identified by flame tests. Calcium produces a scarlet color, while strontium produces a crimson color. Barium, which if present in a sample can mask the colors of both calcium and strontium, produces a yellow-green color.
Example: Ba(s) + 2H 2O(l) → Ba(OH) 2(aq) + H 2(g)
Barium reacts with water to form Ba 2+ ions, OH - ions, and hydrogen gas.
Calcium
Strontium
Barium
Elements Handbook 911 (l)Andrew Lambert/Photo Researchers, Inc., (others)Fundamental Photographs
Group 2: Alkaline Earth Metals Beryllium plates
Beryllium 4
Be [He]2s2
Space Telescopes Beryllium and beryllium alloys have properties that make them useful for applications in space: they are hard, they are lighter than aluminum, and they are stable over a wide temperature range. The Hubble Space Telescope’s reaction plate is made of lightweight beryllium. The reaction plate carries heaters that keep the main mirror at a constant temperature. Beryllium is also being used in the Hubble’s replacement—the James Webb Space Telescope (JWST).
The JWST’s large mirror is composed of 18 hexagonal beryllium plates.
▲
Emerald beryl
Precious Gems Emerald (Be 3Al 2Si 6O 18), one of the world’s most valuable gemstones, belongs to a family of gemstones known as beryls. Pure beryls are clear, colorless crystals. Beryls tinted with other elements form gems such as aquamarine, morganite, and emerald. Trace amounts of chromium or vanadium give emeralds their unique green color.
Chlorophyll and Crop Yields
Mg [Ne]3s2
Amount of Magnesium Removed by Crops from One Hectare of Soil
Crop
Magnesium Removed from Soil (kg)
Alfalfa
44
Corn
58
Cotton
25
Oranges
25
Peanuts
27
Rice
15
Soybeans
27
Tomatoes
40
Wheat
20
In the early 1900s, German chemist Richard Willstätter discovered that a molecule of chlorophyll has a magnesium ion at its center. Chlorophyll, the green pigment in plants, is responsible for photosynthetic processes, which convert sunlight to chemical energy. It is this chemical energy that supports life on Earth. Notice in the table that an average yield of common crops removes large amounts of magnesium from just one hectare of soil. Once the importance of magnesium was revealed, soils deficient in magnesium were fertilized, greatly increasing crop yields. Willstätter’s work won him the Nobel Prize in Chemistry in 1915. CH2 CH3 H3C
H2C — CH
912 Elements Handbook (l)Mark A. Schneider/Photo Researchers, (r)Courtesy of Northrop Grumman Space Technology
CH3 O
N N
Mg
N
Chlorophyll molecule
▲
Magnesium 12
CO2 CH3 H H
N
CH2 CH2 CO2 CH2 CH — C (CH2 CH2 CH2 CH)3 CH3 CH3
H
CH3
CH3
CH3
Real-World Applications Magnesium 12
Calcium 20
Strontium 38
Mg
Ca
Sr
[Ne]3s2
[Ar]4s2
[Kr]5s2
Barium 56
Ba [Xe]6s2
Fireworks
Metals Used in Fireworks
The four main components of fireworks are a container, a fuse, a bursting charge, and stars. Stars contain the chemical compounds needed to produce light of brilliant colors. Many of these compounds contain alkaline earth metals, such as barium chloride (BaCl 2), strontium carbonate (SrCO 3), and calcium chloride (CaCl 2). The table identifies which metals are needed to make the colors seen during a fireworks display.
Color
Metal
Red
strontium, lithium
Orange
calcium
Gold
iron (with carbon)
Yellow
sodium
White
white-hot magnesium or aluminum, barium
Green
barium
Blue
copper
Purple
mixture of strontium (red) and copper (blue)
Silver
aluminum, titanium, or magnesium powder or flakes
New Engineering Alloys Magnesium alloys are used when strong, but lightweight, materials are needed, such as in backpack frames and aircraft. These alloys also enable automotive engineers to design lighter, more fuel-efficient cars. A new magnesium alloy, introduced in the engine cradle of some 2006 automotive models, replaces traditional aluminum. This alloy reduces the engine cradle’s mass by approximately one-third, creating a vehicle that is both agile and controllable. Considered a breakthrough in engineering technology, the new alloy is currently being evaluated for use in other applications.
The magnesium-alloy engine cradle is lighter than the aluminum model, yet it can still withstand the high temperatures produced by the car’s engine.
Engine cradle
Elements Handbook 913 (t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/CORBIS
Group 2: Alkaline Earth Metals Gypsum
Calcium 20
Ca [Ar]4s2
A layer of plaster of paris protects fossils during shipment.
Strontium 38
Drywall is made from gypsum, which is a soft mineral composed of calcium sulfate dihydrate (CaSO 4·2H 2O). Drywall boards are used in building construction because the gypsum provides fire protection. Gypsum contains large amounts of water in its crystal form, which vaporizes when heated. The boards remain at 100°C until all of the water evaporates, protecting the wood frame of the building. Gypsum that has had most of its water removed is known as plaster of paris. Most minerals form pastes when mixed with water. When plaster of paris is mixed with water, it forms a rigid crystal structure, so it is often used for casts to set broken bones and for molds.
Crystals formed from strontium chloride and saliva fill in pores in the root of a tooth and block access to the nerve.
Sr
Nerve
[Kr]5s2
Toothpaste containing strontium chloride Crystals Pore to root canal and nerves
Sensitive Teeth
Dentine
Almost 40 million people in the United States have teeth that are hypersensitive to touch and temperature. Sensitivity occurs when the dentine and roots of teeth are exposed due to receding gums or thinning of the tooth enamel. This is the result of poor oral hygiene or, in many instances, from brushing too hard. Exposing the root enables stimuli, such as cold temperatures, to reach the
Barium 56
Ba
After being coated with barium liquid, the large intestine shows up clearly on an X ray.
[Xe]6s2
Medical X Rays Barium is used by medical professionals to examine a person’s gastrointestinal tract. Patients drink barium liquid, which coats the tract, and are then X-rayed. Barium is almost completely insoluble in water and acids and appears as a bright white color in X rays. This allows doctors and radiologists to locate tumors, ulcers, areas of reflux, and other abnormalities in the digestive tract. 914 Elements Handbook (t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers
Root canal
Root
nerve through openings called pores. Toothpastes that contain strontium chloride (SrCl 2) help reduce the sensitivity. The compound reacts with a person’s saliva to create crystals that fill in the pores so stimuli cannot reach the nerves.
Real-World Applications Radium 88
Ra [Rn]7s2
The Discovery of Radioactivity Marie Curie’s discovery of the atomic property she called radioactivity paved the way for present-day advancements in science and medicine. Curie and her husband, Pierre, unveiled the characteristics and capabilities of radiation, revolutionizing scientific thinking and laying the groundwork for present-day cancer treatments, genetics, and nuclear energy. Today, many cancers are treated with radiation therapy.
Vent pipe
Marie Curie died at the age of 67 from aplastic anemia, probably caused by her exposure to massive amounts of radiation. Today, the effects of radiation on health are well known, and suitable safety precautions are taken when using radioactive materials.
Fan
Radon Gas Decay of radium-226 in soil and rock produces radon gas. The radioactive radon gas can seep through cracks in a home’s foundation or can be dissolved in water pumped into the house from a well. High concentrations of radon can increase the risk of cancer. In many homes, installing a radon-reduction system reduces the concentration of radon gas by using a fan to draw the gas through pipes that vent to the outside of the home. A radon-reduction system lowers the concentration of radon in homes by venting the radon gas from the home to the outside environment.
Assessment 13. Describe the general trend in first ionization energies in group 2, and explain why this trend occurs. 14. Explain What is the charge on alkaline earth metal ions? Explain your answer. 15. Compare and contrast the physical properties of the alkaline earth metals and the alkali metals. 16. Evaluate why magnesium is used in emergency flares instead of other alkaline earth metals. 17. Analyze Use the atomic properties of the alkali metals and alkaline earth metals to explain why calcium is less reactive than potassium.
18. Infer The alkaline earth metals are usually found combined with oxygen and other nonmetals in Earth’s crust. Based on the atomic properties of this group, explain why alkaline earth metals are so reactive. 19. Calculate Calcium makes up about 1.5% of a human’s body mass. Calculate the amount of calcium found in a person who weighs 68 kg. 20. Calculate Radium-226 has a half-life of 1600 years. After 8000 years, how much of a 500.0-g sample of radium-226 would be left?
Elements Handbook 915 (l)Fred Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS
Groups 3–12: Transition Elements Physical Properties • The main transition elements include four series of d-block elements with atomic numbers between 21–30, 39–48, 72–80, and 104–109. The inner transition elements include the f-block (rare earth) elements in the lanthanide series (atomic numbers 57–71) and actinide series (atomic numbers 89–103.) All are metals. • As metals, transition elements are generally good conductors of electricity and heat. They are ductile, which means they can be pulled into wires. Transition metals are also malleable, which means they can be hammered into thin sheets. For example, 1 g of gold can be hammered into a 1 m 2-sheet that is 0.1 µ thick . • In general, the transition elements have high densities, high melting points, and low vapor pressure. Except for mercury, which is a liquid, all are solids at room temperature. • High density and resistance to corrosion make transition elements, such as iron, good structural materials. • Most transition elements can form colored compounds. • Transition elements are often paramagnetic, which means they are attracted to an applied magnetic field. Three transition elements—iron, cobalt, and nickel—are ferromagnetic. That means these elements can form their own magnetic fields.
When exposed to a magnet, iron filings become magnetic and are attracted to the magnet and to each other.
Common Reactions • Most transition elements can form stable complex ions and coordinate covalent compounds. A complex ion is an ion in which a central metal ion is surrounded by weakly bound molecules or ions called ligands. Example: Prussian blue, an intense blue pigment used in paints, is a coordinate compound made of iron(III) and an iron(II) cyanide complex: Fe 4[Fe(CN) 6] 3.
• Transition elements and their compounds are often useful as catalysts. Example: Nickel is used as a catalyst in converting unsaturated fats to saturated fats. • Transition elements can react with oxygen to form oxides. Example: In the presence of water, iron reacts with oxygen to form rust. The overall reaction is: 4Fe + 3O 2 → 2Fe 2O 3.
• Transition elements can often combine to form • Some transition elements are important in alloys. biochemical reactions. Examples: Example: In the protein hemoglobin, iron binds • Brass is a mixture of copper and zinc. to O 2 to transport oxygen from the lungs to the • Bronze is a mixture of copper and tin. rest of the body. 916 Elements Handbook ©CORDELIA MOLLOY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.
Element Facts Atomic Properties • The main transition elements have incomplete d sublevels. • Inner transition elements include the lanthanide series and actinide series. Elements in these series have incomplete f sublevels. • The electronic structures of the transition elements give rise to their physical properties. The more unpaired electrons in the d sublevel, the greater the hardness and the higher the melting and boiling points. • Unpaired d and f electrons produce paramagnetism in the transition elements. • The tendency of transition elements to form colored compounds also derives from their electron configurations. Compounds with unpaired d electrons can absorb visible light. • For transition elements, there is little variation in atomic size, electronegativity, and ionization energy across a period. • Transition metals can typically form ions in more than one oxidation state. Oxidation Numbers of the First Row of Transition Elements
Sc
+3
Ti
+1
+2
+3
+4
V
+1
+2
+3
+4
+5
Cr
0
+1
+2
+3
+4
+5
+6
Mn
0
+1
+2
+3
+4
+5
+6
Fe
0
+1
+2
+3
+4
+5
+6
Co
0
+1
+2
+3
+4
+5
Ni
+1
+2
+3
+4
Cu
+1
+2
+3
Zn
+7
+2
Analytical Tests Notice in the photo the colorful compounds of transition metals. When placed in solutions, these compounds absorb different wavelengths of light. Visible spectroscopy uses light absorption at specific wavelengths to measure the concentration of colored compounds in solution. This method of analysis uses the interaction of valence electrons of transition elements and visible light. Because many transition element compounds are colored, this technique can be used in transition element analysis. The compounds of transition metals have color because of the partially filled d sublevels. The electrons in these sublevels can absorb visible light of specific wavelengths. Compounds with empty or filled d sublevels do not produce brilliant colors. Elements Handbook 917 ©Martyn F. Chillmaid/Photo Researchers, Inc.
Groups 3–12: Transition Elements Titanium 22 [Ar]3d24s2
Lighter but Stronger than Steel The curved surfaces of the Guggenheim Museum in Bilbao, Spain, are covered with 32,000 m 2 of 0.4 mm-thick titanium panels. Titanium’s reflective properties give the building a warm look that is ever changing. Titanium is also three times stronger than steel, more resistant to weathering, and weighs less than steel.
Chromium 24
Manganese 25
Cobalt 27
The titanium panels that cover the outside of the Guggenheim Museum in Bilbao, Spain, were chosen for the metal’s physical properties.
Tungsten 74
Platinum 78
Cr
Mn
Co
W
Pt
[Ar]3d54s1
[Ar]3d54s2
[Ar]3d74s2
[Xe]4f145d46s2
[Xe]4f145d96s1
Strategic and Critical Materials Transition metals, such as chromium, manganese, cobalt, tungsten, and platinum, play a vital role in the economy of many countries because they have a wide variety of uses. As the uses of transition metals increase, so does the demand for these valuable materials. Ores that contain transition metals are located throughout the world. Locations of Some Strategic Metals Norway Nickel Cobalt
Turkey Chromium
France Manganese Gallium
Canada Nickel Copper Gallium Tantalum Zinc Cesium Cobalt Platinum Vanadium
Indonesia Tin Brazil Manganese Gold Aluminum Tin
South Africa Chromium Manganese Vanadium
Platinum Antimony Gold
The United States now imports more than 60 materials that are classified as “strategic and critical” because industry and the military are dependent on these materials.
918 Elements Handbook
Copper Gallium
China Antimony Cadmium Copper Tin Manganese Tantalum Vanadium
India Cadmium Chromium Manganese
Gabon Manganese
Mexico Zinc Copper Cadmium Manganese Strontium
Russia Chromium Platinum
Japan Cadmium
Jamaica Aluminum
Bolivia Antimony Tin
©Colin Walton/Alamy
Antimony Cobalt Nickel
Australia Copper Aluminum Platinum Tin Nickel Manganese Tantalum Zinc
Real-World Applications Iron 26
Crust
Nickel 28
Outer mantle Inner mantle
Fe 6
2
8
[Ar]3d 4s
2
[Ar]3d 4s
Outer core (iron and nickel) Inner core (iron)
Earth’s Iron Core
Earth’s core is a solid iron sphere about the size of the Moon. Surrounding the inner core, there is an outer liquid core that contains a nickel-iron alloy. Scientists think the iron core formed when multiple collisions during Earth’s early history resulted in enough heat to melt metals. In the molten state, the densest materials, including iron and nickel, settled to the center and became Earth’s core. The less-dense materials remained at the surface. As Earth cooled, the outer layers solidified, creating Earth’s mantle and crust.
Earth’s crust and mantle insulate the hot iron core.
Copper Microchips
Copper 29
For many years, aluminum was used to make computer microchips. Although copper is a better electrical conductor than aluminum, it was not until the late 1990s that the technology existed to use copper in microchips. Combined with the extremely small size of copper wires, this allows copper microchips to be smaller and to operate 25 to 30 times faster than other kinds of microchips. To make wires this small, the copper must be between 99.999 and 99.9999% pure.
Cu [Ar]3d104s1
To create a copper microchip, first a layer of tantalum coats a silicon substrate. Then, copper is deposited using a vacuum process. Copper chips like this one are used in handheld games, computers, and other electronic devices.
Titanium 22
Chromium 24
Iron 26
Cobalt 27
Copper 29
Cr
Fe
Co
Cu
[Ar]3d24s2
[Ar]3d54s1
[Ar]3d64s2
[Ar]3d74s2
[Ar]3d104s1
Paint Pigments Paints are a mixture of particles of pigment in a liquid base. Once the liquid evaporates, the pigment particles coat a painted surface. Transition elements and their compounds are often used as paint pigments. Iron oxides are used as red, yellow, and brown pigments. Chromium, copper, and cobalt compounds produce green and blue Artists can create their own paints by mixing dry pigments pigments. Titanium dioxide is often used for white paint. in a liquid base such as oil, latex, or even egg yolk. Elements Handbook 919 (t)©Roger Harris/Photo Researchers, Inc., (c)©Tom Pantages, (b)©Kalicoba/Alamy
Groups 3–12: Transition Elements Gilding
Gold 79
Covering an ordinary object with gold foil or gold leaf can make the object look like it is made of solid gold. The process, which is called gilding, has been used for more than 5000 years. To create gold foil, gold is hammered until it is very thin. The thinnest sheets are called gold leaf. They can be as thin as 0.1 mm thick. It takes skill and a special gilder’s brush to handle sheets this thin, but the results can be spectacular.
Au [Xe]4f145d106s1
Egyptian King Tutankhamun’s coffin was made of wood covered with gold foil. It has lasted more than 3000 years.
Cadmium 48
Gold 79
Cd
Au
[Kr]4d105s2
[Xe]4f145d106s1
Plastic sheet
Au Au (10 nm)
Touch Sensors for Robot Fingers Imagine a surgeon using a robot for microsurgery. In the future, it might be possible for the surgeon to feel what is happening as the robot makes a microsuture. Future robots might use thin, film sensors to mimic the human sense of touch. These sensors are built on a glass base from alternating layers of nanoparticles of gold and cadmium sulfide separated by layers of plastic. The entire sensor is only 100 nm thick and works by transmitting an electro-luminescent signal and electric current when regions of the sensor are touched.
Manganese 25
Iron 26
Copper 29
Zinc 30
CdS (3 nm) Glass This touch sensor is made from nanoparticles of gold and cadmium sulfide.
Silver 47
Cadmium 48
Mn
Fe
Cu
Zn
Ag
Cd
[Ar]3d54s2
[Ar]3d64s2
[Ar]3d104s1
[Ar]3d104s2
[Kr]4d105s1
[Kr]4d105s2
Biotreatment of Acid Mine Wastes Mining operations can generate acidic wastewater that contain harmful levels of dissolved transition metals, including manganese, iron, copper, zinc, silver, and cadmium. One treatment method uses naturally occurring anaerobic bacteria to remove all of the oxygen. Then sulfate-reducing bacteria convert sulfuric acid in the mine waste to sulfide. Sulfide reacts with metals in the wastewater to form metal sulfide precipitates, which can be recovered and processed for commercial use. 920 Elements Handbook (t)©The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)©Theodore Clutter/Photo Researchers, Inc.
Untreated acid mine drainage can contaminate streams with harmful concentrations of transition metals. The red-orange color of the water comes from iron compounds.
Real-World Applications Gadolinium 64
Gd [Xe]4f75d16s2
Magnetic Resonance Imaging Gadolinium contrast agents are compounds that enhance differences between normal tissue and abnormal tissue, such as tumors, in magnetic resonance imaging (MRI) scans. The gadolinium compounds are injected directly into the bloodstream prior to an MRI scan. Tumors accumulate more of the gadolinium compounds than normal tissue. Gadolinium enhances MRI images because it is paramagnetic. Magnetic resonance imaging uses a strong magnetic field and radio waves to stimulate water molecules to an excited state. The MRI image is formed as water molecules relax back to their normal state. Gadolinium speeds up the relaxation rate, which improves the contrast between normal and abnormal tissue.
Thorium 90
Lawrencium 103
Th
Lr
[Rn]6d27s2
[Rn]5f146d17s2
This gadolinium-enhanced MRI scan from a patient with multiple sclerosis shows several areas of scar tissue (white patches).
Reorganizing the Periodic Table The actinides are a row of radioactive elements from thorium to lawrencium. They were not always separated into their own row in the periodic table. Originally, the actinides were located within the d-block following actinium. In 1944, Glenn Seaborg proposed a reorganization of the periodic chart to reflect what he knew about the chemistry of the actinide elements. He placed the actinide series elements in their own row directly below the lanthanide series. Seaborg had played a major role in the discovery of plutonium in 1941. His reorganization of the periodic table made it possible for him and his coworkers to predict the properties of possible new elements and facilitated the synthesis of nine additional transuranium elements. Seaborg won the Nobel Prize in Chemistry in 1951 for his work. Element 106, seaborgium, was named in his honor.
Assessment 21. Compare the electron configurations of the main transition elements and the inner transition elements. 22. Explain how some transition metals can form ions with more than one charge. 23. Identify countries that export only one “strategic and critical” transition metal to the United States. 24. Predict Which elements would you expect to have properties most closely related to gold?
25. Calculate A particular copper-chip manufacturing process specifies that the copper must be 99.999 to 99.9999% pure. Calculate the maximum limit for impurities in the copper in parts per million (ppm). 26. Hypothesize Silver is the best conductor of electricity. Hypothesize why silver is not used for electric wires if it is such a good conductor of electricity.
Elements Handbook 921 (t)©ISM/Phototake, (b)©Fritz Goro/Time & Life Pictures/Getty Images
Group 13: Boron Group Boron 5
B
[He]2s22p1
Aluminum 13
Al
[Ne]3s23p1
Gallium 31
Ga
[Ar]4s23d104p1
Indium 49
Physical Properties • Most of the elements in group 13 are metals that have a silvery-white appearance. The exception is boron, which is pure black. Thallium is initially silvery, but oxidizes quickly. • Boron is a metalloid. The remaining group 13 elements are metals. • Elements in this group are relatively lightweight and soft, except for boron. Boron is extremely hard—almost as hard as diamond. • The group 13 elements are solids at room temperature. Gallium melts slightly above room temperature. • They have higher boiling points than the alkaline earth metals and lower boiling and melting points than the carbon group elements. Melting Points and Boiling Points 2076
B Al
Thallium 81
Ga
Tl
B
2.460
Al
2.700
3927
In
[Kr]5s24d105p1
Densities
660 2519 30
MP BP
2204
Ga
157
In
In
2072
[Xe]6s24f145d106p1
304
Tl
1000
2000
7.310
Tl
1473 0
5.904
3000
4000
11.850 0
3
6
Temperature (°C)
9
12
g/mL
Common Reactions • B, Al, Ga, In, and Tl react with oxygen to form metal(III) oxides, such as aluminum(III) oxide. Example: 4Al(s) + 3O 2(g) → 2Al 2O 3(s) • B and Al react with nitrogen to form nitrides, such as boron nitride. Example: 2B(s) + N 2(g) → 2BN(s) • Al, Ga, In, and Tl react with halogens to form metal(III) halides, such as gallium(III) fluoride. Example: 2Ga(s) + 3F 2(g) → 2GaF 3(g) • Tl reacts with halogens to form metal(I) halides, such as thallium(I) fluoride. Example: 2Tl(s) + F 2(g) → 2TlF(s) • B reacts with halogens to form covalent compounds, such as boron trichloride. Example: 2B(s) + 3Cl 2(g) → 2BCl 3(g) • Tl reacts with water to form thallium hydroxide and hydrogen gas. Example: 2Tl(s) + 2H 2O(l) → 2TlOH(aq) + H 2(g) 922 Elements Handbook
Element Facts Atomic Properties • Each element in group 13 has three valence electrons and an electron configuration ending with ns 2np 1. • Except for boron, the group 13 elements lose their three valence electrons to form ions with a 3+ charge. Some of the elements (Ga, In, and Tl) also have the ability to lose just one of their valence electrons to form ions with a 1+ charge. • Boron participates only in covalent bonding. • Atomic radii and ionic radii generally increase going down the group and are similar in size to the group 14 elements. • First ionization energies for the group 13 elements generally decrease going down the group. First Ionization Energies
Electronegativities 801
B
B
578
Al
Ga
579
Ga
1.81
In
1.78
558 589
Tl 0
200
400
600
B 85
B3 20
Al 143
Al3+ 50
Ga 135
Ga3+ 62
In 167
In3 81
Tl 170
Tl3 95
+
+
+
1.61
Tl 800
Ionic radius (pm)
2.04
Al
In
Atomic radius (pm)
1.62 0
0.5
kJ/mol
Analytical Tests With the exception of aluminum, which is one of the most abundant elements in Earth’s crust, most of the boron group elements are rare. None of the elements are found free in nature. Three can be identified by flame tests, as shown in the table. Boron produces a bright green color, while indium produces an indigo blue color. Thallium produces a green color. More precise identification methods involve advanced spectral and imaging techniques.
1.0
1.5
2.0
Pauling units
Flame Test Results
Element
Color of Flame
Boron
initial bright green flash
Indium
indigo blue
Thallium
green
indium Indium was named after its distinct indigo blue spectral line. Elements Handbook 923
Group 13: Boron Group Boron 5
B [He]2s22p1
Detergent Sodium perborate (NaBO 3·H 2O or NaBO 3·4H 2O) is one of the key ingredients in powdered laundry detergent. The hydrate, formed by combining borax pentahydrate (Na 2B 4O 7·5H 2O) with hydrogen peroxide and sodium hydroxide, releases oxygen during the laundering process to help make clothes whiter and brighter. Sodium perborate is the chemical of choice because it remains stable over long periods of time, helps maintain wash water pH, and increases the solubility of detergent ingredients.
Many powder laundry detergents contain boron compounds that help make clothes cleaner.
Aluminum 13
Al
A thin aluminum film coats the depressions embedding information in a compact disc and makes the surface of a CD shiny.
[Ne]3s23p1
CDs and DVDs Have you ever wondered what your CDs and DVDs are made of? The inside is made of plastic, about 1 mm thick. A machine embeds digital information, such as sound recordings, into the plastic as a series of bumps and then coats the plastic with aluminum. That is what makes CDs and DVDs so shiny. A thin layer of acrylic protects the aluminum. The shiny surface allows the laser from the CD or DVD player to read the information reflected off the disc’s surface.
Gallium 31
Ga [Ar]4s23d104p1
HD DVDs Videos in high-definition (HD) have higher quality sound and pictures than regular DVDs. However, HD technology requires more information than can be stored on regular DVDs. A red laser is used to read and write data on a regular DVD. Blue lasers made from gallium nitride (GaN) are used to read and write data on HD DVDs. Blue light has a shorter wavelength than red light, so a blue laser can read more densely packed information, allowing more information to be stored in the same amount of space.
HD DVDs store up to 50 gigabytes (GB) of information, compared to 4.7 GB on a regular DVD. 924 Elements Handbook (t)©Tom Pantages, (tc)©Greg Stott/Masterfile, (b)©Toshiba Corporation images, (bc)©Eye of Science/Photo Researchers, Inc.
Real-World Applications Flat-Screen Televisions
Indium 49
Known as ITO in the electronics industry, indium-tin oxide has proven to be the cornerstone of liquid crystal display (LCD) technology. During production, a thin layer of indium-tin oxide (a mixture of In 2O 3 and SnO 2) is used to coat the glass contained within an LCD flat-screen panel. This allows the glass to be both conductive and transparent. About half of the world’s indium is used to make LCDs.
In [Kr]5s24d105p1
Indium-tin oxide is one of the main components in LCD flat-panel televisions.
Thallium 81
Tl
[Xe]6s24f145d106p1
Cardiac Scans Thallium-201 is a radioisotope used by medical professionals to determine the health of a person’s heart. During a thallium-201 scan, also called a heart stress test, a patient performs physical activity and is injected with thallium-201 one to two minutes before stopping the activity. The isotope emits gamma rays that are recorded by a detector to display a two-dimensional image of the heart and its blood supply. If gamma rays are not detected in certain areas in and around the heart, the areas are considered “cold.” This means that the blood supply has been impeded or blocked, a condition that often leads to heart attack or stroke.
The dark blue areas in this thallium-201 scan are areas with low blood supply.
Assessment 27. Describe how the properties of boron are different from the other group 13 elements.
30. Explain why HD DVDs can store more information than regular DVDs.
28. Identify what an unknown element would be if it produced a green flash of color at the beginning of a flame test.
31. Summarize how “cold” areas in thallium-201 scans could correspond to artery blockages.
29. Describe any trends in the first ionization energies of the group 13 elements.
32. Calculate It is estimated that 123,000 aluminum cans are recycled each minute. Assume that each can has a mass of 14 g. Determine how much aluminum (kg) is recycled during the month of September.
Elements Handbook 925 (t)©Judith Collins/Alamy, (b)©Collection CNRI/Phototake
Group 14: Carbon Group Carbon 6
C [He]2s22p2
Silicon 14
Si [Ne]3s23p2
Germanium 32
Ge [Ar]4s23d104p2
Tin 50
Physical Properties • Elements in the carbon group increase in metallic character going down the group. Carbon is a nonmetal. Silicon and germanium are metalloids. Tin and lead are metals. • Carbon can be a black powder; a soft, slippery gray solid; a hard, transparent solid; or an orange-red solid. • Silicon can be a brown powder or a shiny-gray solid. • Germanium is a shiny, gray-white solid that breaks easily. • Tin also occurs in two forms. One form is a silvery-white solid, while the other is a shiny-gray solid. Both forms are ductile and malleable. • Lead is a shiny-gray solid. It is soft, malleable, and ductile. • Moving down the group, melting and boiling points decrease and densities increase.
Sn
3527
C Lead 82
Pb [Xe]6s24f145d106p2
Densities
Melting Points and Boiling Points
[Kr]5s24d105p2
4027 1414
Si
2900 938
Ge
MP BP
2820 232
Sn
327
1000
2000
Si
2.330
Ge
5.323 7.310
Pb
1749 0
2.267
Sn
2602
Pb
C
3000
4000
11.340 0
Temperature (°C)
3
6
9
12
g/mL
Common Reactions At room temperature, carbon group elements are generally unreactive. Reactions do occur under elevated temperature conditions. • C, Si, Ge, and Sn react with oxygen to form oxides, such as carbon dioxide. Example: C(s) + O 2(g) → CO 2(g) • C, Si, Ge, and Sn react with halogens to form halides, such as silicon chloride. Example: Si(s) + 2Cl 2(l) → SiCl 4(g) • Sn and Pb react with bases to form hydroxo ions and hydrogen gas. Example: Sn(s) + KOH(aq) + 2H 2O(l) → K +(aq) + Sn(OH) 3 -(aq) + H 2(g) 926 Elements Handbook ©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.
Silicon chloride (SiCl4) reacts with water to form silicon dioxide and hydrochloric acid, which turns litmus paper pink.
Element Facts Atomic Properties
Atomic radius (pm)
Ionic radius (pm)
C 77
C4 15
Si 118
Si4 41
• Atomic and ionic radii increase moving down the group and are similar to their corresponding group 13 elements.
Ge 122
Ge4+ 53
• Except for carbon, the group 14 elements have similar ionization energies and no distinct pattern of electronegativities.
Sn 140
Sn4 71
Pb 146
Pb4 84
• Each element in group 14 has four valence electrons and an electron configuration ending with ns 2np 2. • Carbon group elements participate in covalent bonding with an oxidation number of 4+. Tin and lead can also have an oxidation number of 2+. Carbon and silicon have an oxidation number of 4- in some compounds. • Carbon, silicon, and tin occur as allotropes.
1087
Si
762 709
Sn
Pb
716
Pb
200
400
600
800
+
1.90 2.01
Ge
Sn
0
+
2.55
C Si
787
Ge
+
Electronegativities
First Ionization Energies C
+
1000
kJ/mol
• C reacts with water to form carbon monoxide and hydrogen gas. Example: C(s) + H 2O(g) → CO(g) + H 2(g) • Si reacts with water to form silicon dioxide and hydrogen gas. Example: Si(s) + 2H 2O(l) → SiO 2(s) + 2H 2(g) • Sn and Pb react with acids to form hydrogen gas. Example: Pb(s) + 2HBr(aq) → Pb Br 2(aq) + H 2(g) • C reacts with hydrogen to form hydrocarbons, such as propane. Example: 3C(s) + 4H 2(g) → C 3H 8(g)
1.96 2.33 0
0.5
1.0
1.5
2.0
2.5
Pauling units
Analytical Tests Because the group 14 elements bond covalently, they do not lend themselves to identification through flame tests. The exception is lead, which produces a light-blue color. The carbon group elements can be identified through analysis of their physical properties (melting point, boiling point, density), emission spectra, or reactions with other chemicals. For example, tin and lead form precipitates when added to specific solutions.
If lead nitrate is added to potassium iodide, a yellow precipitate of lead iodide forms. Elements Handbook 927 ©David Taylor/Photo Researchers, Inc.
Group 14: Carbon Group Carbon 6
C [He]2s22p2
Graphite Golf Shafts Some golf shafts are created by fusing sheets of graphite together with a binding material. The use of graphite instead of traditional steel allows greater versatility in club design and construction. Graphite sheets can be layered to vary the weight and stiffness of the club, which for many golfers translates into greater shot distance and overall performance. Graphite also offers greater durability than steel for golfers with powerful swings.
Graphite can be easily formed into sheets due to its atomic structure.
Diamond Cutting
Too deep
Ideal
Too shallow
The way a diamond is cut determines how well light is reflected and refracted within the gemstone.
The way a diamond is cut is one of the “4 Cs” that gemologists use to determine a diamond’s value. If diamond is the hardest mineral on Earth, then how is it possible to cut a diamond? Diamond cutters use other diamonds and lasers to create facets that reflect and refract light. The more precisely the cuts are made, the greater the gem’s brilliance. If a diamond cut is too shallow or too deep, light escapes from the diamond without traveling back to the eye, resulting in a lackluster appearance.
Nanotubes Fullernes form a group of carbon allotropes. There are spherical fullerenes nicknamed buckyballs and cylindrical fullerenes known as buckytubes or nanotubes. Fullerenes have yet to display all of their capabilities to scientists. One of the most promising areas of fullerene research involves the creation of nanotubes. Nanotubes are sheets of carbon that are rolled up into cylinders. These cylinders are strong—due to the hexagonal structure of the carbon atoms—and have unique conducting properties. Fullerene nano-technology on the horizon includes the development of faster computer chips, smaller electronic components, and more advanced space-exploration vehicles. The hexagonal structure of carbon atoms gives extraordinary strength to carbon nanotubes.
928 Elements Handbook (tr)©CHEMICAL DESIGN/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (tr)©Johner Images/Getty Images, (b)©DR TIM EVANS/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.
Real-World Applications Step 1 Thin wafers are cut from a bar of silicon.
Silicon 14
Si [Ne]3s23p2
Computer Chips Computer chips are everywhere. From pet-identification systems to laptop computers—any device that can be programmed contains a computer chip. Silicon’s abundance and ability as a semiconductor make it an ideal material for the production of computer chips. The first step in making a computer chip involves cutting pure silicon into wafer-like pieces. Silicon dioxide (SiO 2) is then cultivated on each wafer. Layers upon layers of silicon dioxide and other chemicals are used to create chips for specific functions.
Step 2 A layer of silicon dioxide is added to each wafer.
More than 250 steps are needed to create one computer chip.
Glass Almost 40% of the sand produced in the United States is used for glass production. Glass is created by first melting silicon dioxide (SiO 2) obtained from sand with sodium carbonate and then supercooling the mixture. This results in a solid whose structure resembles a liquid and whose physical properties make it ideal for glassmaking. For manufacturing purposes, sand that yields at least 95% SiO 2 with no impurities is required for making glass products, such as exterior panels on buildings, automotive windshields, and commercial beverage containers. Manufacturers of high precision optical instruments, such as telescopes and microscopes, require sand that contains more than 99.5% SiO 2. Sand dunes in Michigan provide millions of metric tons of sand each year. Sand produced (metric tons)
Sand Production in Michigan
2,500,000 2,000,000 1,500,000 1,000,000 500,000 0
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 Year
Elements Handbook 929 ©Phil Schermeister/CORBIS
Group 14: Carbon Group Germanium 32
Ge [Ar]4s23d104p2
Night Vision Lenses that contain germanium are found in an array of night vision equipment including goggles, binoculars, and cameras. Unlike ordinary glass lenses, germanium-containing lenses are transparent to infrared radiation. Infrared radiation is emitted by objects that radiate heat. Infrared radiation is part of the electromagnetic spectrum, a region distinct from the visible spectrum, so special equipment is needed to detect it. Night vision is used for military and security applications, to monitor wildlife, to navigate roads, and to locate objects that have been hidden by criminals.
The germanium lens in night vision goggles focuses infrared radiation emitted from living things.
Fiber Optic Cables Fiber optic cables are responsible for the transmission of information both across the street and across the globe. These cables are made of extremely pure glass that allows light signals to travel the span of the cable without losing a significant amount of energy. Each fiber optic cable consists of three main parts: a core, cladding, and a buffer coating. The core is made by exposing gaseous germanium tetrachloride (GeCl 4) to oxygen, resulting in germanium dioxide (GeO 2). The germanium dioxide helps the light signal move effectively along the cable. Germanium is added to the core of a fiber optic cable to improve the efficiency of the light signal.
Tin 50
Sn [Kr]5s24d105p2
Food Packaging A quick trip to the grocery store reveals that many different foods are stored in cans. Soft drinks, fruits, vegetables, and even meats can be stored in cans. Cans are made from sheets of steel that are coated on both sides with pure tin. Known as tinplate, the metal is both durable and resistant to rusting and corrosion. These properties allow foods to stay fresh on the shelf for long periods of time, and to be transported long distances. More than 200 million cans are used per day in More than 2500 different products are packaged in cans. the United States alone. 930 Elements Handbook (t)©Martin Dohrn/naturepl.com, (c)©GOODSHOOT - JUPITERIMAGES FRANCE/Alamy, (b)©Allan H Shoemake/Taxi/Getty Images
Real-World Applications Lead 82
Pb
[Xe]6s24f145d106p2
Leaded or Unleaded? In the early 1900s, the automotive industry needed to solve a problem that people complained about when they drove their cars—knocking in the engine. At the time, little was known about the chemistry of fuels and fuel additives. Researchers spent seven years searching for a gasoline additive that effectively reduced knocking before discovering tetraethyl lead (Pb(C 2H 5) 4). Further research revealed the health and environmental risks posed by lead, leading to the development of unleaded fuels that reduce knocking. Unleaded fuels reduce knocking in car engines and do not have the health and environmental concerns posed by leaded fuels.
Batteries
Anode (+) Cathode (-)
Lead
Lead dioxide
Electrolytic solution Eighty-five percent of the lead used in the United States goes into making lead-acid batteries.
A car battery is composed of three main parts: one electrode made of lead, one electrode made of lead dioxide (PbO 2), and an electrolytic solution made with sulfuric acid (H 2SO 4). That is why car batteries are also called lead-acid batteries. The battery’s energy comes from the chemical reactions occurring between the electrodes and the electrolyte. During the chemical reaction, electrons are produced that accumulate on the lead electrode. When a wire connects the electrodes, electrons flow freely from the lead electrode to the lead-dioxide electrode, and the battery discharges. Applying a current reverses the reaction, recharging the battery.
Assessment 33. Write the electron configuration of tin. 34. Summarize the physical properties of the elements in group 14. 35. Compare and contrast the atomic properties of the group 13 and group 14 elements. 36. Predict what product or products will be formed if bromine gas reacts with solid carbon under elevated temperature conditions.
37. Consider why graphite is the most suitable carbon allotrope for golf clubs. 38. Calculate Pure diamond has a density of 3.52 g/cm 3, while graphite has a density of 2.20 g/cm 3. Recall that density = mass/volume. Samples of diamond and graphite each displace 4.60 mL of water. What is the mass of each sample?
Elements Handbook 931 ©Chinch Gryniewicz; Ecoscene/CORBIS
Group 15: Nitrogen Group Physical Properties
Nitrogen 7
• Like the elements in group 14, the group 15 elements increase in metallic character going down the group. Nitrogen and phosphorus are nonmetals. Arsenic and antimony are metalloids. Bismuth is a metal.
N [He]2s22p3
• Also like group 14, the nitrogen group elements vary in appearance.
Phosphorus 15
• Nitrogen is a colorless, odorless gas (N 2).
P
• Phosphorus exists in three allotropic forms, which are all solids. The forms are white, red, and black in color.
[Ne]3s23p3
Arsenic 33
• Arsenic is a shiny, gray solid that is brittle. Under certain conditions, it can become a dull, yellow solid. Arsenic sublimates when heated.
As [Ar]4s23d104p3
• Bismuth is a shiny, gray solid that has a pink cast to it. It is one of the least conductive metals on the periodic table and is also brittle.
Antimony 51
Sb 2
10
• Antimony is a shiny, silver-gray solid that is very brittle.
3
[Kr]5s 4d 5p
Bismuth 83
Bi [Xe]6s24f145d106p3
• Boiling points and densities of the group 15 elements generally increase going down the group. Melting Points and Boiling Points
Densities
-210 -196
N
44
P
P
277
As
817 614
Sb
631
MP BP
1587 271
Bi
1564
-500
0
500
1000
1.823
As
5.727
Sb
6.697
Bi
1500
9.780 0
Temperature (°C)
2
4
6
8
10
g/mL
Common Reactions • At high temperatures are increased, nitrogen reacts with oxygen to form nitric oxide. Example: N 2(g) + O 2(g) → 2NO(g) • At high temperature and pressure, nitrogen reacts with hydrogen to form ammonia. Example: N 2(g) + 3H 2(g) → 2NH 3(g) • P reacts with an excess of oxygen to form phosphorus(V) oxide. Example: P 4(s) + 5O 2(g) → P 4O 10(s) • P, As, Sb, and Bi react with oxygen to form element(III) oxides. Example: P 4(s) + 3O 2(g) → P 4O 6(s) • P, As, Sb, and Bi react with halogens to form trihalides. Example: 2Sb(s) + 3Cl 2(g) → 2SbCl 3(s) 932 Elements Handbook
Element Facts Atomic Properties
Atomic radius (pm)
Ionic radius (pm)
• Nitrogen is diamagnetic, meaning it is repelled by magnetic fields. This indicates that all of nitrogen’s electrons are paired.
N 75
N3 146
• Nitrogen can have oxidation numbers ranging from −3 to +5.
P 110
P3212
As 120
As3222
Sb 140
Sb5+ 62
Bi 150
Bi5 74
• Each element in group 15 has five valence electrons and an electron configuration ending with ns 2p 3.
• Phosphorus, arsenic, and antimony can have oxidation numbers of −3, +3, and +5. • Bismuth can have oxidation numbers of +3 and +5. • Going down the group, first ionization energies and electronegativities decrease and atomic radii increase. Electronegativities
First Ionization Energies N
1402
P
1012 947
As Sb
834
Bi
703 0
500
1000
1500
kJ/mol
N
3.04
P
2.19
As
2.18
Sb
2.05
Bi
2.02 0
1.0
2.0
-
+
3.0
Pauling units
Analytical Tests Because group 15 elements bond covalently and most are nonmetallic in nature, they do not lend themselves to identification through flame tests. The exceptions are antimony and bismuth. Antimony produces a faint green or blue color when placed in a flame, while bismuth produces a light purple-blue color. The nitrogen group elements can be identified through analysis of their physical properties (melting point, boiling point, density), emission spectra, or reactions with other chemicals. For example, bismuth ions precipitate when added to tin(II) hydroxide and sodium hydroxide. Another example is the test for ammonium compounds. These compounds, which contain nitrogen, can be identified by their distinct smell when added to sodium hydroxide and by the color change observed when red litmus paper is placed at the opening of the test tube. The ammonia vapor produced by mixing ammonium compounds (NH 4 +) with sodium hydroxide changes red litmus paper to blue. Elements Handbook 933 ©Tom Pantages
Group 15: Nitrogen Group Nitrogen 7
N [He]2s22p3
Nitrogen-Fixing Bacteria Although nitrogen makes up about 78% of Earth’s atmosphere, it occurs in a form that plants cannot use. Some bacteria in the soil convert nitrogen gas (N 2) from the air into a usable form by breaking the molecule’s triple bond. This creates a form of nitrogen that plants uptake into their root systems. Plants need nitrogen to build cellular components, to participate in photosynthesis, and to transfer energy effectively. Commercial fertilizers mimic the action of nitrogen-fixing bacteria by providing nitrogen and other nutrients in forms that are easily incorporated into the plant system.
Nitrogen-fixing bacteria are found in protective nodules along plant roots.
Liquid Nitrogen Cryotherapy Cryotherapy, also called cryosurgery, is a medical procedure used to remove a variety of skin lesions, including carcinomas, warts, and other tissue abnormalities. The procedure involves dabbing liquid nitrogen onto the affected area to freeze and kill the cells. This is then repeated over time until all of the affected tissue is gone. Research has shown that patients who undergo cryotherapy treatment for certain types of lesions experience a lower recurrence rate than patients who receive radiation or surgical removal. Doctors use liquid nitrogen as one of the treatment options to remove certain types of skin cancer. More than 1.3 million new cases of skin cancer are recorded each year in the United States.
Phosphorus 15
P [Ne]3s23p3
Safety Matches Safety matches consist of two main parts: the tip and the textured strip on the side of the box. The tip contains potassium chlorate, and the textured strip contains red phosphorus. When these two chemicals come in contact, a chemical reaction occurs, and fire is produced. In safety matches, the chemicals needed for reaction are separate from each other. In strike-anywhere matches, both chemicals are contained in the The strike of a match initiates a chemical matchstick so that ignition can occur using almost any surface. reaction that produces a flame.
934 Elements Handbook (t)©Wally Eberhart/Visuals Unlimited, (c)©Dr P. Marazzi/Photo Researchers, Inc., (b)©Al Francekevich/CORBIS
Real-World Applications Antimony 51
Sb [Kr]5s24d105p3
Flame Retardants Antimony trioxide (Sb 2O 3) is used along with brominated or chlorinated compounds in the making of flame retardants that protect plastics, paints, and some textile products. Antimony trioxide increases the effectiveness of the halogen compounds in preventing the spread of a fire. Research shows that approximately 5000 deaths in the United States are caused by fire each year. The use of flame retardants improves escape time, releases less toxic gases and heat, and decreases fire damage.
Antimony trioxide fire retardants coat electrical wires and components found in a variety of everyday appliances.
Bismuth 83
Bi [Xe]6s24f145d106p3
Soothing Upset Stomachs Originally named Mixture Cholera Infantum, the popular pink medicine now used for upset stomachs was created to combat cholera. This mixture, whose active ingredient was bismuth subsalicylate (C 7H 5BiO 4), proved effective in treating the nausea and vomiting associated with infant cholera. However, it could not cure the disease itself. Nonetheless, the product became a wide success. As science advanced and doctors realized that cholera was contracted from bacteria (which could be treated with antibiotics), bismuth subsalicylate found its way into medical treatments for a variety of other stomach problems, including heartburn, indigestion, and ulcers.
Bismuth subsalicylate (C 7H 5BiO 4) is the active ingredient in some medicines used to treat stomach problems.
Assessment 39. Identify which elements in the nitrogen group are metals, nonmetals, or metalloids. 40. Explain why nitrogen does not react with other elements under normal temperature conditions.
43. Write a balanced chemical equation for the reaction between potassium chlorate (KClO 3) and red phosphorus (P 4). The reaction produces potassium chloride (KCl) and phosphorus pentoxide (P 4O 10).
41. Explain why a compound of antimony is used in flame retardants that protect plastic products.
44. Predict what product will be formed when bismuth is combined with chlorine.
42. Describe how fertilizers mimic the action of nitrogenfixing bacteria.
45. Calculate A 35-kg bag of fertilizer contains 5.25 kg of nitrogen. What percentage of the fertilizer is nitrogen?
Elements Handbook 935 (t)©Michael Newman/Photo Edit, (bl)©Michael Newman/photoedit, (br)©Janet Horton
Group 16: Oxygen Group Oxygen 8
O [He]2s22p4
Sulfur 16
S [Ne]3s23p4
Selenium 34
Se [Ar]4s23d104p4
Tellurium 52
Physical Properties • At room temperature, oxygen is a clear, odorless gas, while the other group 16 elements are solids. • Some of the group 16 elements have several common allotropic forms. Oxygen can exist as either O 2 or O 3 (ozone). Sulfur has many allotropes. Selenium has three common allotropes: amorphous gray, red crystalline, and red/black powder. • Oxygen, sulfur, and selenium are nonmetals. Tellurium and pollonium are metalloids. • O 2 is paramagnetic, which means that a strong magnet will attract oxygen molecules. • Except for polonium, boiling points and melting points of the group 16 elements increase with increasing atomic number. Density increases with increasing atomic number for all group 16 elements.
Te
Polonium 84
Po [Xe]6s24f145d106p4
Densities
Melting Points and Boiling Points
[Kr]5s24d105p4
O
-218 -183 115
S
221
Se
1.960
Se
685
4.819
Te
450
Te
S
MP BP
445
6.240
988 254
Po
962
-400 -200
0
200 400
600
800
Po
1000
9.196 0
2
4
6
8
10
g/mL
Temperature (°C)
Common Reactions • S, Se, Te, and Po react with oxygen to form oxides, such as selenium oxide.
Oxides of Main Group Elements
H
H 2O,H 2O 2
Example: Se(s) + O 2(g) → SeO 2(s)
1
Li 2O, Na 2O, K 2O, Rb 2O, Cs 2O, Fr 2O
• Oxygen also reacts with hydrogen and most of the elements in groups 1, 2, 13, 14, 15, and 17 to form oxides, such as silicon oxide and magnesium oxide.
2
BeO, MgO, CaO, SrO, BaO, RaO
13
B 2O 3, Al 2O 3, Ga 2O 3, In 2O 3, In 2O, Ti 2O
14
CO 2, SiO 2, GeO 2, SnO 2, SnO, PbO 2, PbO
15
N 2O 5, N 2O 3, N 2O, NO, NO 2, P 4O 10, P 4O 6, As 2O 5, As 4O 6, Sb 2O 5, Sb 4O 6, Bi 2O 3
17
Cl 2O 7, Cl 2O, Br 2O, I 2O 5
Examples: Si + O 2 → SiO 2 2Mg + O 2 → 2MgO • O, S, Se, Te, and Po react with halogens to form halides, such as sulfur(VI) fluoride. Example: S(s) + 3F 2(g) → SF 6(l) 936 Elements Handbook
Element Facts Atomic Properties • Each element in group 16 has six valence electrons and an electron configuration ending with ns 2np 4. • Group 16 elements can have many different oxidation numbers. For example, oxygen can have oxidation numbers of 2- and 1-, and sulfur can have oxidation numbers of 6+, 4+, and 2-. • Going down the elements in group 16, the atomic radii and ionic radii increase. • Electronegativity and first ionization energy decrease going down the elements in group 16. • Polonium has 27 known isotopes. All are radioactive.
Atomic radius (pm)
Ionic radius (pm)
O 73
O2 140
S 103
S2184
Se 119
Se2198
Te 142
Te2221
-
Po 168 First Ionization Energies 1314
O 1000
S Se
500
1000
2.58 2.55
Te
812 0
3.44
Se
869
Po
O S
941
Te
Electronegativities
2.10
Po 1500
kJ/mol
• Group 16 elements are involved in many important industrial reactions, such as the formation of sulfuric acid. Example: Sulfuric-acid production is a three-step process. 1) S(s) + O 2(g) → SO 2(g) 2) 2SO 2(g) + O 2(g) → 2SO 3(g)
2.00 0
1.0
2.0
3.0
4.0
Pauling units
Analytical Tests Oxygen can be measured in many different ways and in many different environments. For example, dissolved-oxygen meters measure oxygen in water samples. Dissolved-oxygen meters use an electrochemical reaction that reduces oxygen molecules to hydroxide ions. The meter measures the electric current produced during this reaction. The higher the oxygen concentration, the larger the current.
3) SO 3(g) + H 2O(l) → H 2S O 4(l)
Dissolved-oxygen tests are part of routine water quality monitoring. Elements Handbook 937 ©Chuck Place Photography
Group 16: Oxygen Group Oxygen 8
O [He]2s22p4
Photosynthesis Produces O 2 from H 2O Earth’s atmosphere is 21% oxygen by volume. Most of the oxygen in the atmosphere comes from photosynthesis. Photosynthetic organisms, including plants and cyanobacteria, use energy from sunlight to oxidize water. The result is hydrogen ions (H +) and oxygen (O 2). The reactions involved in this part of photosynthesis are called light reactions because they depend on light energy to proceed. During the dark reactions of photosynthesis, the hydrogen ions derived during the light reactions are combined with carbon dioxide (CO 2) to form Photosynthesis captures energy from glucose (C 6H 12O 6). The overall reaction for photosynthesis follows: sunlight and provides hydrogen ions to 6H 2O + 6CO 2 → C 6H 12O 6 + 6O 2
The Dual Nature of Ozone
Air Quality Index for Ozone
Index Values
Levels of Health Concern
Cautionary Statements
0–50
good
none
51–100
moderate
Unusually sensitive people should consider reducing prolonged or heavy exertion outdoors.
101–150 unhealthy for sensitive groups
Active children and adults, and people with lung disease, such as asthma, should reduce prolonged or heavy exertion outdoors.
151–200 unhealthy
Active children and adults, and people with lung disease should avoid prolonged or heavy exertion outdoors. Everyone else should reduce prolonged or heavy exertion outdoors.
201–300 very unhealthy
Active children and adults, and people with lung disease, such as asthma, should avoid all outdoor exertion. Everyone else should avoid prolonged or heavy exertion outdoors.
301–500 hazardous
Everyone should avoid all physical activity outdoors.
Data obtained from: Patient Exposure and the Air Quality Index. U.S. E.P.A. March 2006
938 Elements Handbook (t)©Scientifica/Visuals Unlimited, (b)©Glow Images/Alamy
synthesize glucose from carbon dioxide.
Ozone (O 3), an allotrope of oxygen, has three oxygen atoms per molecule instead of two. Like diatomic oxygen (O 2), ozone is a gas at room temperature. However, unlike O 2, ozone gas has a slight blue color and a distinctive odor that can be detected during a thunderstorm or near a high-voltage electric motor. Ozone is also more reactive than diatomic oxygen. At ground level, ozone can be a serious potential health hazard, irritating eyes and lungs. High groundlevel ozone concentrations are a particular threat on hot sunny days. The table illustrates how ozone affects air quality and health. On the other hand, stratospheric ozone protects Earth from harmful UV radiation by absorbing UV rays from sunlight.
Many cities issue air-quality alerts when groundlevel ozone levels are high.
Real-World Applications
[Ne]3s23p4
An Economic Indicator Sulfuric acid is one of the world’s most important industrial raw materials. In the United States, more sulfuric acid is produced than any other industrial chemical. Most sulfuric acid is used in the production of phosphate fertilizers. Sulfuric acid is also important in extracting metals from ore, oil refining, waste treatment, chemical synthesis, and as a component in lead-acid batteries. Sulfuric acid is so important that economists use its production as a measure of a nation’s industrial development.
Selenium 34
Se [Ar]4s23d104p4
Sulfuric acid
40 30
Chemical sales
20
Ammonia
500 400 300
10 0
200 100
Chlorine 1994
1996
1998
2000
$ Billions
S
Millions of metric tons
U.S. Chemical Production
Sulfur 16
2002
2004
0
Year Data obtained from: Chemical & Engineering News 83 (2005) and 84 (2006).
Sulfuric acid production in the United States is used to track chemical economic trends.
Photocopies Gray selenium is a photoconductor, which means it conducts electricity more efficiently in the presence of light than in the dark. Some photocopiers use this property to copy images. In a photocopier, a bright light shines on the original. Mirrors reflect the dark and light areas onto a drum coated with a thin layer of selenium. Because selenium is a photoconductor, the light areas conduct electricity, while the dark areas do not. As current flows through the drum, the light areas develop a negative charge and the dark areas develop a positive charge. Negatively charged toner particles are attracted to the positively charged dark areas to create a copy of the original image. Some of this same technology has been applied in developing new high-resolution digital detectors that use selenium as a photoconductor.
Gray selenium is a key component in many photocopiers.
Assessment 46. Identify the molecule that is the source of oxygen atoms for O 2 production during photosynthesis. 47. Explain why high ozone concentrations are harmful at ground level but beneficial in the upper atmosphere. 48. Calculate Approximately 90% of the sulfur used in the United States is used to make sulfuric acid. In 2004, 38.0 million metric tons of sulfuric acid were produced. How much sulfur did the United States use in 2004?
49. Apply Coal and petroleum products are sometimes contaminated with sulfur. When coal or petroleum containing sulfur is burned, sulfur dioxide (SO 2) can be released into the atmosphere. Use the information about the reactions involved in industrial sulfuric-acid production to infer how atmospheric sulfur dioxide contributes to acid precipitation.
Elements Handbook 939 ©Leslie Garland Picture Library/Alamy
Group 17: Halogen Group Physical Properties
Fluorine 9
• Fluorine and chlorine are gases at room temperature. Along with mercury, bromine is one of only two elements that are liquid at room temperature. Iodine is a solid that easily sublimes at room temperature.
F [He]2s22p5
• Fluorine gas is pale yellow. Chlorine gas is yellow-green. Bromine is a red-brown liquid. Iodine is a blue-black solid.
Chlorine 17
Cl
• Both boiling points and melting points of the group 17 elements increase with increasing atomic number.
[Ne]3s23p5
Bromine 35
Melting Points and Boiling Points
Br 2
10
5
F
[Ar]4s 3d 4p
-220 -188 -102 -34
Cl Iodine 53
Br
59
I [Kr]5s24d105p5
Astatine 85
At [Xe]6s24f145d106p5
MP BP
-7 114 184
I At
-400
302
-200
0
200
400
Temperature (°C)
Iodine crystals are a blue-black color. They produce a violet vapor when they sublime at room temperature.
Common Reactions • The halogens react with alkali metals and alkaline earth metals to form salts, such as potassium bromide and calcium chloride. Examples: 2K(s) + Br 2(g) → 2KBr(s) and Ca(s) + Cl 2(g) → CaCl 2(s) • The halogens can form acids, such as hydrochloric acid, by hydrolysis in water. Example: Cl 2(g) + H 2O(l) → HClO(aq) + HCl(aq) • Several important plastic polymers, including nonstick coatings and polyvinyl chloride, contain group 17 elements. Example: Polyvinyl chloride (vinyl) is made by a three-step process. 1) Ethene reacts with chlorine to form dichloroethane. C 2H 4(g) + Cl 2(g) → C 2H 4Cl 2(l) 2) At high temperature and pressure, dichloroethane is converted to vinyl chloride and HCl gas. C 2H 4Cl 2(l) → C 2H 3Cl(l) + HCl(g) 3) Vinyl chloride polymerizes to form polyvinyl chloride. 2n(C 2H 3Cl)(l) → (—CH 2–CHCl–CH 2–CHCl—) n(l) • Fluorine is the most active of all the elements and reacts with every element except helium, neon, and argon. Example: 2Al(s) + 3F 2(g) → 2AlF 3(s) 940
Elements Handbook
©Larry Stepanowicz/Visuals Unlimited
Element Facts Atomic Properties
Atomic radius (pm)
Ionic radius (pm)
• Electronegativities and first ionization energies decrease going down the elements in group 17.
F 72
F1 133
• Fluorine is the most electronegative element on the periodic table. Therefore, it has the greatest tendency to attract electrons.
Cl 100
Cl1181
• Astatine is a radioactive element with no known uses.
Br 114
Br1 195
I 133
I1 220
• Each element in group 17 has seven valence electrons and an electron configuration ending with ns 2np 5.
• The atomic radii and ionic radii of the group 17 elements increase going down the group. First Ionization Energies F
500
1000
2.96 2.66
At
920 0
3.16
I
1008
At
1500
-
3.98
Br
1140
I
F Cl
1251
Br
-
Electronegativities
1681
Cl
-
2000
2.20 0
1.0
kJ/mol
2.0
3.0
4.0
Pauling units
Analytical Tests Three of the halogens can be identified through precipitation reactions. Chlorine, bromine, and iodine react with silver nitrate, forming distinctive precipitates. Silver chloride is a white precipitate, silver bromide is a cream-colored precipitate, and silver iodide is a yellow precipitate. Chlorine, bromine, and iodine can also be identified when they dissolve in cyclohexane. As shown in the photo, when these halogens are dissolved in cyclohexane, the solution turns yellow for chlorine, orange for bromine, and violet for iodine.
The halogens are only slightly soluble in water (bottom layer). However, in cyclohexane (top layer), chlorine (yellow), bromine (orange), and iodine (violet) readily dissolve.
Elements Handbook 941 ©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.
Group 17: Halogen Group Fluorine 9
F [He]2s22p5
Fluoridation Fluorine compounds added to toothpaste and public drinking-water supplies have greatly reduced the incidence of cavities. Fluoride protects teeth in two ways. As teeth form, fluoride from food and drink is incorporated into the enamel layer. The fluoride makes the enamel stronger and more resistant to decay. Once teeth are present in the mouth, fluoride in saliva bonds to teeth and strengthens the surface enamel. This surface fluoride attracts calcium, which helps to fill in areas where decay has begun.
Many brands of toothpaste contain either stannous fluoride or sodium fluoride, which, like fluoridated water, strengthen teeth and provide protection from cavities.
How Chlorine Bleach Is Made
Chlorine 17
Chlorine compounds are widely used as bleaching agents by the textile and paper industries. Some chlorine compounds can bleach materials by oxidizing colored molecules. Chlorine compounds are also used as disinfectants. Household bleach is a 5.25% solution of sodium hypochlorite (NaOCl) in water. Chlorine bleach is prepared commercially by passing an electric current through a solution of sodium chloride in water. As the sodium chloride breaks down, sodium hydroxide collects at the cathode and chlorine gas is generated at the anode. Sodium hydroxide and chlorine can then be combined to form sodium hypochlorite.
Cl [Ne]3s23p5
Household chlorine bleach is made by reacting chlorine gas or liquid chlorine with sodium hydroxide to form sodium hypochlorite.
Bromine 35
Iodine 53
Br
I
[Ar]4s23d104p5
[Kr]5s24d105p5
Halogen lamps use bromine or other halogen molecules to capture tungsten vapor and return tungsten atoms to the filament.
Halogen Lightbulbs Halogen lightbulbs include a halogen gas, such as iodine or bromine. Compared to standard lightbulbs, halogen bulbs are brighter and last longer and can be more energy efficient. During the operation of a normal lightbulb, some of the tungsten in the filament evaporates and is deposited on the inside surface of the bulb. In a halogen lamp, the evaporated tungsten reacts with the halogen gas and is redeposited back on the filament. This extends the life of the filament. 942 Elements Handbook ©Michael Newman / PhotoEdit
Tungstenbromide particle
Bromine
Tungsten Tungsten filament
Real-World Applications Iodine 53
I [Kr]5s24d105p5
Combating Iodine Deficiency with Salt The thyroid gland is the only part of the body that absorbs iodine. Thyroid cells use iodine to produce thyroid hormones, which regulate metabolism. Low levels of iodine in the diet can lead to thyroid-hormone deficiencies and goiters, which are enlarged thyroid glands. In serious cases, low levels of thyroid hormones can cause birth defects and brain damage. In the United States, potassium iodide is added to most table salt to protect against dietary iodine deficiency. Even small amounts of added iodine can prevent iodine-deficiency disorders. However, there are parts of the world in which iodine deficiency is still prevalent.
Iodine Deficiency Around the World
Severe deficiency (<20 µg/L) Moderate deficiency (20–49 µg/L)
Mild deficiency (50–99 µg/L) Optimal (100–199 µg/L)
Risk of iodine-induced hyperthyroidism (200–299 µg/L) Risk of adverse health consequences (>300 µg/L) No data
A significant percentage of the world’s population was at risk for iodine deficiency in 2004. In 2005, the World Health Organization launched a program to eliminate iodine deficiency worldwide.
Assessment 50. Compare the risks for iodine deficiency in Europe, Africa, and the United States. 51. Explain why fluorine is the most reactive of all the elements. 52. Evaluate Why does a tungsten filament last longer in a halogen lightbulb than in a normal lightbulb?
53. Calculate Household bleach is typically a 5.25% solution of sodium hypochlorite in water. How many grams of sodium hypochlorite would there be in 300 mL of bleach? 54. Hypothesize In 1962, Neil Bartlett synthesized the first noble gas compound using PtF 6. Hypothesize why Bartlett used a fluorine compound for this synthesis.
Elements Handbook 943
Group 18: Noble Gases Helium 2
Physical Properties
He 1s2
Argon 18
Ar [Ne]3s23p6
-157 -153
Kr
-112 -108
Xe
-71 -62
Rn -300
-200
0
-100
Temperature (ºC)
Krypton 36
Kr 10
MP BP
-189 -186
Ar
• Their melting points and boiling points increase going down the group, but are much lower than those of the other groups in the periodic table.
[He]2s22p6
-249 -246
Ne
• They are all nonmetals.
Ne
-270 -269
He
• The group 18 elements are colorless, odorless gases.
Neon 10
2
Melting Points and Boiling Points
6
[Ar]4s 3d 4p
Xenon 54
Xe [Kr]5s24d105p6
Radon 86
Rn [Xe]6s24f145d106p6
Atomic Properties
First Ionization Energies
• Each element in group 18 has eight valence electrons, producing an octet with an electron configuration ending with ns 2np 6, except for helium, which has two electrons. • Noble gases are monatomic— they exist as single atoms. • Compared to the other groups in the periodic table, the noble gases have the highest first ionization energies.
He
2372
Ne
2081 1521
Ar Kr
1351
Xe
1170 1037
Rn 0
500
1000
1500
2000
kJ/mol
Analytical Tests Common Reactions
Because the noble gases are odorless, colorless and generally unreactive, many of the common analytical tests used for identifying elements are not useful. However, the noble gases do emit light of certain colors when exposed to an electric current and have characteristic emission line spectra.
Although the noble gases are also known as inert gases, a few compounds can be formed if conditions are favorable. Generally, however, noble gases are nonreactive. When an electric current passes through xenon, it exhibits a characteristic color (blue) and line spectrum. 944
Elements Handbook
(l)©Charles D. Winters/Photo Researchers, Inc., (r)©TED KINSMAN/SCIENCE PHOTO LIBRAR/Photo Researchers Inc.Y
Real-World Applications Helium 2
He 1s2
The Sun Only 150 million km away (considered close in astronomical terms), the Sun provides the energy needed to support life on Earth. The Sun makes its energy through the fusion of hydrogen to make helium. Scientists have determined that the core of the Sun is composed of approximately 50% helium, leaving enough hydrogen for the Sun to burn for another 5 billion years.
Neon 10
Argon 18
Krypton 36
The Sun’s energy comes from a nuclear reaction that produces helium.
Xenon 54
Ne
Ar
Kr
[Ne]3s23p6
Xe
[He]2s22p6
[Ar]4s23d104p6
[Kr]5s24d105p6
Lighting
The noble gases are found in many different light sources.
Neon, argon, krypton, and xenon are all used in different lighting applications. Neon signs are found in many businesses to advertise products or display the name of the business. Although true neon signs glow with a red-orange color, the term neon sign has also come to represent the collection of gas tubes that contain gases that display other colors. Argon is found in everyday lightbulbs such as those in lamps. Because argon is inert, it provides an ideal atmosphere for the filament. Krypton and xenon bulbs produce whiter, sharper light and last longer than traditional argon bulbs. These bulbs are commonly found in chandeliers, flashlights, and luxury car headlights.
Assessment 55. Describe three physical properties of the noble gases. 56. Write the reaction for the production of xenon tetroxide.
58. Hypothesize why argon is used in everyday lighting even though krypton and xenon produce whiter light and last longer.
57. Analyze why the noble gases have the highest first ionization energies compared to the rest of the elements on the periodic table.
59. Calculate If the Sun is 150 million km away and light travels at 3.00 x 105 m/s, how long does it take for sunlight to reach Earth? Elements Handbook 945 (t)©epa/Corbis, (bl)©PHOTOTAKE Inc./Alamy, (br)©Wolfgang Kaehler/CORBIS
Mathematics is a language used in science to express and solve problems. Calculations you perform during your study of chemistry require arithmetic operations, such as addition, subtraction, multiplication, and division. Use this handbook to review basic math skills and to reinforce some math skills presented in more depth in the chapters.
Scientific Notation Scientists must use extremely small and extremely large numbers to describe the objects in Figure 1. The mass of the proton at the center of a hydrogen atom is 0.000000000000000000000000001673 kg. HIV, the virus that causes AIDS, is about 0.00000011 m. The temperature at the center of the Sun reaches 15,000,000 K. Such small and large numbers are difficult to read and hard to work with in calculations. Scientists have adopted a method of writing exponential numbers called scientific notation. It is easier than writing numerous zeros when numbers are very large or very small. It is also easier to compare the relative size of numbers when they are written in scientific notation. A number written in scientific notation has two parts. N × 10 n The first part (N) is a number in which only one digit is placed to the left of the decimal point and all remaining digits are placed to the right of the decimal point. The second part is an exponent of ten (10 n) by which the decimal portion is multiplied. For example, the number 2.53 × 10 6 is written in scientific notation. 2.53 × 10 6 Number between one and ten
Exponent of ten
The decimal portion is 2.53 and the exponent is 10 6. Positive exponents are used to express large numbers, and negative exponents are used to express small numbers. Figure 1 Scientific notation provides a convenient way to express data with extremely large or small numbers. Scientists can express the mass of a proton, the length of HIV, and the temperature of the Sun in scientific notation.
■
Proton
Hydrogen atom Proton mass = 1.673 × 10 -27 kg
946
Math Handbook
(l)©Chris Bjornberg/Photo Researchers, Inc, (r)©Daniele Pellegrini/Photo Researchers, Inc.
HIV attacking a white blood cell HIV length = 1.1 × 10 -7 m
The Sun Sun temperature = 1.5 × 10 7 K
Math Handbook Positive exponents When scientists discuss the physical properties of the Moon, shown in Figure 2, the numbers are enormously large. A positive exponent of 10 (n) tells how many times a number must be multiplied by 10 to give the long form of the number.
2.53 × 10 6 = 2.53 × 10 ×10 × 10 × 10 × 10 × 10 = 2,530,000 You can also think of the positive exponent of 10 as the number of places you move the decimal to the left until only one nonzero digit is to the left of the decimal point. 2,530,000.
The decimal point moves six places to the left.
Figure 2 The mass of the Moon is 7.349 × 10 22 kg.
■
To convert the number 567.98 to scientific notation, first write the number as an exponential number by multiplying by 10 0. 567.98 × 10 0 (Remember that multiplying any number by 10 0 is the same as multiplying the number by 1.) Move the decimal point to the left until there is only one digit to the left of the decimal. At the same time, increase the exponent by the same number as the number of places the decimal is moved. 567.98 × 10 0 + 2
The decimal point moves two places to the left.
Figure 3 Because of their short wavelengths (10 -8 m to 10 -13 m), X rays can pass through some objects. ■
Thus, 567.98 written in scientific notation is 5.6798 × 10 2. Negative exponents Measurements can also have negative exponents, such as shown by the X rays in Figure 3. Negative exponents are used for numbers that are very small. A negative exponent of 10 tells how many times a number must be divided by 10 to give the long form of the number. 6.43 = 0.000643 6.43 × 10 −4 = __ 10 × 10 × 10 × 10
A negative exponent of 10 is the number of places you move the decimal to the right until it is just past the first nonzero digit. When converting a number that requires the decimal to be moved to the right, the exponent is decreased by the appropriate number. For example, the expression of 0.0098 in scientific notation is as follows: 0.0098 × 10 0 0 0098 × 10 0 − 3 9.8 × 10 -3
The decimal point moves three places to the right.
Thus, 0.0098 written in scientific notation is 9.8 × 10 -3.
Math Handbook 947 (t)©JULIAN BAUM/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (b)©Royalty-Free/CORBIS
Math Handbook
Operations with Scientific Notation The arithmetic operations performed with ordinary numbers can be done with numbers written in scientific notation. However, the exponential portion of the numbers must also be considered. 1. Addition and subtraction Before numbers in scientific notation can be added or subtracted, the exponents must be equal. Remember that the decimal is moved to the left to increase the exponent and to the right to decrease the exponent.
(3.4 × 10 2) + (4.57 × 10 3) = (0.34 × 10 3) + (4.57 × 10 3) = (0.34 + 4.57) × 10 3 = 4.91 × 10 3 (7.52 × 10 -4) − (9.7 × 10 -5) = (7.52 × 10 -4) − (0.97 × 10 -4) = (7.52 − 0.97) × 10 -4 = 6.55 × 10 -4 2. Multiplication When numbers in scientific notation are multiplied, only the decimal portion is multiplied. The exponents are added.
(2.00 × 10 3)(4.00 × 10 4) = (2.00)(4.00) × 10 3 + 4 = 8.00 × 10 7 3. Division When numbers in scientific notation are divided, only the decimal portion is divided, while the exponents are subtracted as follows: 9.60 × 10 7 _ _ = 9.60 × 10 7 − 4 1.60
1.60 × 10 4
= 6.00 × 10 3
PRACTICE Problems 1. Express the following numbers in scientific notation. a. 5800 c. 0.0005877 b. 453,000 d. 0.0036 2. Perform the following operations. a. (5.0 × 10 6 ) + (3.0 × 10 7 ) c. (3.89 × 10 12 ) − (1.9 × 10 11) 9 8 b. (1.8 × 10 ) + (2.0 × 10 ) d. (6.0 × 10 -8 ) − (4.0 × 10 −9 ) 3. Perform the following operations. 9.6 × 10 8 a. (6.0 × 10 -4 ) × (4.0 × 10 -6 ) d. _ -6 1.6 × 10
b. (4.5 ×
10 9 )
4.5 × 10 -8 c. _ -4 1.5 × 10
948
Math Handbook
× (6.0 ×
10 -10 )
(2.5 ×10 6 )(7.2 × 10 4 ) e. __ -5
1.8 × 10 (6.2 × 10 12 )(6.0 × 10 -7 ) __ f. 1.2 × 10 6
Math Handbook
2
×
2
=
4
2
=
4
3
×
3 3
a
=
9
=
9
4
×
4 4
=
16
=
16
c
b
Figure 4 a. The number 4 can be expressed as two groups of 2. The identical factors are 2. b. The number 9 can be expressed as three groups of 3. Thus, 3 is the square root of 9. c. 4 is the square root of 16. Determine the cube root of 16 using your calculator. ■
Square and Cube Roots A square root is one of two identical factors of a number. As shown in Figure 4a, the number 4 is the product of two identical factors—2. Thus, the square root of 4 is 2. The symbol √, called a radical sign, is used to indicate a square root. Most scientific calculators have a square root key labeled √. √ 4 = √ 2×2=2
This equation is read “the square root of 4 equals 2.” What is the square root of 9, shown in Figure 4b? There can be more than two identical factors of a number. You know that 2 × 4 = 8. Are there any other factors of the number 8? It is the product of 2 × 2 × 2. A cube root is one of three identical factors of a number. Thus, what is the cube root of 8? It is 2. A cube root is also indicated by a radical. 3 3 √ 8 = √ 2×2×2=2
Check your calculator handbook for more information on finding roots.
Significant Figures Accuracy reflects how close the measurements you make in the laboratory come to the real value. Precision describes the degree of exactness of your measurements. Which ruler in Figure 5 would give you the most precise length? The top ruler, with the millimeter markings, would allow your measurements to come closer to the actual length of the pencil. The measurement would be more precise. Figure 5 The estimated digit must be read between the millimeter markings on the top ruler. Evaluate Why is the bottom ruler less precise? ■
19
20
21
22
23
24
25
26
27
28
29
cm
19
20
21
22
23
24
25
26
27
28
29
cm
Math Handbook 949
Math Handbook
24
25
26
27
28
Figure 6 If you determine that the length of this pencil is 27.65 cm, that measurement has four significant figures.
■
Measuring tools are never perfect, nor are the people doing the measuring. Therefore, whenever you measure a physical quantity, there will always be some amount of uncertainty in the measurement. The number of significant figures in the measurement indicates the uncertainty of the measuring tool. The number of significant figures in a measured quantity is all of the certain digits plus the first uncertain digit. For example, the pencil in Figure 6 has a length that is between 27.6 and 27.7 cm. You can read the ruler to the nearest millimeter (27.6 cm), but after that you must estimate the next digit in the measurement. If you estimate that the next digit is 5, you would report the measured length of the pencil as 27.65 cm. Your measurement has four significant figures. The first three are certain, and the last is uncertain. The ruler used to measure the pencil has precision to the nearest tenth of a millimeter. How many significant figures? When a measurement is provided, the following series of rules will help you to determine how many significant figures there are in that measurement. 1. All nonzero figures are significant. 2. When a zero falls between nonzero digits, the zero is also significant. 3. When a zero falls after the decimal point and after a significant figure, that zero is significant. 4. When a zero is used merely to indicate the position of the decimal, it is not significant. 5. All counting numbers and exact numbers are treated as if they have an infinite number of significant figures.
Examine each of the following measurements. Use the rules above to check that all of them have three significant figures. 245 K 18.0 L 308 km 0.00623 g 186,000 m
Rule 1 Rule 3 Rule 2 Rule 4 Rule 4
Suppose you must do a calculation using the measurement 200 L. You cannot be certain which zero was estimated. To indicate the significance of digits, especially zeros, write measurements in scientific notation. In scientific notation, all digits in the decimal portion are significant. Which measurement is most precise? 200 L has unknown significant figures. 2 × 10 2 L has one significant figure. 2.0 × 10 2 L has two significant figures. 2.00 × 10 2 L has three significant figures. The greater the number of digits in a measurement expressed in scientific notation, the more precise the measurement is. In this example, 2.00 × 10 2 L is the most precise data. 950
Math Handbook
Math Handbook EXAMPLE Problem 1 Significant Figures How many significant figures are in the measurement 0.00302 g? 60 min? 5.620 m? 9.80 × 10 2 m/s 2? 1
Analyze the Problem To determine the number of significant digits in a series of numbers, review the rules for significant figures.
2
Solve for the Unknown 0.00302 g Not significant (Rule 4)
Significant (Rules 1 and 2)
The measurement 0.00302 g has three significant figures. 60 min Unlimited significant figures (Rule 5) 5.620 m Significant (Rules 1 and 3) The measurement 5.620 m has four significant figures. 9.80 × 10 2 m/s 2 Significant (Rules 1 and 3) 3
Evaluate the Answer The measurements 0.00302 g and 9.80 × 10 2 m/s 2 have three significant figures. The measurement 60 min has unlimited significant figures. The measurement 5.620 m has four significant figures.
PRACTICE Problems 4. Determine the number of significant figures in each measurement: a. 35 g m. 0.157 kg b. 3.57 m n. 28.0 mL c. 3.507 km o. 2500 m d. 0.035 kg p. 0.070 mol e. 0.246 L q. 30.07 nm 3 f. 0.004 m r. 0.106 cm g. 24.068 kPa s. 0.0076 g h. 268 K t. 0.0230 cm 3 i. 20.04080 g u. 26.509 cm j. 20 dozen v. 54.52 cm 3 k. 730,000 kg w. 2.40 × 10 6 kg l. 6.751 g x. 4.07 × 10 16 m Math Handbook 951
Math Handbook Rounding Arithmetic operations that involve measurements are done the same way as operations involving any other numbers. However, the results must correctly indicate the uncertainty in the calculated quantities. Perform all of the calculations, and then round the result to the least number of significant figures in any of the measurements used in the calculations. To round a number, use the following rules. 1. When the leftmost digit to be dropped is less than 5, that digit and any digits that follow are dropped. Then, the last digit in the rounded number remains unchanged. For example, when rounding the number 8.7645 to three significant figures, the leftmost digit to be dropped is 4. Therefore, the rounded number is 8.76. 2. When the leftmost digit to be dropped is greater than 5, that digit and any digits that follow are dropped, and the last digit in the rounded number is increased by one. For example, when rounding the number 8.7676 to three significant figures, the leftmost digit to be dropped is 7. Therefore, the rounded number is 8.77. 3. When the leftmost digit to be dropped is 5 followed by a nonzero number, that digit and any digits that follow are dropped. The last digit in the rounded number increases by one. For example, 8.7519 rounded to two significant figures equals 8.8. 4. If the digit to the right of the last significant figure is equal to 5 and is not followed by a nonzero digit, look at the last significant figure. If it is odd, increase it by one; if even, do not round up. For example, 92.350 rounded to three significant figures equals 92.4, and 92.25 equals 92.2.
Figure 7 Compare the markings on the graduated cylinder at the top with the markings on the beaker at the bottom. Analyze Which piece of glassware will yield more precise measurements? ■
952
Math Handbook
Matt Meadows
Calculations with significant figures Look at the glassware in Figure 7. Would you expect to measure a more precise volume with the beaker or the graduated cylinder? When you perform any calculation using measured quantities such as volume or mass, it is important to remember that the result can never be more precise than the least-precise measurement. That is, your answer cannot have more significant figures than the least precise measurement. Note that it is important to perform all calculations before dropping any insignificant digits. The following rules determine how to use significant figures in calculations that involve measurements. 1. To add or subtract measurements, first perform the mathematical operation, then round off the result to the least-precise value. There should be the same number of digits to the right of the decimal as the measurement with the least number of decimal digits. 2. To multiply or divide measurements, first perform the calculation, then round the answer to the same number of significant figures as the measurement with the least number of significant figures. The answer should contain no more significant figures than the fewest number of significant figures in any of the measurements in the calculation.
Math Handbook EXAMPLE Problem 2 Calculating with Significant Figures Air contains oxygen (O 2), nitrogen (N 2), carbon dioxide (CO 2), and trace amounts of other gases. Use the known pressures in Table 1 to calculate the partial pressure of oxygen. 1
Analyze the Problem The data in Table 1 contains the gas pressure for nitrogen gas, carbon dioxide gas, and trace gases. To add or subtract measurements, first perform the operation, then round off the result to correspond to the least-precise value involved.
2
Solve for the Unknown P O 2 = P total - (P N 2 + P CO 2 + P trace) P O 2 = 101.3 kPa - (79.10 kPa + 0.040 kPa + 0.94 kPa) P O 2 = 101.3 kPa - 80.080 kPa P O 2 = 21.220 kPa The total pressure (P total) was measured to the tenths place. It is the least precise measurement. Therefore, the result should be rounded to the nearest tenth of a kilopascal. The pressure of oxygen is P O 2 = 21.2 kPa.
3
Pressures of
Table 1 Gases in Air Pressure (kPa) Nitrogen gas
79.10
Carbon dioxide gas
0.040
Trace gases
0.94
Total gases
101.3
Evaluate the Answer By adding the gas pressure of all the gases, including oxygen, the total gas pressure is 101.3 kPa.
PRACTICE Problems 5. Round off the following measurements to the number of significant figures indicated in parentheses. a. 2.7518 g (3) b. 8.6439 m (2) c. 13.841 g (2) d. 186.499 m (5) e. 634,892.34 (4) f. 355,500 g (2) 6. Perform the following operations. a. (2.475 m) + (3.5 m) + (4.65 m) b. (3.45 m) + (3.658 m) + (47 m) c. (5.36 × 10 −4 g) − (6.381 × 10 −5 g) d. (6.46 × 10 12 m) − (6.32 × 10 11 m) e. (6.6 × 10 12 m) × (5.34 × 10 18 m) 5.634 × 10 11 m f. __ 12 3.0 × 10
g.
m
(___ 4.765 × 10 11 m)(5.3 × 10 -4 m) 7.0 × 10 -5 m Math Handbook 953
Math Handbook
Solving Algebraic Equations When you are given a problem to solve, it often can be written as an algebraic equation. You can use letters to represent measurements or unspecified numbers in the problem. The laws of chemistry are often written in the form of algebraic equations. For example, the ideal gas law relates pressure, volume, moles, and temperature of the gases. The ideal gas law is written as follows. PV = nRT The variables are pressure (P), volume (V), number of moles (n), and temperature (T). R is a constant. This is a typical algebraic equation that can be manipulated to solve for any of the individual variables. When you solve algebraic equations, any operation that you perform on one side of the equal sign must be performed on the other side of the equation. Suppose you are asked to use the ideal gas law to find the pressure of a gas (P). To solve for, or isolate, P requires you to divide the left-hand side of the equation by V. This operation must be performed on the right-hand side of the equation as well, as shown in the second equation below. PV = nRT PV _ _ = nRT V
Figure 8 When faced with an equation that contains more than one operation, use this flowchart to determine the order in which to perform your calculations.
■
Order of Operations Examine all arithmetic operations.
Do all operations inside parentheses or brackets.
Do all multiplication and division from left to right.
V
The Vs on the left-hand side of the equation cancel each other out. PV _ _ = nRT
V V nRT V P×_=_ V V nRT P=_ V
The ideal gas law equation is now written in terms of pressure. That is, P has been isolated. Order of operations When isolating a variable in an equation, it is important to remember that arithmetic operations have an order of operations, as shown in Figure 8, that must be followed. Operations in parentheses (or brackets) take precedence over multiplication and division, which in turn take precedence over addition and subtraction. For example, in the following equation
a+b×c variable b must be multiplied first by variable c. Then, the resulting product is added to variable a. If the equation is written (a + b) × c
Perform addition and subtraction from left to right.
954
Math Handbook
the operation in parentheses or brackets must be done first. In the equation above, variable a is added to variable b before the sum is multiplied by variable c.
Math Handbook To see the difference order of operations makes, try replacing a with 2, b with 3, and c with 4. a + (b × c) = 2 + (3 × 4) = 14 (a + b) × c = (2 + 3) × 4 = 20 To solve algebraic equations, you also must remember the distributive property. To remove parentheses to solve a problem, any number outside the parentheses is distributed across the parentheses as follows. 6(x + 2y) = 6(x) + 6(2y) = 6x + 12y
EXAMPLE Problem 3 Order of Operations The temperature on a cold day was 25°F. What was the temperature on the Celsius scale? 1
Analyze the Problem The temperature in Celsius can be calculated by using the equation for converting from the Celsius temperature to Fahrenheit temperature. The Celsius temperature is the unknown variable. The known variable is 25°C.
2
Solve for the Unknown Determine the equation for calculating the temperature in Celsius. °F = _°C + 32 9 5
°F − 32 = _°C + 32 − 32 9 5
Rearrange the equation to isolate °C. Begin by subtracting 32 from both sides.
°F − 32 = _°C 9 5
5 × ( °F − 32) = 5 × _°C 9 5
Then, multiply both sides by 5.
5 × ( °F − 32) = 9°C 5__ × ( °F − 32) 9°C =_ 9 9
Finally, divide both sides by 9.
°C = _( °F − 32)
5 9 5 _ = (25 − 32) 9
Substitute the known Fahrenheit temperature.
= −3.9°C The Celsius temperature is −3.9°C. 3
Evaluate the Answer To determine if the answer is correct, place the answer, −3.9°C, into the original equation. If the Fahrenheit temperature is 25°, the calculation was done correctly.
Math Handbook 955
Math Handbook
PRACTICE Problems Isolate the indicated variable in each equation.
7. PV = nRT for R 8. 3 = 4(x + y) for y 9. z = x(4 + 2y) for y 2 10. _ x = 3 + y for x 2x + 1 11. _ = 6 for x 3
Dimensional Analysis The dimensions of a measurement refer to the type of units attached to a quantity. For example, length is a dimensional quantity that can be measured in meters, centimeters, and kilometers. Dimensional analysis is the process of solving algebraic equations for units as well as numbers. It is a way of checking to ensure that you have used the correct equation, and that you have correctly applied the rules of algebra when solving the equation. It can also help you to choose and set up the correct equation, as shown on the next page, when you learn how to do unit conversions. It is good practice to make dimensional analysis a habit by always stating the units as well as the numerical values whenever substituting values into an equation.
EXAMPLE Problem 4
■ Figure 9 Aluminum is a metal that is useful from the kitchen to the sculpture garden.
Dimensional Analysis The sculpture in Figure 9 is made from aluminum. The density (D) of aluminum is 2700 kg/m 3. Determine the mass (m) of a piece of aluminum of volume (V ) 0.20 m 3. 1
Analyze the Problem The facts of the problem are density (2700 kg/m 3 ), volume (0.20 m 3 ), and the density equation, D = m/V.
2
Solve for the Unknown Determine the equation for mass by rearranging the density equation. The equation for density is m D=_
V mV DV = _ V V _ DV = × m V
Multiply both sides of the equation by V, and isolate m.
m = DV m = (2700 kg/m 3 )(0.20 m 3 ) = 540 kg 3
Substitute the known values for D and V.
Evaluate the Answer Notice that the unit m 3 cancels out, leaving mass in kg, a unit of mass.
956
Math Handbook
©ABN Stock Images/Alamy
Math Handbook
PRACTICE Problems Determine whether the following equations are dimensionally correct. Explain.
12. v = s × t where v = 24 m/s, s = 12 m, and t = 2 s. nT 13. R = _ where R is in L·atm/mol·K, n is in mol, T is in K, P is in atm, PV
and V is in L. 14. t = _vs where t is in seconds, v is in m/s, and s is in m. at 2 2
15. s = _ where s is in m, a is in m/s 2, and t is in s.
Unit Conversion Recall from Chapter 2 that the universal unit system used by scientists is called Le Système Internationale d’Unités, or SI. It is a metric system based on seven base units—meter, second, kilogram, kelvin, mole, ampere, and candela—from which all other units are derived. The size of a unit in the metric system is indicated by a prefix related to the difference between that unit and the base unit. For example, the base unit for length in the metric system is the meter. One-tenth of a meter is a decimeter, where the prefix deci- means one-tenth. One thousand meters is a kilometer, where the prefix kilo- means one thousand. You can use the information in Table 2 to express a measured quantity in different units. For example, how is 65 m expressed in centimeters? Table 2 indicates one centimeter and one-hundredth meter are equivalent, that is, 1 cm = 10 −2 m. This information can be used to form a conversion factor. A conversion factor is a ratio equal to one that relates two units. You can make the following conversion factors from the relationship between meters and centimeters. Be sure when you set up a conversion factor that the measurement in the numerator (the top of the ratio) is equivalent to the measurement in the denominator (the bottom of the ratio). −2
1 cm 10 m and 1 = _ 1=_ −2 10
Table 2
1 cm
m
Common SI Prefixes
Symbol
Exponential Notation
Symbol
Exponential Notation
Peta
P
10 15
Deci
d
10 −1
Tera
T
10 12
Centi
c
10 −2
Giga
G
10 9
Milli
m
10 −3
Mega
M
10 6
Micro
μ
10 −6
Kilo
k
10 3
Nano
n
10 −9
Hecto
h
10 2
Pico
p
10 −12
Deka
da
10 1
Femto
f
10 −15
Prefix
Prefix
Math Handbook 957
Math Handbook Recall that the value of a quantity does not change when it is multiplied by 1. To convert 65 m to centimeters, multiply 65 m by the conversion factor for centimeters. 1 cm 65 m × _ −2 10
m
10 2
cm = 65 × = 6.5 × 10 3 cm Note the conversion factor is set up so that the unit meters cancels and the answer is in centimeters as required. When setting up a unit conversion, use dimensional analysis to check that the units cancel to give an answer in the desired units. Always check your answer to be certain the units make sense. You make unit conversions every day when you determine how many quarters are needed to make a dollar or how many feet are in a yard. One unit that is often used in calculations in chemistry is the mole. Chapter 10 shows you equivalent relationships among moles, grams, and the number of representative particles (atoms, molecules, formula units, or ions). For example, 1 mol of a substance contains 6.02 × 10 23 representative particles. Try the next Example Problem to see how this information can be used in a conversion factor to determine the number of atoms in a sample of manganese.
EXAMPLE Problem 5 Unit Conversions One mole of manganese (Mn), shown in Figure 10, has a mass of 54.94 g. How many atoms are in 2.0 mol of manganese? 1
Analyze the Problem You are given the mass of 1 mol of manganese. In order to convert to the number of atoms, you must set up a conversion factor relating the number of moles and the number of atoms.
2
Solve for the Unknown The conversion factors for moles and atoms are shown below.
■
6.02 × 10 23 atoms 1 mol __ and __ 23 1 mol
Figure 10 The mass of one
6.02 × 10
mole of manganese equals 54.94 g. Determine How many significant figures are in this measurement?
atoms
Choose the conversion factor that cancels units of moles and gives an answer in number of atoms. 6.02 × 10 23 atoms 2.0 mol × __ = 12.04 × 10 23 atoms 1 mol
= 1.2 × 10 24 atoms 3
Evaluate the Answer The answer is expressed in the desired units (number of atoms). It is expressed in two significant figures because the number of moles (2.0) has two significant figures.
958
Math Handbook
Matt Meadows
Math Handbook
PRACTICE Problems 16. Convert the following measurements as indicated. a. 4 m = ____cm i. 2.7 × 10 2 L = ____mL b. 50.0 cm = ____m j. 7.3 × 10 5 mL = ____L c. 15 cm = ____mm k. 8.4 × 10 10 m = ____km d. 567 mg = ____g l. 3.8 × 10 4 m 2 = ____mm 2 e. 324 mL = ____L m. 6.9 × 10 12 cm 2 = ____m 2 f. 28 L = ____mL n. 6.3 × 10 21 mm 3 = ____cm 3 3 g. 4.6 × 10 m = ____mm o. 9.4 × 10 12 cm 3 = ____m 3 h. 8.3 × 10 4 g = ____kg p. 5.7 × 10 20 cm 3 = ____km 3
Drawing Line Graphs Scientists, such as the one shown in Figure 11, as well as you and your classmates, use graphing to analyze data gathered in experiments. Graphs provide a way to visualize data in order to determine the mathematical relationship between the variables in your experiment. Line graphs are used most often. Figure 11 also shows a line graph. Line graphs are drawn by plotting variables along two axes. Plot the independent variable on the x-axis (horizontal axis), also called the abscissa. The independent variable is the quantity controlled by the person doing the experiment. Plot the dependent variable on the y-axis (vertical axis), also called the ordinate. The dependent variable is the variable that depends on the independent variable. Label the axes with the variables being plotted and the units attached to those variables.
Figure 11 Once experimental data have been collected, they must be analyzed to determine the relationships between the measured variables.
■
Graph of Line with Point A
Dependent variable
y-axis
(x, y) x-axis
0
Origin 0 This research scientist might use graphs to analyze the data she collects on ultrapure water.
Independent variable
Any graph of your data should include labeled x- and y-axes, a suitable scale, and a title.
Math Handbook 959 ©Bill Aron/Photo Edit
Math Handbook Figure 12 To plot a point on a graph, place a dot at the location for each ordered pair (x,y) determined by your data. In the Density of Water graph, the dot marks the ordered pair (40 mL, 40 g). Generally, the line or curve that you draw will not include all of your experimental data points, as shown in the Experimental Data graph.
■
Experimental Data
70
70
60
60
50
A (x, y)
40 30
Mass (g)
Mass (g)
Density of Water
50 40 30
20
20
10
10
0
0
10 20 30 40 50 60 70
Volume (mL)
0
0
10 20 30 40 50 60 70
Volume (mL)
Determining a scale An important part of graphing is the selection of a scale. Scales should be easy to plot and easy to read. First, examine the data to determine the highest and lowest values. Assign each division on the axis (the square on the graph paper) with an equal value so that all data can be plotted along the axis. Scales divided into multiples of 1, 2, 5, or 10, or decimal values, are often the most convenient. It is not necessary to start at zero, nor is it necessary to plot both variables to the same scale. Scales must, however, be labeled clearly with the appropriate numbers and units. Plotting data The values of the independent and dependent variables form ordered pairs of numbers, called the x-coordinate and the y-coordinate (x,y), that correspond to points on the graph. The first number in an ordered pair always corresponds to the x-axis; the second number always corresponds to the y-axis. The ordered pair (0,0) is always the origin. Sometimes, the points are named by using a letter. In Figure 12, Point A on the Density of Water graph corresponds to Point (x,y). After the scales are chosen, plot the data. To graph or plot an ordered pair means to place a dot at the point that corresponds to the values in the ordered pair. The x-coordinate indicates how many units to move right (if the number is positive) or left (if the number is negative). The y-coordinate indicates how many units to move up or down. Which direction is positive on the y-axis? Negative? Locate each pair of x- and y-coordinates by placing a dot, as shown in Figure 12 in the Density of Water graph. Sometimes, a pair of rulers, one extending from the x-axis and the other from the y-axis, can ensure that data are plotted correctly. Drawing a curve Once the data is plotted, a straight line or a curve is drawn. It is not necessary to make it go through every point plotted, or even any of the points, as shown in the Experimental Data graph in Figure 12. Graphing data is an averaging process. If the points do not fall along a line, the best-fit line or most-probable smooth curve through the points is drawn. Note that curves do not always go through the origin (0,0). 960
Math Handbook
Math Handbook Naming a graph Last but not least, give each graph a title that describes what is being graphed. The title should be placed at the top of the page, or in a box on a clear area of the graph. It should not cross the data curve.
Using Line Graphs Once the data from an experiment has been collected and plotted, the graph must be interpreted. Much can be learned about the relationship between the independent and dependent variables by examining the shape and slope of the curve. Four common types of curves are shown in Figure 13. Each type of curve corresponds to a mathematical relationship between the independent and dependent variables. Direct and inverse relationships In your study of chemistry, the most common curves are the linear, representing the direct relationship (y ∞ x), and the inverse, representing the inverse relationship (y ∞ 1/x), where x represents the independent variable and y represents the dependent variable. In a direct relationship, y increases in value as x increases in value, or y decreases when x decreases. In an inverse relationship, y decreases in value as x increases. An example of a typical direct relationship is the increase in volume of a gas with increasing temperature. When the gases inside a hot-air balloon are heated, the balloon gets larger. As the balloon cools, its size decreases. However, a plot of the decrease in pressure as the volume of a gas increases yields a typical inverse curve. You might also encounter exponential and root curves in your study of chemistry. See Figure 13. An exponential curve describes a relationship in which one variable is expressed by an exponent. A root curve describes a relationship in which one variable is expressed by a root. Figure 13 The shape of the curve formed by a plot of experimental data indicates how the variables are related.
■
a
Linear curve y∝x
c
Exponential curve y ∝ xn (n > 1)
b
d
Inverse curve 1 y∝x
Root curve n y ∝ x (n > 1)
Math Handbook 961
Math Handbook
Figure 14 A steep slope indicates that the dependent variable changes rapidly with a change in the independent variable. Infer What would an almost flat line indicate? ■
Density of Water 70
Mass (g)
60
(x2, y2)
50 40
Rise
30 20
(x1, y1)
10
Run
0
0
10 20 30 40 50 60 70
Volume (mL)
The linear graph The linear graph is useful in analyzing data because a linear relationship can be translated easily into equation form using the equation for a straight line.
y = mx + b In the equation, y stands for the dependent variable, m is the slope of the line, x stands for the independent variable, and b is the y-intercept, the point where the curve crosses the y-axis. The slope of a linear graph is the steepness of the line. Slope is defined as the ratio of the vertical change (the rise) to the horizontal change (the run) as you move from one point to the next along the line. Use the graph in Figure 14 to calculate slope. Choose any two points on the line, (x 1,y 1) and (x 2,y 2). The two points need not be actual data points, but both must fall somewhere on the straight line. After selecting two points, calculate slope, m, using the following equation. ∆y ∆x
y −y
2 1 rise _=_ m=_ x 2 − x 1 , where x 1 ≠ x 2 run =
The symbol ∆ stands for change, x 1 and y 1 are the coordinates or values of the first point, and x 2 and y 2 are the coordinates of the second point. Choose any two points along the graph of mass v. volume in Figure 15, and calculate its slope. 135 g − 54 g 50.0 cm − 20.0 cm
m = __ = 2.7 g/cm 3 3 3 Note that the units for the slope are the units for density. Plotting a graph of mass versus volume is one way of determining the density of a substance. Apply the general equation for a straight line to the graph in Figure 15.
y = mx + b mass = (2.7 g/cm 3)(volume) + 0 mass = (2.7 g/cm 3)(volume) 962
Math Handbook
Math Handbook Figure 15 Interpolation and extrapolation will help you determine the values of points you did not plot.
■
Density of Aluminum
160.0 140.0
Volume (mL)
Mass (g)
100.0
20.0
54.0
80.0
30.0
81.0
50.0
135.0
120.0
Mass (g)
Data
60.0 40.0 20.0 0
0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Volume (mL)
Once the data from the graph in Figure 15 has been placed in the general equation for a straight line, this equation verifies the direct relationship between mass and volume. For any increase in volume, the mass also increases. Interpolation and extrapolation Graphs also serve functions other than determining the relationship between variables. They permit interpolation, the prediction of values of the independent and dependent variables. For example, you can see in the table in Figure 15 that the mass of 40.0 cm 3 of aluminum was not measured. However, you can interpolate from the graph that the mass would be 108 g. Graphs also permit extrapolation, which is the determination of points beyond the measured points. To extrapolate, draw a broken line to extend the curve to the desired point. In Figure 15, you can determine that the mass at 10.0 cm 3 equals 27 g. One caution regarding extrapolation—some straight-line curves do not remain straight indefinitely. So, extrapolation should only be done where there is a reasonable likelihood that the curve does not change.
PRACTICE Problems 17. Plot the data in each table. Explain whether the graphs represent direct or inverse relationships. Table 3 Effect of Pressure on Gas
Table 4 Effect of Pressure on Gas
Pressure (mm Hg)
Volume (mL)
Pressure (mm Hg)
Temperature (K)
3040
5.0
3040
1092
1520
10.0
1520
546
1013
15.0
1013
410
760
20.0
760
273
Math Handbook 963
Math Handbook
Ratios, Fractions, and Percents When you analyze data, you may be asked to compare measured quantities. Or, you may be asked to determine the relative amounts of elements in a compound. Suppose, for example, you are asked to compare the molar masses of the diatomic gases, hydrogen (H 2) and oxygen (O 2). The molar mass of hydrogen gas equals 2.00 g/mol; the molar mass of oxygen equals 32.00 g/mol. The relationship between molar masses can be expressed in three ways: a ratio, a fraction, or a percent.
Figure 16 The mass of one lime would be one-twelfth the mass of one dozen limes.
■
Ratios You make comparisons by using ratios in your daily life. For example, if the mass of a dozen limes is shown in Figure 16, how does it compare to the mass of one lime? The mass of one dozen limes is 12 times larger than the mass of one lime. In chemistry, the chemical formula for a compound compares the elements that make up that compound, as shown in Figure 17. A ratio is a comparison of two numbers by division. One way it can be expressed is with a colon (:). The comparison between the molar masses of oxygen and hydrogen can be expressed as follows.
molar mass (H 2):molar mass (O 2) 2.00 g/mol:32.00 g/mol 2.00:32.00 1:16 Figure 17 In a crystal of table salt (sodium chloride), each sodium ion is surrounded by chloride ions, yet the ratio of sodium ions to chloride ions is 1:1. The formula for sodium chloride is NaCl.
■
Notice that the ratio 1:16 is the smallest integer (whole number) ratio. It is obtained by dividing both numbers in the ratio by the smaller number, and then rounding the larger number to remove the digits after the decimal. The ratio of the molar masses is 1 to 16. In other words, the ratio indicates that the molar mass of diatomic hydrogen gas is 16 times smaller than the molar mass of diatomic oxygen gas. Fractions Ratios are often expressed as fractions in simplest form. A fraction is a quotient of two numbers. To express the comparison of the molar masses as a fraction, place the molar mass of hydrogen over the molar mass of oxygen as follows. molar mass H 2 __ molar mass O 2 2.0 g/mol =_ 32.00 g/mol 2.00 =_ 32.00 1 =_ 16
In this case, the simplified fraction is calculated by dividing both the numerator (top of the fraction) and the denominator (bottom of the fraction) by 2.00. This fraction yields the same information as the ratio. That is, diatomic hydrogen gas has one-sixteenth the mass of diatomic oxygen gas. 964
Math Handbook
Matt Meadows
Math Handbook Percents A percent is a ratio that compares a number to 100. The symbol for percent is %. You also are used to working with percents in your daily life. The number of correct answers on an exam can be expressed as a percent. If you answered 90 out of 100 questions correctly, you would receive a grade of 90%. Signs like the one in Figure 18 indicate a reduction in price. If the item’s regular price is $100, how many dollars would you save? Sixty percent means 60 of every 100, so you would save $60. How much would you save if the sign said 75% off? The comparison between molar mass of hydrogen gas and the molar mass of oxygen gas described on the previous page can also be expressed as a percent by taking the fraction, converting it to decimal form, and multiplying by 100 as follows. 2.00 g/mol molar mass H 2 __ × 100 = _ × 100 = 0.0625 × 100 = 6.25% molar mass O 2
32.00 g/mol
Diatomic hydrogen gas has 6.25% of the mass of diatomic oxygen gas.
Operations Involving Fractions
Figure 18 Stores often use percentages when advertising sales. Analyze Would the savings be large at this sale? How would you determine the sale price? ■
Fractions are subject to the same type of operations as other numbers. Remember that the number on the top of a fraction is the numerator and the number on the bottom is the denominator. Figure 19 shows an example of a fraction. 1. Addition and subtraction Before two fractions can be added or subtracted, they must have a common denominator. Common denominators are found by finding the least common multiple of the two denominators. Finding the least common multiple is often as easy as multiplying the two denominators together. For example, the least common multiple of the denominators 1 1 and _ is 2 × 3 or 6. of the fractions _ 2 3 _1 + _1 = _3 × _1 + _2 × _1 = _3 + _2 = _5 2 3 3 2 2 3 6 6 6
) (
(
)
Sometimes, one of the denominators will divide into the other, which makes the larger of the two denominators the least common multiple. 1 1 For example, the fractions _ and _ have 6 as the least common multiple 2 6 denominator.
_1 + _1 = _3 × _1 + _1 = _3 + _1 = _4 2 3 2 6 6 6 6 6
(
)
In other situations, both denominators will divide into a number that is 1 1 not the product of the two. For example, the fractions _ and _ have the 4 6 number 12 as their least common multiple denominator, rather than 24, the product of the two denominators. The least common denominator can be deduced as follows:
Figure 19 When two numbers are divided, the one on top is the numerator and the one on the bottom is the denominator. The result is called the quotient. When you perform calculations with fractions, the quotient can be expressed as a fraction or a decimal.
■
Dividend (numerator) 8 Quotient = 9 × 10-4 3 × 10
Divisor (denominator)
6 3 5 4 2 _1 + _1 = _4 × _1 + _6 × _1 = _ +_ =_ +_ =_ 4 4 4 24 24 12 12 12 6 6 6
(
) (
)
Because both fractions can be simplified by dividing numerator and denominator by 2, the least common multiple must be 12. Math Handbook 965 ©Elena Rooraid/Photo Edit
Math Handbook 2. Multiplication and division When multiplying fractions, the numerators and denominators are multiplied together as follows: 1×2 _ 1 _1 × _2 = _ = 2 =_ 2
3
2×3
6
3
Note the final answer is simplified by dividing the numerator and denominator by 2. When dividing fractions, the divisor is inverted and multiplied by the dividend as follows: 2×2 _ _2 ÷ _1 = _2 × _2 = _ =4 3
2
3
1
3×1
3
PRACTICE Problems 18. Perform the indicated operation: 3 2 a. _ + _
4 3 3 4 _ _ b. + 5 10 1 1 c. _ − _ 4 6 5 7 d. _ − _ 8 6
3 1 e. _ × _ 3
4
3 2 f. _ × _ 5 7 5 _ _ g. ÷ 1 8
4
3 4 h. _ ÷ _ 9 8
Logarithms and Antilogarithms
Table 5
Exponent
Comparison Between Exponents and Logs Logarithm
When you perform calculations, such as the pH of the products in Figure 20, you might need to use the log or antilog function on your calculator. A logarithm (log) is the power or exponent to which a number, called a base, must be raised in order to obtain a given positive number. This textbook uses common logarithms based on a base of 10. Therefore, the common log of any number is the power to which 10 is raised to equal that number. Examine Table 5 to compare logs and exponents. Note the log of each number is the power of 10 for the exponent of that number. For example, the common log of 100 is 2, and the common log of 0.01 is −2. log 10 2 = 2 log 10 −2 = −2
10 0 = 1
log 1 = 0
10 1 = 10
log 10 = 1
10 2 = 100
log 100 = 2
If 10 n = y, then log y = n.
10 -1 = 0.1
log 0.1 = -1
10 -2
log 0.01 = -2
In each example in Table 5, the log can be determined by inspection. How do you express the common log of 5.34 × 10 5? Because logarithms are exponents, they have the same properties as exponents, as shown in Table 6 on the next page.
= 0.01
A common log can be written in the following general form.
log 5.34 × 10 5 = log 5.34 + log 10 5 966
Math Handbook
Math Handbook
Table 6
Properties of Exponents
Exponential Notation
Logarithm
10 A × 10 B = 10 A + B
log (A × B) = log A + log B
10 A ÷ 10 B = 10 A − B
log (A ÷ B) = log A − log B
AB
(log A) × B
Significant figures and logarithms Most scientific calculators have a button labeled log and, in most cases, you enter the number and push the log button to display the log of the number. Note that there is the same number of digits after the decimal in the log as there are significant figures in the original number entered.
log 5.34 × 10 5 = log 5.34 + log 10 5 = 0.728 + 5 = 5.728 Antilogarithms Suppose the pH of the aqueous ammonia in Figure 20 is 9.54 and you are asked to find the concentration of the hydrogen ions in that solution. By definition, pH = −log [H +]. Compare this to the general equation for the common log.
Equation for pH: General equation:
pH = −log [H +] y = log 10 n
To solve the equation for [H +], you must follow the reverse process and calculate the antilogarithm (antilog) of −9.54 to find [H +]. Antilogs are the reverse of logs. To find the antilog, use a scientific calculator to input the value of the log. Then, use the inverse function and press the log button. The number of digits after the decimal in the log equals the number of significant figures in the antilog. An antilog can be written in the following general form. Thus,
[H +]
Figure 20 Ammonia is a base. That means its hydrogen ion concentration is less than 10 −7M.
■
If n = antilog y, then y = 10 n. = antilog(−9.54) = 10 −9.54 = 10 (0.46 − 10) = 10 0.46 × 10 −10 = 2.9 × 10 −10M
Check the instruction manual for your calculator. The exact procedure to calculate logs and antilogs might vary.
PRACTICE Problems 19. Find the log of each of the following numbers. a. 367 b. 4078 c. X n 20. Find the antilog of each of the following logs. a. 4.663 b. 2.367 c. 0.371
d. −1.588
Math Handbook 967 Geoff Butler
Table R-1 Color Key Carbon
Bromine
Sodium/ Other metals
Hydrogen
Iodine
Gold
Oxygen
Sulfur
Copper
Nitrogen
Phosphorus
Electron
Chlorine
Silicon
Proton
Fluorine
Helium
Neutron
Table R-2 Symbols and Abbreviations = rays from radioactive materials, helium nuclei β = rays from radioactive materials, electrons γ = rays from radioactive materials, high-energy quanta ∆ = change in λ = wavelength ν = frequency A = ampere (electric current) amu = atomic mass unit Bq = becquerel (nuclear disintegration) °C = Celsius degree (temperature) C = coulomb (quantity of electricity) c = speed of light cd = candela (luminous intensity) c = specific heat D = density α
968
Reference Tables
E F G g Gy H Hz h h J K Ka Kb K eq K sp kg M m m mol min
= = = = = = = = = = = = = = = = = = = = =
energy, electromotive force force free energy gram (mass) gray (radiation) enthalpy hertz (frequency) Planck’s constant hour (time) joule (energy) kelvin (temperature) ionization constant (acid) ionization constant (base) equilibrium constant solubility product constant kilogram (mass) molarity mass, molality meter (length) mole (amount) minute (time)
N NA n P Pa q Q sp R S s Sv T V V v W w X
= = = = = = = = = = = = = = = = = =
newton (force) Avogadro’s number number of moles pressure, power pascal (pressure) heat ion product ideal gas constant entropy second (time) sievert (absorbed radiation) temperature volume volt (electric potential) velocity watt (power) work mole fraction
Reference Tables
Table R-3 Solubility Product Constants at 298 K Compound
K sp
Carbonates
Compound
K sp
Halides
Compound
K sp
Hydroxides
BaCO 3
2.6 × 10 -9
CaF 2
3.5 × 10 -11
Al(OH) 3
4.6 × 10 -33
CaCO 3
3.4 × 10 -9
PbBr 2
6.6 × 10 -6
Ca(OH) 2
5.0 × 10 -6
CuCO 3
2.5 × 10 -10
PbCl 2
1.7 × 10 -5
Cu(OH) 2
2.2 × 10 -20
PbCO 3
7.4 × 10 -14
PbF 2
3.3 × 10 -8
Fe(OH) 2
4.9 × 10 -17
MgCO 3
6.8 × 10 -6
PbI 2
9.8 × 10 -9
Fe(OH) 3
2.8 × 10 -39
Ag 2CO 3
8.5 × 10 -12
AgCl
1.8 × 10 -10
Mg(OH) 2
5.6 × 10 -12
ZnCO 3
1.5 × 10 -10
AgBr
5.4 × 10 -13
Zn(OH) 2
3 × 10 -17
Hg 2CO 3
3.6 × 10 -17
AgI
8.5 × 10 -17
Sulfates
Chromates
Phosphates
BaSO 4
1.1 × 10 -10
BaCrO 4
1.2 × 10 -10
AlPO 4
9.8 × 10 -21
CaSO 4
4.9 × 10 -5
PbCrO 4
2.3 × 10 -13
Ca 3(PO 4) 2
2.1 × 10 -33
PbSO 4
2.5 × 10 -8
Ag 2CrO 4
1.1 × 10 -12
Mg 3(PO 4) 2
1.0 × 10 -24
Ag 2SO 4
1.2 × 10 -5
Fe(PO 4) 2
1.0 × 10 -22
Arsenates
10 -32
Pb 3(AsO 4) 2
Iodates Cd(IO 3) 2
2.3 ×
10 -8
Ni 3(PO 4) 2
4.7 ×
4.0 × 10 -36
Table R-4 Physical Constants Quantity
Symbol
Value
amu
1.6605 × 10 -27
Avogadro’s number
N
6.022 × 10 23 particles/mole
Ideal gas constant
R
8.31 L·kPa/mol·K 0.0821 L·atm/mol·K 62.4 mm Hg·L/mol·K 62.4 torr·L/mol·K
Mass of an electron
me
9.109 × 10 -31 kg 5.485799 × 10 -4 amu
Mass of a neutron
mn
1.67492 × 10 -27 kg 1.008665 amu
Mass of a proton
mp
1.6726 × 10 -27 kg 1.007276 amu
Molar volume of ideal gas at STP
V
22.414 L/mol
Normal boiling point of water
Tb
373.15 K 100.0°C
Normal freezing point of water
Tf
273.15 K 0.00°C
Planck’s constant
h
6.6260693 × 10 -34 J·s
Speed of light in a vacuum
c
2.997925 × 10 8 m/s
Atomic mass unit
Reference Tables 969
Reference Tables Table R-5 Names and Charges of Polyatomic Ions 1Acetate, CH 3COO Amide, NH 2 Astatate, AtO 3 Azide, N 3 Benzoate, C 6H 5COO Bismuthate, BiO 3 Bromate, BrO 3 Chlorate, ClO 3 Chlorite, ClO 2 Cyanide, CN Formate, HCOO Hydroxide, OH Hypobromite, BrO Hypochlorite, ClO Hypophosphite, H 2PO 2 Iodate, IO 3 Nitrate, NO 3 Nitrite, NO 2 Perbromate, BrO 4 Perchlorate, ClO 4 Periodate, IO 4 Permanganate, MnO 4 Perrhenate, ReO 4 Thiocyanate, SCN Vanadate, VO 3 -
2Carbonate, CO 3 2Chromate, CrO 4 2Dichromate, Cr 2O 7 2Hexachloroplatinate, PtCl 6 2Hexafluorosilicate, Sif 6 2Molybdate, MoO 4 2Oxalate, C 2O 4 2Peroxide, O 2 2Peroxydisulfate, S 2O 8 2Ruthenate, RuO 4 2Selenate, SeO 4 2Selenite, SeO 3 2Silicate, SiO 3 2Sulfate, SO 4 2Sulfite, SO 3 2Tartrate, C 4H 4O 6 2Tellurate, TeO 4 2Tellurite, TeO 3 2Tetraborate, B 4O 7 2Thiosulfate, S 2O 3 2Tungstate, WO 4 2-
3Arsenate, AsO 4 3Arsenite, AsO 3 3Borate, BO 3 3Citrate, C 6H 5O 7 3Hexacyanoferrate (III), Fe(CN) 6 3Phosphate, PO 4 3Phosphite, PO 3 3-
4Hexacyanoferrate (II), Fe(CN) 6 4Orthosilicate, SiO 4 4Diphosphate, P 2O 7 4-
1+ Ammonium, NH 4 + Neptunyl(V), NpO 2 + Plutonyl(V), PuO 2 + Uranyl(V), UO 2 + Vanadyl(V), VO 2 +
2+ Mercury(I), Hg 2 2+ Neptunyl(VI), NpO 2 2+ Plutonyl(VI), PuO 2 2+ Uranyl(VI), UO 2 2+ Vanadyl(IV), VO 2+
Table R-6 Ionization Constants
970
Substance
Ionization Constant
Substance
Ionization Constant
Substance
Ionization Constant
HCOOH CH 3COOH CH 2ClCOOH CHCl 2COOH CCl 3COOH HOOCCOOH HOOCCOO CH 3CH 2COOH C 6H 5COOH H 3AsO 4 H 2AsO 4 H 3BO 3 H 2BO 3 -
1.77 × 10 -4 1.75 × 10 -5 1.36 × 10 -3 4.47 × 10 -2 3.02 × 10 -1 5.36 × 10 -2 1.55 × 10 -4 1.34 × 10 -5 6.25 × 10 -5 6.03 × 10 -3 1.05 × 10 -7 5.75 × 10 -10 1.82 × 10 -13
HBO 3 -2 H 2CO 3 HCO 3 HCN HF HNO 2 H 3PO 4 H 2PO 4 HPO 4 2H 3PO 3 H 2PO 2 H 3PO 2 H 2S
1.58 × 10 -14 4.5 × 10 -7 4.68 × 10 -11 6.17 × 10 -10 6.3 × 10 -4 5.62 × 10 -4 7.08 × 10 -3 6.31 × 10 -8 4.17 × 10 -13 5.01 × 10 -2 2.00 × 10 -7 5.89 × 10 -2 9.1 × 10 -8
HS HSO 4 H 2SO 3 HSO 3 HSeO 4 H 2SeO 3 HSeO 3 HBrO HClO HIO NH 3 H 2NNH 2 H 2NOH
1.00 × 10 -19 1.02 × 10 -2 1.29 × 10 -2 6.17 × 10 -8 2.19 × 10 -2 2.29 × 10 -3 4.79 × 10 -9 2.51 × 10 -9 2.9 × 10 -8 3.16 × 10 -11 5.62 × 10 -10 7.94 × 10 -9 1.15 × 10 -6
Reference Tables
ent
Elem
Ac Al Am Sb Ar As At Ba Bk Be Bi Bh B Br Cd Ca Cf C Ce Cs Cl Cr Co Cu Cm Ds Db Dy Es Er Eu Fm F Fr Gd Ga Ge Au
Sym
bol
r
89 13 95 51 18 33 85 56 97 4 83 107 5 35 48 20 98 6 58 55 17 24 27 29 96 110 105 66 99 68 63 100 9 87 64 31 32 79
Ato m i c M (amu ass* )
[227] 26.981539 [243] 121.760 39.948 74.92160 [210] 137.327 [247] 9.012182 208.98040 [264] 10.811 79.904 112.411 40.078 [251] 12.0107 140.116 132.905451 35.453 51.9961 58.9332 63.546 [247] [281] [262] 162.5 [252] 167.259 151.964 [257] 18.9984032 [223] 157.25 69.723 72.64 196.966569
mbe ic Nu
Atom
*[ ] indicates mass of longest-lived isotope
Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Calcium Californium Carbon Cerium Cesium Chlorine Chromium Cobalt Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold
Melt in
g Po (°C) int
1050 660.32 1176 630.6 -189.3 817 302 727 986 1287 271.3 --2076 –7.3 321.07 842 900 3527 795 28.4 -101.5 1907 1495 1084.62 1340 ----1407 860 1497 826 1527 -219.62 --1312 29.76 938.3 1064
Bo i l i ng P o (°C) int 3300 2519 2607 1587 -185.8 614 --1870 --2469 1564 --3927 59 767 1484 --4027 3360 671 -34 2671 2927 2927 3110 ----2567 --2868 1527 ---188.12 --3250 2204 2820 2856
Dens (gas ity (g/cm 3 e s ) m ea at ST sured P) 10.07 2.7 13.67 6.697 0.001784 5.727 --3.51 14.78 1.848 9.78 --2.46 3.119 8.65 1.55 15.1 2.267 6.689 1.879 0.003 7.14 8.9 8.92 13.51 ----8.551 --9.066 5.244 --0.001696 --7.901 5.904 5.323 19.3
--143 --140 98 120 140 222 --112 150 --85 114 151 197 --77 --265 100 128 125 128 ----------------71 270 --135 122 144
(3+)-2.13 (3+)-1.68 (3+)-2.07 (3+)+0.15 --(3+)+0.24 (1-)+0.2 (2+)-2.92 (3+)-2.01 (2+)-1.97 (3+)+0.317 --(3+)-0.89 (1-)+1.065 (2+)-0.4025 (2+)-2.84 (3+)-1.93 (4-)+0.132 (3+)-2.34 (1+)-2.923 (1-)+1.358 (3+)-0.74 (2+)-0.28 (2+)+0.34 (3+)-2.06 ----(3+)-2.29 (3+)-2 (3+)-2.32 (3+)-1.99 (3+)-1.96 (1-)+2.87 (1+)-2.92 (3+)-2.28 (3+)-0.53 (4+)+0.124 (3+)+1.52
0.120 0.897 0.110 0.207 0.520 0.329 --0.204 --1.825 0.122 --1.026 0.474 0.232 0.647 --0.709 0.192 0.242 0.479 0.449 0.421 0.385 ------0.173 --0.168 0.182 --0.824 --0.236 0.373 0.320 0.129
En t h a of Fu lpy sion
14 10.789 14.39 19.79 1.18 24.44 6 7.12 --7.895 11.145 --50.2 10.57 6.21 8.54 --117 5.46 2.09 6.40 21.0 16.06 12.93 ------11.06 --19.9 9.21 --0.51 2 10.0 5.576 36.94 12.72
First Ioniz En a t e r g y (kJ ion /mol ) Stan d a r d R e duct Po ion (for tential ( V e l ) e or to ments fr om oxid s a t a t e indic tion ated )
Atom ic Ra (pm) dius 499 577.5 578 834 1521 947 920 502.9 601 899.5 703 --800.6 1139.9 867.8 589.8 608 1086.5 534.4 375.7 1251.2 652.9 760.4 745.5 581 ----573 619 589.3 547.1 627 1681 380 593.4 578.8 762 890.1
ific H
eat Spec
Table R-7 Properties of Elements Enth a Vapo lpy of rizat ion 400 294 --68 6.43 32.4 40 140 --297 151 --480 29.96 99.87 155 --715 350 65 20.41 339 375 300 ------280 --285 175 --6.62 65 305 254 334 324
Abun d Eart ance in h’s C rust --8.2 --2 × 10 -5 1.5 × 10 -4 2.1 × 10 -4 --0.034 --2 × 10 -4 3 × 10 -7 --9 × 10 -4 3 × 10 -4 1.5 × 10 -5 5.00 --0.018 0.006 1.9 × 10 -4 0.017 0.014 0.003 0.0068 ------6 × 10 -4 --3 × 10 -4 1.8 × 10 -4 --0.054 --5.2 × 10 -4 0.0019 1.4 × 10 -4 3 × 10 -7
ajor O x id Stat ation es M 3+ 3+ 2+, 3+, 4+ 3+, 5+ --3+, 5+ 1-, 5+ 2+ 3+, 4+ 2+ 3+, 5+ --3+ 1-, 1+, 3+, 5+ 2+ 2+ 3+, 4+ 4-, 2+, 4+ 3+, 4+ 1+ 1-, 1+, 3+, 5+ 2+, 3+, 6+ 2+, 3+ 1+, 2+ 3+, 4+ ----2+, 3+ 3+ 3+ 2+, 3+ 2+, 3+ 11+ 3+ 1+, 3+ 2+, 4+ 1+, 3+
Reference Tables
Reference Tables 971
Reference Tables
67 I 49 53 77 26 36 57 103 82 3 71 12 25 109 101 80 42 60 10 93 28 41
7
N
No Os 0 Pd P Pt Pu Po
Nitrogen
Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium
r
*[ ] indicates mass of longest-lived isotope
102 76 8 46 15 78 94 84
2
72 108
Ho H In I Ir Fe Kr La Lr Pb Li Lu Mg Mn Mt Md Hg Mo Nd Ne Np Ni Nb
ent
Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium
Elem
He
bol
Helium
Sym
Hf Hs
Ato m i c M (amu ass* )
[259] 190.23 15.9994 106.42 30.973462 195.078 [244] [209]
14.0067
164.93032 1.00794 114.818 126.90447 192.217 55.845 83.798 138.9055 [262] 207.2 6.941 174.967 24.305 54.938045 [268] [258] 200.59 95.94 144.24 20.1797 [237] 58.6934 92.90638
4.002602
178.49 [277]
mbe ic Nu
Atom
Hafnium Hassium
Melt in
g Po (°C) int
827 3033 -218.3 1554.9 44.2 1768.3 639.4 254
-210.1
2233 -272.2 -269.7 (2536 kPa) 1461 -259.14 156.6 113.7 2466 1538 -157.36 920 1627 327.46 180.54 1652 650 1246 --827 -38.83 2623 1024 -248.59 637 1455 2477
Bo i l i ng P o (°C) int --5012 -182.9 2963 277 3825 3230 962
-195.79
2720 -252.87 2072 184.3 4428 2861 -153.22 3470 --1749 1342 3402 1090 2061 ----356.73 4639 3100 -246.08 4000 2913 4744
-268.93
4603 ---
Dens (gas ity (g/cm 3 e s ) m ea at ST sured P) --22.61 0.001429 12.023 1.823 21.09 19.816 9.196
0.0012506
8.795 0.0000899 7.31 4.94 22.65 7.874 0.0037493 6.146 --11.34 0.535 9.841 1.738 7.47 ----13.6 10.28 6.8 0.0008999 20.45 8.908 8.57
0.00017847
13.31 0.0001785
--135 73 137 110 138 --168
75
--37 167 133 136 126 112 187 --146 152 160 160 127 ----151 139 --71 --124 146
31
159 ---
Atom ic Ra (pm) dius 642 840 1313.9 804.4 1011.8 870 584.7 812.1
1402.3
581 1312 558.3 1008.4 880 762.5 1350.8 538.1 --715.6 520.2 523.5 737.7 717.3 --635 1007.1 684.3 533.1 2080.7 604.5 737.1 652.1
2372
(2+)-2.5 (4+)+0.687 (2-)+1.23 (2+)+0.915 (3-)-0.063 (4+)+1.15 (4+)-1.25 (4+)+0.73
(2-)-0.23
(3+)-2.33 (1+)0.000 (3+)-0.3382 (1-)+0.535 (4+)+0.926 (3+)-0.04 --(3+)-2.38 (3+)-2 (2+)-0.1251 (1+)-3.040 (3+)-2.3 (2+)-2.356 (2+)-1.18 --(3+)-1.7 (2+)+0.8535 (6+)+0.114 (3+)-2.32 --(4+)-1.30 (2+)-0.257 (5+)-0.65
---
(4+)-1.70 ---
--57.85 0.44 16.74 0.66 22.17 2.82 13
0.71
17.0 0.12 3.281 15.52 41.12 13.81 1.64 6.20 --4.782 3.00 22 8.48 12.91 ----2.29 37.48 7.14 0.328 3.20 17.04 30
0.021
27.2 ---
First Ioniz En a t e r g y (kJ ion /mol ) Stan d a r d R e duct Po ion (for tential ( V e l ) e or to ments fr om oxid s a t a t e indic tion ated )
658.5 2372.3
--0.130 0.918 0.246 0.769 0.133 0.130 ---
1.040
0.165 14.304 0.233 0.214 0.131 0.449 0.248 0.195 --0.130 3.582 0.154 1.023 0.479 ----0.140 0.251 0.190 1.030 0.120 0.444 0.265
5.193
0.144 ---
En t h a of Fu lpy sion
972 ific H
eat Spec
Table R-7 Properties of Elements (continued) Enth a Vapo lpy of rizat ion --630 6.82 380 12.4 490 325 100
5.57
265 0.90 230 41.57 560 347 9.08 400 --179.5 147 415 128 220 ----59.11 600 285 1.71 335 378 690
0.08
630 0.083
Abun d Eart ance in h’s C rust --1.8 × 10 -7 46.0 6.3 × 10 -7 0.10 3.7 × 10 -7 -----
0.002
1.2 × 10 -4 0.15 1.6 × 10 -5 4.9 × 10 -5 4 × 10 -7 6.3 1.5 × 10 -7 0.0034 --0.001 0.0017 5.6 × 10 -5 2.9 0.11 ----6.7 × 10 -6 1.1 × 10 -4 0.0033 ----0.009 0.0017
---
3 × 10 -4 5.5 × 10 -4
ajor O x id Stat ation es M 3+ 1-, 1+ 1+, 3+ 1-, 1+, 5+, 7+ 3+, 4+, 5+ 2+, 3+ --3+ 3+ 2+, 4+ 1+ 3+ 2+ 2+, 3+, 4+, 6+, 7+ --2+, 3+ 1+, 2+ 4+, 5+, 6+ 2+,3+ --2+, 3+, 4+, 5+, 6+ 2+, 3+, 4+ 4+, 5+ 3-, 2-, 1-, 1+, 2+, 3+, 4+, 5+ 2+, 3+ 4+, 6+, 8+ 2-, 12+, 4+ 3-, 3+, 5+ 2+, 4+ 3+, 4+, 5+, 6+ 2-, 2+, 4+, 6+
---
4+ ---
Reference Tables
K Pr Pm Pa Ra Rn Re Rh Rg Rb Ru Rf Sm Sc Sg Se Si Ag Na Sr S Ta Tc Te Tb Tl Th Tm Sn Ti W Uub Uuh Uuo Uup Uuq Uut U V Xe Yb Y Zn Zr
19 59 61 91 88 86 75 45 111 37 44 104 62 21 106 34 14 47 11 38 16 73 43 52 65 81 90 69 50 22 74 112 116 118 115 114 113 92 23 54 70 39 30 40
*[ ] indicates mass of longest-lived isotope
Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Ununbium Ununhexium Ununoctium Ununpentium Ununquadium Ununtrium Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium
39.0983 140.90765 [145] 231.03588 [226] [222] 186.207 102.9055 [272] 85.4678 101.07 [261] 150.36 44.95591 [266] 78.96 28.0588 107.8682 22.989769 87.62 32.065 180.9479 [98] 127.60 158.92534 204.3822 232.0381 168.93421 118.710 47.867 183.84 [285] [291] [294] [288] [289] [284] 238.02891 50.9415 131.293 173.04 88.90585 65.409 91.224
63.38 935 1100 1568 700 -71 3186 1964 --39.31 2334 --1072 1541 --221 1414 961.78 97.72 777 115.2 3017 2157 449.51 1356 304 1842 1545 231.93 1668 3422 ------------1132.2 1910 -111.7 824 1526 419.53 1855
759 3290 3000 --1737 -61.7 5596 3695 --688 4150 --1803 2830 --685 2900 2162 883 1382 444.7 5458 4265 988 3230 1473 4820 1950 2602 3287 5555 ------------3927 3407 -108 1196 3336 907 4409
0.856 6.64 7.264 15.37 5 0.00973 21.02 12.45 --1.532 12.37 --7.353 2.985 --4.819 2.33 10.49 0.968 2.63 1.96 16.65 11.5 6.24 8.219 11.85 11.72 9.321 7.31 4.507 19.25 ------------19.05 6.11 0.0058971 6.57 4.472 7.14 6.511
227 ------220 140 137 134 --248 134 ----162 --119 118 144 186 215 103 146 136 142 --170 ----140 147 139 --------------134 131 --180 134 160
418.8 527 540 568 509.3 1037 760 719.7 --403 710.2 --544.5 633.1 --941 786.5 731 495.8 549.5 999.6 761 702 869.3 565.8 589.4 587 596.7 708.6 658.8 770 ------------597.6 650.9 1170.4 603.4 600 906.4 640.1
(1+)-2.925 (3+)-2.35 (3+)-2.29 (5+)-1.19 (2+)-2.916 --(7+)+0.415 (3+)+0.76 --(1+)-2.924 (4+)+0.68 --(3+)-2.3 (3+)-2.03 --(1-)-0.11 (4-)-0.143 (1+)+0.7991 (1+)-2.713 (2+)-2.89 (2-)-0.14 (5+)-0.81 (6+)+0.83 (2-)-1.14 (3+)-2.31 (1+)-0.3363 (4+)-1.83 (3+)-2.32 (4+)+0.15 (4+)-0.86 (6+)-0.09 ------------(4+)-1.38 (5+)-0.236 (6+)+2.12 (3+)-2.22 (3+)-2.37 (2+)-0.7926 (4+)-1.55
2.33 6.89 7.7 12.34 8 3 60.43 26.59 --2.19 38.59 --8.62 14.1 --6.69 50.21 11.28 2.60 7.43 1.72 36.57 33.29 17.49 10.15 4.14 13.81 16.84 7.173 14.15 52.31 ------------9.14 21.5 2.27 7.66 11.4 7.068 21.00
0.757 0.193 ----0.095 0.094 0.137 0.243 --0.363 0.238 --0.197 0.568 --0.321 0.712 0.235 1.228 0.306 0.708 0.140 0.240 0.202 0.182 0.129 0.118 0.160 0.227 0.523 0.132 ------------0.116 0.489 0.158 0.155 0.298 0.388 0.278
Table R-7 Properties of Elements (continued) 76.9 330 290 470 125 17 705 495 --72 580 --175 318 --95.48 359 255 97.7 137 45 735 550 114.1 295 165 530 250 290 425 800 ------------420 453 12.57 160 380 119 580
1.50 8.7 × 10 -4 --trace trace --2.6 × 10 -7 7 × 10 -8 --0.006 1 × 10 -7 --6 × 10 -4 0.0026 --5 × 10 -6 27.0 8 × 10 -6 2.3 0.036 0.042 1.7 × 10 -4 --1 × 10 -7 1 × 10 -4 5.3 × 10 -5 6 × 10 -4 5 × 10 -5 2.2 × 10 -4 0.66 1.1 × 10 -4 ------------1.8 × 10 -4 0.019 trace 2.8 × 10 -4 0.0029 0.0079 0.013
1+ 3+, 4+ 3+ 3+, 4+, 5+ 2+ 3+ 3+, 4+, 6+, 7+ 3+, 4+, 5+ --1+ 2+, 3+, 4+, 5+ --2+, 3+ 3+ --2-, 2+, 4+, 6+ 2+, 4+ 1+ 1+ 2+ 2-, 4+, 6+ 4+, 5+ 2+, 4+, 6+, 7+ 2-, 2+, 4+, 6+ 3+, 4+ 1+, 3+ 4+ --2+, 4+ 2+, 3+, 4+ 4+, 5+, 6+ ------------3+, 4+, 5+, 6+ 2+, 3+, 4+, 5+ --2+, 3+ 3+ 2+ 4+
Reference Tables
Reference Tables 973
Reference Tables Table R-8 Solubility Guidelines A substance is considered soluble if more than three grams of the substance dissolves in 100 mL of water. The more common rules are listed below. 1. All common salts of the group 1 elements and ammonium ions are soluble. 2. All common acetates and nitrates are soluble. 3. All binary compounds of group 17 elements (other than F) with metals are soluble except those of silver, mercury(I), and lead. 4. All sulfates are soluble except those of barium, strontium, lead, calcium, silver, and mercury(I). 5. Except for those in Rule 1, carbonates, hydroxides, oxides, sulfides, and phoshates are insoluble.
Ph
Sul
—
I
S
S
I
S
I
S
D
Ammonium
S
S
S
S
S
S
S
S
S
—
S
S
S
S
Barium
S
S
P
S
S
I
S
S
S
S
S
I
I
D
Calcium
S
S
P
S
S
S
S
S
S
P
S
P
P
P
Copper(II)
S
S
—
S
S
—
I
—
S
I
S
I
S
I
Hydrogen
S
S
—
S
S
—
—
S
S
S
S
S
S
S
Iron(II)
—
S
P
S
S
—
I
S
S
I
S
I
S
I
Iron(III)
—
S
—
S
S
I
I
S
S
I
S
P
P
D
Lead(II)
S
S
—
S
S
I
P
P
S
P
S
I
P
I
Lithium
S
S
S
S
S
?
S
S
S
S
S
P
S
S
Magnesium
S
S
P
S
S
S
I
S
S
I
S
P
S
D
Manganese(II)
S
S
P
S
S
—
I
S
S
I
S
P
S
I
Mercury(I)
P
I
I
S
I
P
—
I
S
I
S
I
P
I
Mercury(II)
S
S
—
S
S
P
I
P
S
P
S
I
D
I
Potassium
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Silver
P
I
I
S
I
P
—
I
S
P
S
I
P
I
Sodium
S
S
S
S
S
S
S
S
S
D
S
S
S
S
Strontium
S
S
P
S
S
P
S
S
S
S
S
I
P
S
Tin(II)
D
S
—
S
S
O
S
D
I
S
I
S
I
Tin(IV)
S
S
—
—
S
S
I
D
—
I
S
—
S
I
Zinc
S
S
P
S
S
P
P
S
S
P
S
I
S
I
Reference Tables
I – insoluble
ide Suf
fat
ide
ide
lor
Ch
Ca
mi
P – partially soluble
e
Per chl o
S
osp
Ox
S
rat e Nit
hat e
rat e
e Iod
dro xid
ate
Hy
—
rom
Ch
S
rbo
Ch
ide
lor ate
de
e
Bro
S
tat Ace
Aluminum
S – soluble
974
nat e
Solubility of Compounds in Water
D – decomposes
Reference Tables Table R-9 Specific Heat Values (J/g·K) Substance
c
AIF 3 BaTiO 3 BeO CaC 2 CaSO 4 CCl 4 CH 3OH CH 2OHCH 2OH CH 3CH 2OH CdO CuSO 4·5H 2O
0.8948 0.79418 1.020 0.9785 0.7320 0.85651 2.55 2.413 2.4194 0.3382 1.12
Substance
c
Fe 3C FeWO 4 HI K 2CO 3 MgCO 3 Mg(OH) 2 MgSO 4 MnS Na 2CO 3 NaF
0.5898 0.37735 0.22795 0.82797 0.8957 1.321 0.8015 0.5742 1.0595 1.116
Substance
c
NaVO 3 Ni(CO) 4 Pbl 2 SF 6 SiC SiO 2 SrCl 2 Tb 2O 3 TiCl 4 Y 2O 3
1.540 1.198 0.1678 0.6660 0.6699 0.7395 0.4769 0.3168 0.76535 0.45397
Table R-10 Molal Freezing Point Depression and Boiling Point Elevation Constants K fp (C°kg/mol)
Substance Acetic acid Benzene Camphor Cyclohexane Cyclohexanol Nitrobenzene Phenol Water
3.90 5.12 37.7 20.0 39.3 6.852 7.40 1.86
Freezing Point (°C) 16.66 5.533 178.75 6.54 25.15 5.76 40.90 0.000
K bp (C°kg/mol)
Boiling Point (°C)
3.22 2.53 5.611 2.75 --5.24 3.60 0.512
117.90 80.100 207.42 80.725 --210.8 181.839 100.000
Table R-11 Heat of Formation Values ∆H ◦f (kJ/mol) (concentration of aqueous solutions is 1M) Substance Ag(s) AgCl(s) AgCN(s) Al 2O 3 BaCl 2(aq) BaSO 4 BeO(s) BiCl 3(s) Bi 2S 3(s) Br 2 CCl 4(I) CH 4(g) C 2H 2(g) C 2H 4(g) C 2H 6(g) CO(g) CO 2(g) CS 2(I) Ca(s) CaCO 3(s) CaO(s) Ca(OH) 2(s) Cl 2(g) Co 3O 4(s) CoO(s) Cr 2O 3(s)
∆H ◦f 0 -127.0 146.0 -1675.7 -855.0 -1473.2 -609.4 -379.1 -143.1 0 -128.2 -74.6 227.4 52.4 -84.0 -110.5 -393.5 89.0 0 -1206.9 -634.9 -985.2 0 -891.0 -237.9 -1139.7
Substance CsCl(s) Cs 2SO 4(s) Cul(s) CuS(s) Cu 2S(s) CuSO 4(s) F 2(g) FeCl 3(s) FeO(s) FeS(s) Fe 2O 3(s) Fe 3O 4(s) H(g) H 2(g) HBr(g) HCl(g) HCl(aq) HCN(aq) HCHO HCOOH HF(g) Hl(g) H 2O(I) H 2O(g) H 2O 2(I) H 3PO 2(I)
∆H ◦f -443.0 -1443.0 -67.8 -53.1 -79.5 -771.4 0 -399.49 -272.0 -100.0 -824.2 -1118.4 218.0 0 -36.3 -92.3 -167.159 108.9 -108.6 -425.0 -273.3 26.5 -285.8 -241.8 -187.8 -595.4
Substance H 3PO 4(aq) H 2S(g) H 2SO 3(aq) H 2SO 4(aq) HgCl 2(s) Hg 2Cl 2(s) Hg 2SO 4(s) l 2(s) K(s) KBr(s) KMnO 4(s) KOH LiBr(s) LiOH(s) Mn(s) MnCl 2(aq) Mn(NO 3) 2(aq) MnO 2(s) MnS(s) N 2(g) NH 3(g) NH 4Br(s) NO(g) NO 2(g) N 2O(g) Na(s)
∆H ◦f -1271.7 -20.6 -608.8 -814.0 -224.3 -265.4 -743.1 0 0 -393.8 -837.2 -424.6 -351.2 -487.5 0 -555.0 -635.5 -520.0 -214.2 0 -45.9 -270.8 91.3 33.2 81.6 0
Substance NaBr(s) NaCl(s) NaHCO 3(s) NaNO 3(s) NaOH(s) Na 2CO 3(s) Na 2S(s) Na 2SO 4(s) NH 4Cl(s) O 2(g) P 4O 6(s) P 4O 10(s) PbBr 2(s) PbCl 2(s) SF 6(g) SO 2(g) SO 3(g) SrO(s) TiO 2(s) Tll(s) UCl 4(s) UCl 6(s) Zn(s) ZnCl 2(aq) ZnO(s) ZnSO 4(s)
∆H ◦f -361.1 -411.2 -950.8 -467.9 -425.8 -1130.7 -364.8 -1387.1 -314.4 0 -1640.1 -2984.0 -278.7 -359.4 -1220.5 -296.8 -454.5 -592.0 -944.0 -123.8 -1019.2 -1092.0 0 -415.1 -350.5 -982.8
Reference Tables 975
Chapter 2 Section 2.1
1. The density of a substance is 48 g/mL. What is the volume of a sample that
is 19.2 g? 2. A 2.00-mL sample of Substance A has a density of 18.4 g/mL, and a
5.00-mL sample of Substance B has a density of 35.5 g/mL. Do you have an equal mass of Substances A and B? Section 2.2
3. Express the following quantities in scientific notation. a. 5,453,000 m e. 34,800 s b. 300.8 kg f. 332,080,000 cm c. 0.00536 ng g. 0.0002383 ms d. 0.0120325 km h. 0.3048 mL 4. Solve the following problems. Express your answers in scientific notation. a. 3 × 10 2 m + 5 × 10 2 m b. 8 × 10 −5 m + 4 × 10 −5 m c. 6.0 × 10 5 m + 2.38 × 10 6 m d. 2.3 × 10 -3 L + 5.78 × 10 -2 L e. 2.56 × 10 2 g - 1.48 × 10 2 g f. 5.34 × 10 -3 L - 3.98 × 10 -3 L g. 7.623 × 10 5 nm - 8.32 × 10 4 nm h. 9.052 × 10 -2 s - 3.61 × 10 -3 s 5. Solve the following problems. Express your answers in scientific notation. a. (8 × 10 3 m) × (1 × 10 5 m) b. (4 × 10 2 m) × (2 × 10 4 m) c. (5 × 10 -3 m) × (3 × 10 4 m) d. (3 × 10 -4 m) × (3 × 10 -2 m) e. (8 × 10 4 g) ÷ (4 × 10 3 mL) f. (6 × 10 -3 g) ÷ (2 × 10 -1 mL) g. (1.8 × 10 -2 g) ÷ (9 × 10 -5 mL) h. (4 × 10 -4 g) ÷ (1 × 10 3 mL) 6. Perform the following conversions. a. 96 kg to g e. b. 155 mg to g f. c. 15 cg to kg g. d. 584 µs to s h.
188 dL to L 3600 m to km 24 g to pg 85 cm to nm
7. How many minutes are there in 5 days? 8. A car is traveling at 118 km/h. What is its speed in Mm/h? Section 2.3
9. Three measurements of 34.5 m, 38.4 m, and 35.3 m are taken. If the
accepted value of the measurement is 36.7 m, what is the percent error for each measurement? 10. Three measurements of 12.3 mL, 12.5 mL, and 13.1 mL are taken. The
accepted value for each measurement is 12.8 mL. Calculate the percent error for each measurement.
976
Supplemental Practice Problems
Supplemental Practice Problems
11. Determine the number of significant figures in each measurement. a. 340,438 g e. 1.040 s b. 87,000 ms f. 0.0483 m c. 4080 kg g. 0.2080 mL d. 961,083,110 m h. 0.0000481 g 12. Write the following in three significant figures. a. 0.0030850 km c. 5808 mL b. 3.0823 g d. 34.654 mg 13. Write the answers in scientific notation. a. 0.005832 g c. 0.0005800 km b. 386,808 ns d. 2086 L 14. Use rounding rules when you complete the following. a. 34.3 m + 35.8 m + 33.7 m b. 0.056 kg + 0.0783 kg + 0.0323 kg c. 309.1 mL + 158.02 mL + 238.1 mL d. 1.03 mg + 2.58 mg + 4.385 mg e. 8.376 km - 6.153 km f. 34.24 s - 12.4 s g. 804.9 dm - 342.0 dm h. 6.38 × 10 2 m - 1.57 × 10 2 m 15. Complete the following calculations. Round off the answers to the correct
number of significant figures. a. 34.3 cm × 12 cm b. 0.054 mm × 0.3804 mm c. 45.1 km × 13.4 km
d. 45.5 g ÷ 15.5 mL e. 35.43 g ÷ 24.84 mL f. 0.0482 g ÷ 0.003146 mL
Chapter 3 Section 3.2
1. A 3.5-kg iron shovel is left outside through the winter. The shovel, now
orange with rust, is rediscovered in the spring. Its mass is 3.7 kg. How much oxygen combined with the iron? 2. When 5.0 g of tin reacts with hydrochloric acid, the mass of the products,
tin chloride and hydrogen, totals 8.1 g. How many grams of hydrochloric acid were used? Section 3.4
3. A compound is analyzed and found to be 50.0% sulfur and 50.0% oxygen.
If the total amount of the sulfur oxide compound is 12.5 g, how many grams of sulfur are there? 4. Two unknown compounds are analyzed. Compound I contains 5.63 g of
tin and 3.37 g of chlorine, while Compound II contains 2.5 g of tin and 2.98 g of chlorine. Are the compounds the same?
Chapter 4 Section 4.3
1. How many protons and electrons are in each of the following atoms? a. gallium d. calcium b. silicon e. molybdenum c. cesium f. titanium Supplemental Practice Problems 977
Supplemental Practice Problems
2. What is the atomic number of each of the following elements? a. an atom that contains 37 electrons b. an atom that contains 72 protons c. an atom that contains 1 electron d. an atom that contains 85 protons 3. Use the periodic table to write the name and the symbol for each element
identified in Question 2. 4. An isotope of copper contains 29 electrons, 29 protons, and 36 neutrons.
What is the mass number of this isotope? 5. An isotope of uranium contains 92 electrons and 144 neutrons. What is the
mass number of this isotope? 6. Use the periodic table to write the symbols for each of the following
elements. Then, determine the number of electrons, protons, and neutrons each contains. a. yttrium-88 d. bromine-79 b. arsenic-75 e. gold-197 c. xenon-129 f. helium-4 7. An element has two naturally occurring isotopes: 14X and 15X. 14X has a
mass of 14.00307 amu and a relative abundance of 99.63%. 15X has a mass of 15.00011 amu and a relative abundance of 0.37%. Identify the unknown element. 8. Silver has two naturally occurring isotopes. Ag-107 has an abundance of
51.82% and a mass of 106.9 amu. Ag-109 has a relative abundance of 48.18% and a mass of 108.9 amu. Calculate the atomic mass of silver.
Chapter 5 Section 5.1
1. What is the frequency of an electromagnetic wave that has a wavelength of
4.55 × 10 −3 m? 1.00 × 10 −12 m? 2. Calculate the wavelength of an electromagnetic wave with a frequency of
8.68 × 10 16 Hz; 5.0 × 10 14 Hz; and 1.00 × 10 6 Hz. 3. What is the energy of a quantum of visible light having a frequency of
5.45 × 10 14 s −1? 4. An X ray has a frequency of 1.28 × 10 18 s −1. What is the energy of a quan-
tum of the X ray? Section 5.3
5. Write the ground-state electron configuration for the following. a. nickel c. boron b. cesium d. krypton 6. What element has the following ground-state electron configuration
[He]2s 2? [Xe]6s 24f 145d 106p 1? 7. Which element in period 4 has four electrons in its electron-dot structure? 8. Which element in period 2 has six electrons in its electron-dot structure? 9. Draw the electron-dot structure for each element in Question 5.
978
Supplemental Practice Problems
Supplemental Practice Problems
Chapter 6 Section 6.2
1. Identify the group, period, and block of an atom with the following elec-
tron configurations. a. [He]2s 22p 1 b. [Kr]5s 24d 5
c. [Xe]6s 25f 146d 5
2. Write the electron configuration for the element fitting each of the following
descriptions. a. a noble gas in the first period b. a group 4 element in the fifth period c. a group 14 element in the sixth period d. a group 1 element in the seventh period Section 6.3
3. Using the periodic table, rank each group of elements in order of
increasing size. a. calcium, magnesium, and strontium b. oxygen, lithium, and fluorine c. fluorine, cesium, and calcium d. selenium, chlorine, and tellurium e. iodine, krypton, and beryllium
Chapter 7 Section 7.2
1. Explain the formation of an ionic compound from zinc and chlorine. 2. Explain the formation of an ionic compound from barium and nitrogen.
Section 7.3
3. Write the chemical formula of an ionic compound composed of the follow-
ing pairs of ions. a. calcium and arsenide b. iron(III) and chloride c. magnesium and sulfide d. barium and iodide e. gallium and phosphide 4. Determine the formula for ionic compounds composed of the following
ions. a. copper(II) and acetate b. ammonium and phosphate
c. calcium and hydroxide d. gold(III) and cyanide
5. Name the following compounds. a. Co(OH) 2 c. Na 3PO 4 b. Ca(ClO 3) 2 d. K 2Cr 2O 7
e. SrI 2 f. HgF 2
Chapter 8 Section 8.1
1. Draw the Lewis structure for each of the following molecules. a. CCl 2H 2 b. HF c. PCl 3 d. CH 4
Section 8.2
2. Name the following binary compounds. a. S 4N 2 c. SF 6 b. OCl 2 d. NO
e. SiO 2 f. IF 7
3. Name the following acids: H 3PO 4, HBr, HNO 3.
Supplemental Practice Problems 979
Supplemental Practice Problems
4. Draw the Lewis structure for each of the following. a. CO c. N 2O e. SiO 2 b. CH 2O d. OCl 2 f. AlBr 3
Section 8.3
5. Draw the Lewis resonance structure for CO 3 2−. 6. Draw the Lewis resonance structure for CH 3CO 2 −. 7. Draw the Lewis structure for NO and IF 4 −. 8. Determine the molecular geometry, bond angles, and hybrid of each
Section 8.4
molecule in Question 4. 9. Determine whether each of the following molecules is polar or nonpolar. a. CH 2O b. BF 3 c. SiH 4 d. H 2S
Section 8.5
Chapter 9 Section 9.1
Write skeleton equations for the following reactions. 1. Solid barium and oxygen gas react to produce solid barium oxide. 2. Solid iron and aqueous hydrogen sulfate react to produce aqueous iron(III)
sulfate and gaseous hydrogen. Write balanced chemical equations for the following reactions. 3. Liquid bromine reacts with solid phosphorus (P 4) to produce solid diphosphorus pentabromide. 4. Aqueous lead(II) nitrate reacts with aqueous potassium iodide to produce
solid lead(II) iodide and aqueous potassium nitrate. 5. Solid carbon reacts with gaseous fluorine to produce gaseous carbon
tetrafluoride. 6. Aqueous carbonic acid reacts to produce liquid water and gaseous carbon
dioxide. 7. Gaseous hydrogen chloride reacts with gaseous ammonia to produce solid
ammonium chloride. 8. Solid copper(II) sulfide reacts with aqueous nitric acid to produce aqueous
copper(II) sulfate, liquid water, and nitrogen dioxide gas. Section 9.2
Classify each of the following reactions into as many types as possible. 9. 2Mo(s) + 3O 2(g) → 2MoO 3(s) 10. N 2H 4(l) + 3O 2(g) → 2NO 2(g) + 2H 2O(l) Write balanced chemical equations for the following decomposition reactions. 11. Aqueous hydrogen chlorite decomposes to produce water and gaseous chlorine(III) oxide. 12. Calcium carbonate(s) decomposes to produce calcium oxide(s) and carbon
dioxide(g). Use the activity series to predict whether each of the following singlereplacement reactions will occur. 13. Al(s) + FeCl 3(aq) → AlCl 3(aq) + Fe(s) 980
Supplemental Practice Problems
Supplemental Practice Problems
14. Br 2(l) + 2LiI(aq) → 2LiBr(aq) + I 2(aq) 15. Cu(s) + MgSO 4(aq) → Mg(s) + CuSO 4(aq)
Write chemical equations for the following chemical reactions. 16. Bismuth(III) nitrate(aq) reacts with sodium sulfide(aq), yielding bismuth(III) sulfide(s) plus sodium nitrate(aq). 17. Magnesium chloride(aq) reacts with potassium carbonate(aq), yielding
magnesium carbonate(s) plus potassium chloride(aq). Section 9.3
Write net ionic equations for the following reactions. 18. Aqueous solutions of barium chloride and sodium fluoride are mixed to form a precipitate of barium fluoride. 19. Aqueous solutions of copper(I) nitrate and potassium sulfide are mixed to
form insoluble copper(I) sulfide. 20. Hydrobromic acid reacts with aqueous lithium hydroxide. 21. Perchloric acid reacts with aqueous rubidium hydroxide. 22. Nitric acid reacts with aqueous sodium carbonate. 23. Hydrochloric acid reacts with aqueous lithium cyanide.
Chapter 10 Section 10.1
1. Determine the number of atoms in 3.75 mol of Fe. 2. Calculate the number of formula units in 12.5 mol of CaCO 3. 3. How many moles of CaCl 2 contain 1.26 × 10 24 formula units of CaCl 2? 4. How many moles of Ag contain 4.59 × 10 25 atoms of Ag?
Section 10.2
5. Determine the mass in grams of 0.0458 mol of sulfur. 6. Calculate the mass in grams of 2.56 × 10 −3 mol of iron. 7. Determine the mass in grams of 125 mol of neon. 8. How many moles of titanium are contained in 71.4 g? 9. How many moles of lead are equivalent to 9.51 × 10 3 g of Pb? 10. Determine the number of moles of arsenic in 1.90 g of As. 11. Determine the number of atoms in 4.56 × 10 −2 g of sodium. 12. How many atoms of gallium are in 2.85 × 10 3 g of gallium? 13. Determine the mass in grams of 5.65 × 10 24 atoms of Se. 14. What is the mass in grams of 3.75 × 10 21 atoms of Li?
Section 10.3
15. How many moles of each element are in 0.0250 mol of K 2CrO 4? 16. How many moles of ammonium ions are in 4.50 mol of (NH 4) 2CO 3? 17. Determine the molar mass of silver nitrate. 18. Calculate the molar mass of acetic acid (CH 3COOH). Supplemental Practice Problems 981
Supplemental Practice Problems
19. Determine the mass of 8.57 mol of sodium dichromate (Na 2Cr 2O 7). 20. Calculate the mass of 42.5 mol of potassium cyanide. 21. Determine the number of moles present in 456 g of Cu(NO 3) 2. 22. Calculate the number of moles in 5.67 g of potassium hydroxide. 23. Calculate the number of each atom in 40.0 g of methanol (CH 3OH). 24. What mass of sodium hydroxide contains 4.58 × 10 23 formula units? Section 10.4
25. What is the percent by mass of each element in sucrose (C 12H 22O 11)? 26. Which compound has a greater percent by mass of chromium, K 2CrO 4 or
K 2Cr 2O 7? 27. Analysis of a compound indicates the percent composition 42.07% Na,
18.89% P, and 39.04% O. Determine its empirical formula. 28. A colorless liquid was found to contain 39.12% C, 8.76% H, and 52.12% O.
Determine the empirical formula of the substance. 29. Analysis of a compound used in cosmetics reveals the compound contains
26.76% C, 2.21% H, 71.17% O and has a molar mass of 90.04 g/mol. Determine the molecular formula for this substance. 30. Eucalyptus leaves are the food source for panda bears. Eucalyptol is an oil
found in these leaves. Analysis of eucalyptol indicates it has a molar mass of 154 g/mol and contains 77.87% C, 11.76% H, and 10.37% O. Determine the molecular formula of eucalyptol. 31. Beryl is a hard mineral that occurs in a variety of colors. A 50.0-g sample
of beryl contains 2.52 g Be, 5.01 g Al, 15.68 g Si, and 26.79 g O. Determine its empirical formula. 32. Analysis of a 15.0-g sample of a compound used to leach gold from low-
grade ores is 7.03 g Na, 3.68 g C, and 4.29 g N. Determine the empirical formula for this substance. Section 10.5
33. Analysis of a hydrate of iron(III) chloride revealed that in a 10.00-g sample
of the hydrate, 6.00 g is anhydrous iron(III) chloride and 4.00 g is water. Determine the formula and name of the hydrate. 34. When 25.00 g of a hydrate of nickel(II) chloride was heated, 11.37 g of
water was released. Determine the name and formula of the hydrate.
Chapter 11 Section 11.1
Interpret the following balanced chemical equations in terms of particles, moles, and mass. 1. Mg + 2HCl → MgCl 2 + H 2 2. 2Al + 3CuSO 4 → Al 2(SO 4) 3 + 3Cu 3. Cu(NO 3) 2 + 2KOH → Cu(OH) 2 + 2KNO 3 4. Write and balance the equation for the decomposition of aluminum
carbonate. Determine the possible mole ratios.
982
Supplemental Practice Problems
Supplemental Practice Problems
5. Write and balance the equation for the formation of magnesium hydroxide
and hydrogen from magnesium and water. Determine the possible mole ratios. Section 11.2
6. Some antacid tablets contain aluminum hydroxide. The aluminum
hydroxide reacts with stomach acid according to the equation: Al(OH) 3 + 3HCl → AlCl 3 + 3H 2O. Determine the moles of acid neutralized if a tablet contains 0.200 mol of Al(OH) 3. 7. Chromium reacts with oxygen according to the equation:
4Cr + 3O 2 → 2Cr 2O 3. Determine the moles of chromium(III) oxide produced when 4.58 mol of chromium is allowed to react. 8. Space vehicles use solid lithium hydroxide to remove exhaled carbon
dioxide according to the equation: 2LiOH + CO 2 → Li 2CO 3 + H 2O. Determine the mass of carbon dioxide removed if the space vehicle carries 42.0 mol of LiOH. 9. Some of the sulfur dioxide released into the atmosphere is converted to
sulfuric acid according to the equation: 2SO 2 + 2H 2O + O 2 → 2H 2SO 4. Determine the mass of sulfuric acid formed from 3.20 mol of sulfur dioxide. 10. How many grams of carbon dioxide are produced when 2.50 g of sodium
hydrogen carbonate reacts with excess citric acid according to the equation: 3NaHCO 3 + H 3C 6H 5O 7 → Na 3C 6H 5O 7 + 3CO 2 + 3H 2O? 11. Aspirin (C 9H 8O 4) is produced when salicylic acid (C 7H 6O 3) reacts with
acetic anhydride (C 4H 6O 3) according to the equation: C 7H 6O 3 + C 4H 6O 3 → C 9H 8O 4 + HC 2H 3O 2. Determine the mass of aspirin produced when 150.0 g of salicylic acid reacts with an excess of acetic anhydride. Section 11.3
12. Chlorine reacts with benzene to produce chlorobenzene and hydrogen
chloride, Cl 2 + C 6H 6 → C 6H 5Cl + HCl. Determine the limiting reactant if 45.0 g of benzene reacts with 45.0 g of chlorine, the mass of the excess reactant after the reaction is complete, and the mass of chlorobenzene produced. 13. Nickel reacts with hydrochloric acid to produce nickel(II) chloride and
hydrogen according to the equation: Ni + 2HCl → NiCl 2 + H 2. If 5.00 g of Ni and 2.50 g of HCl react, determine the limiting reactant, the mass of the excess reactant after the reaction is complete, and the mass of nickel(II) chloride produced. Section 11.4
14. Tin(IV) iodide is prepared by reacting tin with iodine. Write the balanced
chemical equation for the reaction. Determine the theoretical yield if a 5.00-g sample of tin reacts in an excess of iodine. Determine the percent yield if 25.0 g of SnI 4 was recovered. 15. Gold is extracted from gold-bearing rock by adding sodium cyanide in
the presence of oxygen and water, according to the reaction: 4Au(s) + 8NaCN(aq) + O 2(g) + 2H 2O(l) → 4NaAu(CN) 2(aq) + NaOH(aq). Determine the theoretical yield of NaAu(CN) 2 if 1000.0 g of gold-bearing rock is used, which contains 3.00% gold by mass. Determine the percent yield of NaAu(CN) 2 if 38.790 g of NaAu(CN) 2 is recovered.
Supplemental Practice Problems 983
Supplemental Practice Problems
Chapter 12 Section 12.1
1. Calculate the ratio of effusion rates for methane (CH 4) and nitrogen. 2. Calculate the molar mass of butane. Butane’s rate of diffusion is 3.8 times
slower than that of helium. 3. What is the total pressure in a canister that contains oxygen gas at a partial
pressure of 804 mm Hg, nitrogen at a partial pressure of 220 mm Hg, and hydrogen at a partial pressure of 445 mm Hg? 4. Calculate the partial pressure of neon in a flask that has a total pressure of
1.87 atm. The flask contains krypton at a partial pressure of 0.77 atm and helium at a partial pressure of 0.62 atm.
Chapter 13 Section 13.1
1. The pressure of air in a 2.25-L container is 1.20 atm. What is the new
pressure if the sample is transferred to a 6.50-L container? Temperature is constant. 2. The volume of a sample of hydrogen gas at 0.997 atm is 5.00 L. What will
be the new volume if the pressure is decreased to 0.977 atm? Temperature is constant. 3. A gas at 55.0°C occupies a volume of 3.60 L. What volume will it occupy
at 30.0°C? Pressure is constant. 4. The volume of a gas is 0.668 L at 66.8°C. At what Celsius temperature will
the gas have a volume of 0.942 L, assuming pressure remains constant? 5. The pressure in a bicycle tire is 1.34 atm at 33.0°C. At what temperature
will the pressure inside the tire be 1.60 atm? Volume is constant. 6. If a sample of oxygen gas has a pressure of 810 torr at 298 K, what will be
its pressure if its temperature is raised to 330 K? 7. Air in a tightly sealed bottle has a pressure of 0.978 atm at 25.5°C. What
will be its pressure if the temperature is raised to 46.0°C? 8. Hydrogen gas at a temperature of 22.0°C that is confined in a 5.00-L
cylinder exerts a pressure of 4.20 atm. If the gas is released into a 10.0-L reaction vessel at a temperature of 33.6°C, what will be the pressure inside the reaction vessel? 9. A sample of neon gas at a pressure of 1.08 atm fills a flask with a volume of
250 mL at a temperature of 24.0°C. If the gas is transferred to another flask at 37.2°C and a pressure of 2.25 atm, what is the volume of the new flask? Section 13.2
10. What volume of beaker contains exactly 2.23 × 10 -2 mol of nitrogen gas
at STP? 11. How many moles of air are in a 6.06-L tire at STP? 12. How many moles of oxygen are in a 5.5-L canister at STP? 13. What mass of helium is in a 2.00-L balloon at STP? 14. What volume will 2.3 kg of nitrogen gas occupy at STP?
984
Supplemental Practice Problems
Supplemental Practice Problems
15. Calculate the number of moles of gas that occupy a 3.45-L container at
a pressure of 150 kPa and a temperature of 45.6°C. 16. What is the pressure in torr that a 0.44-g sample of carbon dioxide gas will
exert at a temperature of 46.2°C when it occupies a volume of 5.00 L? 17. What is the molar mass of a gas that has a density of 1.02 g/L at 0.990 atm
pressure and 37°C? 18. Calculate the grams of oxygen gas present in a 2.50-L sample kept at
1.66 atm pressure and a temperature of 10.0°C. Section 13.3
19. What volume of oxygen gas is needed to completely combust 0.202 L
of butane gas (C 4H 10)? 20. Determine the volume of methane gas (CH 4) needed to react completely
with 0.660 L of O 2 gas to form methanol (CH 3OH). 21. Calculate the mass of hydrogen peroxide needed to obtain 0.460 L of
oxygen gas at STP. 2H 2O 2(aq) → 2H 2O(l) + O 2(g) 22. When potassium chlorate is heated in the presence of a catalyst such as
manganese dioxide, it decomposes to form solid potassium chloride and oxygen gas: 2KClO 3(s) → 2KCl(s) + 3O 2(g). How many liters of oxygen will be produced at STP if 1.25 kg of potassium chlorate decomposes completely?
Chapter 14 Section 14.2
1. What is the percent by mass of a sample of ocean water that is found to
contain 1.36 g of magnesium ions per 1000 g? 2. What is the percent by mass of iced tea containing 0.75 g of aspartame in
250 g of water? 3. A bottle of hydrogen peroxide is labeled 3%. If you pour out 50 mL of
hydrogen peroxide solution, what volume is hydrogen peroxide? 4. If 50 mL of pure acetone is mixed with 450 mL of water, what is the per-
cent volume? 5. Calculate the molarity of 1270 g of K 3PO 4 in 4.0 L aqueous solution. 6. What is the molarity of 90.0 g of NH 4Cl in 2.25 L aqueous solution? 7. Which is more concentrated, 25 g of NaCl dissolved in 500 mL of water or
a 10% solution of NaCl (percent by mass)? 8. Calculate the mass of NaOH required to prepare a 0.343M solution
dissolved in 2500 mL of water. 9. Calculate the volume required to dissolve 11.2 g of CuSO 4 to prepare a
0.140M solution. 10. How would you prepare 500 mL of a solution that has a new concentration
of 4.5M if the stock solution is 11.6M? 11. Caustic soda is 19.1M NaOH and is diluted for household use. What is the
household concentration if 10 mL of the concentrated solution is diluted to 400 mL? Supplemental Practice Problems 985
Supplemental Practice Problems
12. What is the molality of a solution containing 63.0 g of HNO 3 in 0.500 kg
of water? 13. What is the molality of an acetic acid solution containing 0.500 mol of
HC 2H 3O 2 in 0.800 kg of water? 14. What mass of ethanol (C 2H 5OH) will be required to prepare a 2.00m
solution in 8.00 kg of water? 15. Determine the mole fraction of nitrogen in a gas mixture containing
0.215 mol N 2, 0.345 mol O 2, 0.023 mol CO 2, and 0.014 mol SO 2. What is the mole fraction of N 2? 16. A necklace contains 4.85 g of gold, 1.25 g of silver, and 2.40 g of copper.
What is the mole fraction of each metal? Section 14.3
17. Calculate the mass of gas dissolved at 150.0 kPa, if 0.35 g of the gas dis-
solves in 2.0 L of water at 30.0 kPa. 18. At which depth, 10 m or 40 m, will a scuba diver have more nitrogen
dissolved in the bloodstream? Section 14.4
19. Calculate the freezing point and boiling point of a solution containing
6.42 g of sucrose (C 12H 22O 11) in 100.0 g of water. 20. Calculate the freezing point and boiling point of a solution containing
23.7 g of copper(II) sulfate in 250.0 g of water. 21. Calculate the freezing point and boiling point of a solution containing
0.15 mol of the molecular compound naphthalene in 175 g of benzene (C 6H 6).
Chapter 15 Section 15.1
1. What is the equivalent in joules of 126 Calories? 2. Convert 455 kilojoules to kilocalories. 3. How much heat is required to warm 122 g of water by 23.0°C? 4. The temperature of 55.6 grams of a material decreases by 14.8°C when it
loses 3080 J of heat. What is its specific heat? 5. What is the specific heat of a metal if the temperature of a 12.5-g sample
increases from 19.5°C to 33.6°C when it absorbs 37.7 J of heat? Section 15.2
6. A 75.0-g sample of a metal is placed in boiling water until its temperature
is 100.0°C. A calorimeter contains 100.00 g of water at a temperature of 24.4°C. The metal sample is removed from the boiling water and immediately placed in water in the calorimeter. The final temperature of the metal and water in the calorimeter is 34.9°C. Assuming that the calorimeter provides perfect insulation, what is the specific heat of the metal? Section 15.3
7. Use Table 15.4 to determine how much heat is released when 1.00 mol of
gaseous methanol condenses to a liquid. 8. Use Table 15.4 to determine how much heat must be supplied to melt
4.60 g of ethanol.
986
Supplemental Practice Problems
Supplemental Practice Problems
Section 15.4
9. Calculate ∆H rxn for the reaction 2C(s) + 2H 2(g) → C 2H 4(g), given the
following thermochemical equations: 2CO 2(g) + 2H 2O(l) → C 2H 4(g) + 3O 2(g) ∆H = 1411 kJ C(s) + O 2(g) → CO 2(g) ∆H = −393.5 kJ 2H 2(g) + O 2(g) → 2H 2O(l) ∆H = −572 kJ 10. Calculate ∆H rxn for the reaction HCl(g) + NH 3(g) → NH 4Cl(s), given the
following thermochemical equations: H 2(g) + Cl 2(g) → 2HCl(g) ∆H = −184 kJ N 2(g) + 3H 2(g) → 2NH 3(g) ∆H = −92 kJ N 2(g) + 4H 2(g) + Cl 2(g) → 2NH 4Cl(s) ∆H = −628 kJ Use standard enthalpies of formation from Table 15.5 and Table R-11 to calculate ∆H° rxn for each of the following reactions. 11. 2HF(g) → H 2(g) + F 2(g) 12. 2H 2S(g) + 3O 2(g) → 2H 2O(l) + 2SO 2(g) Section 15.5
Predict the sign of ∆S system for each reaction or process. 13. FeS(s) → Fe 2+(aq) + S 2−(aq) 14. SO 2(g) + H 2O(l) → H 2SO 3(aq)
Determine if each of the following processes or reactions is spontaneous or nonspontaneous. 15. ∆H system = 15.6 kJ, T = 415 K, ∆S system = 45 J/K 16. ∆H system = 35.6 kJ, T = 415 K, ∆S system = 45 J/K
Chapter 16 Section 16.1
1. In the reaction A → 2B, suppose that [A] changes from 1.20 mol/L
at time = 0 to 0.60 mol/L at time = 3.00 min and that [B] = 0.00 mol/L at time = 0. a. What is the average rate at which A is consumed in mol/(L∙min)? b. What is the average rate at which B is produced in mol/(L∙min)? Section 16.3
2. What are the overall reaction orders in Practice Problems 19 to 22 on
page 577? 3. If halving [A] in the reaction A → B causes the initial rate to decrease to
one-fourth its original value, what is the probable rate law for the reaction? 4. Use the data below and the method of initial rates to determine the rate
law for the reaction 2NO(g) + O 2(g) → 2NO 2(g). Formation of NO 2 Data Trial
Initial [NO] (M)
Initial [O 2] (M)
Initial Rate (mol/(L·s))
1
0.030
0.020
0.0041
2
0.060
0.020
0.0164
3
0.030
0.040
0.0082
Supplemental Practice Problems 987
Supplemental Practice Problems
Section 16.4
5. The rate law for the reaction in which 1 mol of cyclobutane (C 4H 8)
decomposes to 2 mol of ethylene (C 2H 4) at 1273 K is Rate = (87 s −1) [C 4H 8]. What is the instantaneous rate of this reaction when a. [C 4H 8] = 0.0100 mol/L? b. [C 4H 8] = 0.200 mol/L?
Chapter 17 Section 17.1
Write equilibrium constant expressions for the following equilibria. 1. N 2(g) + O 2(g) ⇌ 2NO 2. 3O 2(g) ⇌ 2O 3(g) 3. P 4(g) + 6H 2(g) ⇌ 4PH 3(g) 4. CCl 4(g) + HF(g) ⇌ CFCl 2(g) + HCl(g) 5. 4NH 3(g) + 5O 2(g) ⇌ 4NO(g) + 6H 2O(g)
Write equilibrium constant expressions for the following equilibria. 6. NH 4Cl(s) ⇌ NH 3(g) + HCl(g) 7. SO 3(g) + H 2O(l) ⇌ H 2SO 4(l) 8. 2Na 2O 2(s) + 2CO 2(g) ⇌ 2Na 2CO 3(s) + O 2(g)
Calculate K eq for the following equilibria. 9. H 2(g) + I 2(g) ⇌ 2HI(g) [H 2] = 0.0109, [I 2] = 0.00290, [HI] = 0.0460 10. I 2(s) ⇌ I 2(g)
[I 2(g)] = 0.0665 Section 17.3
11. At a certain temperature, K eq = 0.0211 for the equilibrium
PCl 5(g) ⇌ PCl 3(g) + Cl 2(g). a. What is [Cl 2] in an equilibrium mixture containing 0.865 mol/L PCl 5 and 0.135 mol/L PCl 3? b. What is [PCl 5] in an equilibrium mixture containing 0.100 mol/L PCl 3 and 0.200 mol/L Cl 2? 12. Use the K sp value for zinc carbonate given in Table 17.4 to calculate its
molar solubility at 298 K. 13. Use the K sp value for iron(II) hydroxide given in Table 17.4 to calculate its
molar solubility at 298 K. 14. Use the K sp value for silver carbonate given in Table 17.4 to calculate
[Ag +] in a saturated solution at 298 K.
15. Use the K sp value for calcium phosphate given in Table 17.4 to calculate
[Ca 2+] in a saturated solution at 298 K.
16. Does a precipitate form when equal volumes of 0.0040M MgCl 2 and
0.0020M K 2CO 3 are mixed? If so, identify the precipitate. 17. Does a precipitate form when equal volumes of 1.2 × 10 -4M AlCl 3 and
2.0 × 10 -3M NaOH are mixed? If so, identify the precipitate.
988
Supplemental Practice Problems
Supplemental Practice Problems
Chapter 18 Section 18.1
1. Write the balanced formula equation for the reaction between zinc and
nitric acid. 2. Write the balanced formula equation for the reaction between magnesium
carbonate and sulfuric acid. 3. Identify the base in the reaction
H 2O(l) + CH 3NH 2(aq) → OH -(aq) + CH 3NH 3 +(aq). 4. Identify the conjugate base described in the reaction in Practice Problems
1 and 2. 5. Write the steps in the complete ionization of hydrosulfuric acid. 6. Write the steps in the complete ionization of carbonic acid. Section 18.2
7. Write the acid ionization equation and ionization constant expression for
formic acid (HCOOH). 8. Write the acid ionization equation and ionization constant expression for
the hydrogen carbonate ion (HCO 3−). 9. Write the base ionization constant expression for ammonia. 10. Write the base ionization expression for aniline (C 6H 5NH 2). Section 18.3
11. Is a solution in which [H +] = 1.0 × 10 −5M acidic, basic, or neutral? 12. Is a solution in which [OH -] = 1.0 × 10 −11M acidic, basic, or neutral? 13. What is the pH of a solution in which [H +] = 4.5 × 10 −4M? 14. Calculate the pH and pOH of a solution in which [OH -] = 8.8 × 10 −3M. 15. Calculate the pH and pOH of a solution in which [H +] = 2.7 × 10 −6M. 16. What is [H +] in a solution having a pH of 2.92? 17. What is [OH -] in a solution having a pH of 13.56? 18. What is the pH of a 0.00067M H 2SO 4 solution? 19. What is the pH of a 0.000034M NaOH solution? 20. The pH of a 0.200M HBrO solution is 4.67. What is the acid’s K a? 21. The pH of a 0.030M C 2H 5COOH solution is 3.20. What is the acid’s K a?
Section 18.4
22. Write the formula equation for the reaction between hydriodic acid and
beryllium hydroxide. 23. Write the formula equation for the reaction between perchloric acid and
lithium hydroxide. 24. In a titration, 15.73 mL of 0.2346M HI solution neutralizes 20.00 mL of a
LiOH solution. What is the molarity of the LiOH? 25. What is the molarity of a caustic soda (NaOH) solution if 35.00 mL of
solution is neutralized by 68.30 mL of 1.250M HCl?
Supplemental Practice Problems 989
Supplemental Practice Problems
26. Write the chemical equation for the hydrolysis reaction that occurs when
sodium hydrogen carbonate is dissolved in water. Is the resulting solution acidic, basic, or neutral? 27. Write the chemical equation for any hydrolysis reaction that occurs when
cesium chloride is dissolved in water. Is the resulting solution acidic, basic, or neutral?
Chapter 19 Section 19.1
Identify the following information for each problem. What element is oxidized? Reduced? What is the oxidizing agent? Reducing agent? 1. 2P + 3Cl 2 → 2PCl 3 2. C + H 2O → CO + H 2 3. ClO 3 − + AsO 2 − → AsO 4 3− + Cl − 4. Determine the oxidation number for each element in the following
compounds. a. Na 2SeO 3 b. HAuCl 4 c. H 3BO 3 5. Determine the oxidation number for the following compounds or ions. a. P 4O 8 b. Na 2O 2 (Hint: This is like H 2O 2.) c. AsO 4 −3 Section 19.2
6. How many electrons will be lost or gained in each of the following half-
reactions? Identify whether each is an oxidation or reduction. a. Cr → Cr 3+ b. O 2 → O 2− c. Fe +2 → Fe 3+ 7. Balance the following reaction by the oxidation number method:
MnO 4 − + CH 3OH → MnO 2 + HCHO (acidic). (Hint: Assign the oxidation of hydrogen and oxygen as usual, and solve for the oxidation number of carbon.) 8. Balance the following reaction by the oxidation number method:
Zn + HNO 3 → ZnO + NO 2 + NH 3 9. Use the oxidation number method to balance these net ionic equations. a. SeO 3 2− + I − → Se + I 2 (acidic solution) b. NiO 2 + SeO 3 2− → Ni(OH) 2 + SO 3 2− (acidic solution)
Use the half-reaction method to balance the following redox equations. 10. Zn(s) + HCl(aq) → ZnCl 2(aq) → H 2(g) 11. MnO 4 −(aq) + H 2SO 3(aq) → Mn 2+(aq) + HSO 4 −(aq) + H 2O(l)
(acidic solution) 12. NO 2(aq) + OH −(aq) → NO 2 −(aq) + NO 3 −(aq) + H 2O(l) (basic
solution) 13. HS −(aq) + IO 3 −(aq) → I −(aq) + S(s) + H 2O(l) (acidic solution) 990
Supplemental Practice Problems
Supplemental Practice Problems
Chapter 20 Section 20.1
1. Calculate the cell potential for each of the following. a. Co 2+(aq) + Al(s) → Co(s) + Al 3+(aq) b. Hg 2+(aq) + Cu(s) → Cu 2+(aq) + Hg(s) c. Zn(s) + Br 2(l) → Br 1−(aq) + Zn 2+(aq) 2. Calculate the cell potential to determine whether the reaction will occur
spontaneously or not spontaneously. For each reaction that is not spontaneous, correct the reactants or products so that a reaction would occur spontaneously. a. Ni 2+(aq) + Al(s) → Ni(s) + Al 3+(aq) b. Ag +(aq) + H 2(g) → Ag(s) + H +(aq) c. Fe 2+(aq) + Cu(s) → Fe(s) + Cu 2+(aq)
Chapter 21 Section 21.2
1. Draw the structure of the following branched alkanes. a. 2,2,4-trimethylheptane b. 4-isopropyl-2-methylnonane 2. Draw the structure of each of the following cycloalkanes. a. 1-ethyl-2-methylcyclobutane b. 1,3-dibutylcyclohexane
Section 21.3
3. Draw the structure of each of the following alkenes. a. 1,4-hexadiene c. 4-propyl-1-octene b. 2,3-dimethyl-2-butene d. 2,3-diethylcyclohexene
Chapter 22 Section 22.1
1. Draw the structures of the following alkyl halides. a. chloroethane d. 1,3-dibromocyclohexane b. chloromethane e. 1,2-dibromo-3-chloropropane c. 1-fluoropentane
Chapter 24 Section 24.2
1. Write balanced equations for each of the following decay processes. 244
a. alpha emission of 96 Cm 70 b. positron emission of 33 As
210
c. beta emission of 83 Bi 116 d. electron capture by 51 Sb
47
2. 20 Ca → β + ? 3.
240 95
Am + ? →
243 97
Bk + n
4. How much time has passed if 1/8 of an original sample of radon-222 is left? Use Table 24.5 for half-life information. 5. If a basement air sample contains 3.64 μg of radon-222, how much radon
will remain after 19 days? 6. Cobalt-60, with a half-life of 5 years, is used in cancer radiation treatments.
If a hospital purchases 30.0 g, how much would be left after 15 years? Supplemental Practice Problems 991
0.11 × 100 = 6.92% 33. _ 1.59 0.10 × 100 = 6.29% _ 1.59 0.12 × 100 = 7.55% _ 1.59
Chapter 1 No practice problems
Chapter 2 1. No; the density of aluminum is 2.7 g/cm 3; the density 20g of the cube is _3 = 4 g/cm 3. 5cm 147 g mass 3. volume = _ = _ = 21.0 mL 7.00 g/mL density
volume = 20.0 mL + 21.0 mL = 41.0 mL 11. a. 7 × 10 2 b. 3.8 × 10 4 c. 4.5 × 10 6 d. 6.85 × 10 11
e. 5.4 × 10 -3 f. 6.87 × 10 -6 g. 7.6 × 10 -8 h. 8 × 10 -10
13. a. 7 × 10−5 b. 3 × 10 8
c. 2 × 10 2 d. 5 × 10 -12
15. a. (4 × 1) × 10 2 + 8 = 4 × 10 10 b. (2 × 3) × 10 -4 + 2 = 6 × 10 -2 c. (6 ÷ 2) × 10 2 - 1 = 3 × 10 1 d. (8 ÷ 4) × 10 4 - 1 = 2 × 10 3 17. a.
16 g salt 100 g solution __ ; __
100 g solution 16 g salt 1.25 g 1 mL b. _ ; _ 1 mL 1.25 g 25 m _ _ c. ; 1s 1 s 25 m 1000 ms 19. a. 360 s × _ = 360,000 ms 1s 1 kg _ b. 4800 g × = 4.8 kg 1000 g 1m c. 5600 dm × _ = 560 m 10 dm 1000 mg d. 72 g × _ = 72,000 mg 1g 1s 2 e. 2.45 × 10 ms × _ = 0.245 s 1000 ms 1 km 1 mm 1m f. 5 μm × _ × _ × _ 1000 μm 1000 mm 1000 m
= 5 × 10 −9 km 1 km 1m g. 6.800 × 10 3 cm × _ × _ 100 cm 1000 m
= 6.800 × 10 -2 km 1 Mg h. 2.5 × 10 1 kg × __ = 0.025 Mg 1000 kg 1 km 65 mi × _ 21. _ = 105 km/h 0.62 mi 1h 23. mass = (volume)(density) = (185 mL)(1.02 g/mL)
mass = 189 g vinegar
(
Solutions to Selected Practice Problems
35. a. 4
b. 7
c. 5
d. 3
37. two significant figures: 1.0 × 10 1, 1.0 × 10 2, 1.0 × 10 3
three significant figures: 1.00 × 10 1, 1.00 × 10 2, 1.00 × 10 3 four significant figures: 1.000 × 10 1, 1.000 × 10 2, 1.000 × 10 3 39. a. 5.482 × 10 -4 g b. 1.368 × 10 5 kg
c. 3.087 × 10 8 mm d. 2.014 mL
41. a. 4.32 × 10 3 cm - 1.6 × 10 6 mm
= 4.32 × 10 3 cm - 16 × 10 6 cm = 4.32 × 10 3 cm - 16,000 × 10 3 cm = −15,995.68 × 10 3 cm = -16.0 × 10 6 cm b. 2.12 × 10 7 mm + 1.8 × 10 3 cm = 2.12 × 10 7 mm + 1.8 × 10 4 mm = 2120 × 10 4 mm + 1.8 × 10 4 mm = 2121.8 × 10 4 mm = 2.12 × 10 7 mm 43. a. 2.0 m/s b. 3.00 m/s
c. 2.00 m/s d. 2.9 m/s
Chapter 3 5. amount of bromine that reacted = 100.0 - 8.5 = 91.5 g
amount of compound formed = 100.0 + 10.3 - 8.5 = 101.8 g 7. mass reactants = mass products
mass sodium + mass chlorine = mass sodium chloride mass sodium = 15.6 g masssodium chloride = 39.7 g Substituting and solving for mass chlorine yields 15.6 g + mass chlorine = 39.7 g mass chlorine = 39.7 g - 15.6 g = 24.1 g used in the reaction. Because the sodium reacts with excess chlorine, all of the sodium is used in the reaction; that is, 15.6 g of sodium are used in the reaction. 9. 157.5 g - 106.5 g = 51.0 g
Yes. Mass of reactants equals mass of products. mass hydrogen 19. percent by mass hydrogen = _ × 100 mass compound
)
5.00 g acetic acid (189 g vinegar) __ = 9.45 g acetic acid 100 g vinegar 992
Note: The answers are reported in three significant figures because student error is the difference between the actual value (1.59 g/cm 3) and the measured value.
12.4 g percent by mass hydrogen = _ × 100 = 15.9% 78.0 g
Solutions to Selected Practice Problems
21. mass xy = 3.50 g + 10.5 g = 14.0 g mass x percent by mass x = _ mass xy × 100 3.50 g percent by mass x = _ × 100 = 25.0% 14.0 g mass y percent by mass y = _ mass xy × 100 10.5 g percent by mass y = _ × 100 = 75.0% 14.0 g
Chapter 6 9. a. Sc, Y, La, Ac
c. Ne, Ar, Kr, Xe, Rn
b. N, P, As, Sb, Bi 17. B. The atomic radius increases when going down a
group so helium is the smallest and radon is the biggest. 19. a. the element in period 2, group 1
b. the element in period 5, group 2 c. the element in period 6, group 15 d. the element in period 4, group 18
23. No, you cannot be sure. Having the same mass per-
centage of a single element does not guarantee that the composition of each compound is the same.
Chapter 7 Chapter 4
7. Three Na atoms each lose 1 e-, forming 1+ ions. One
13. dysprosium
N atom gains 3 e-, forming a 3- ion. The ions attract, forming Na3N.
15. Yes. 9
17. 25 protons, 25 electrons, 30 neutrons, manganese
( Na ion )
1+ 33 Na ions _ + 1 N ion _
19. N-14 is more abundant because the atomic mass is
( N ion )
= 3(1+) + 1(3-) = 0 The overall charge on one formula unit of Na 3N is zero.
closer to 14 than 15.
9. One Sr atom loses 2 e-, forming a 2+ ion. Two
Chapter 5
F atoms each gain 1 e-, forming 1- ions. The ions attract, forming SrF 2.
1. c = λν
( Sr ion )
ν=c/λ
2+ 11 Sr ion _ + 2 F ions _
3.00 × 10 8 m/s ν = __ = 6.12 × 10 14 Hz
= 1(2+) + 2(1-) = 0 The overall charge on one formula unit of SrF 2 is zero.
4.90 × 10 -7 m
3. 3.00 × 10 8 m/s 5. a. E photon = λν = (6.626 × 10 -34 J·s)(6.32 × 10 20 s -1)
= 4.19 × 10 -13 J b. E photon = λν = (6.626 × 10 -34 J·s)(9.50 × 10 13 s -1) = 6.29 × 10 -20 J c. E photon = λν = (6.626 × 10 -34 J·s)(1.05 × 10 16 s -1) = 6.96 × 10 -18 J 7. E photon = hc / λ
( F ion )
11. Three group 1 atoms lose 1 e-, forming 1+ ions.
One group 15 atom gains 3 e-, forming a 3- ion. The ions attract, forming X 3Y, where X represents a group 1 atom and Y represents a group 15 atom. 19. KI
21. AlBr 3
23. The general formula is XY 2, where X represents the
group 2 element and Y represents the group 17 element.
(6.626 × 10 -34 J·s)(3.00 × 10 8 m/s) E photon = ___
25. Ca(ClO 3) 2
= 1.59 × 10 -24 J
27. MgCO 3; answers will vary
21. a. bromine (35 electrons):
[Ar]4s 23d 104p 5
b. strontium (38 electrons): c. antimony (51 electrons): [Kr]5s 24d 105p 3 d. rhenium (75 electrons): [Xe]6s 24f 145d 5 e. terbium (65 electrons): [Xe]6s 24f 9 f. titanium (22 electrons): [Ar]4s 23d 2 [Kr]5s 2
23. Sulfur (15 electrons) has the electron configuration
[Ne]3s 23p 4. Therefore, 6 electrons are in orbitals related to the third energy level of the sulfur atom. 25. [Xe]6s 2; barium 27. aluminum; 3 electrons
29. calcium chloride
31. copper(II) nitrate
33. ammonium perchlorate
Chapter 8 1.
H
— —
1.25 × 10 -1 m
H + H + H + P → H —P
H
3. H + Cl → H — Cl
Solutions to Selected Practice Problems 993
Solutions to Selected Practice Problems
5.
27. Na 2C 2O 4(aq) + Pb(NO 3) 2(aq) →
—
H
—
H + H + H + H + Si → H — Si — H
35. chemical equation: KI(aq) + AgNO 3(aq) →
H
KNO 3(aq) + AgI(s) complete ionic equation: K +(aq) + I -(aq) + Ag +(aq) + NO 3 -(aq) → K +(aq) + NO 3 -(aq) + AgI(s) net ionic equation: I -(aq) + Ag +(aq) → AgI(s)
15. sulfur dioxide 17. carbon tetrachloride 19. hydroiodic acid 21. chlorous acid
37. chemical equation: AlCl 3(aq) + 3NaOH(aq) →
23. hydrosulfuric acid 25. AgCl
Al(OH)3(s) + 3NaCl(aq)
27. ClF 3
29. strontium acetate is ionic, not molecular: Sr(C 2H 3O 2) 2 — H— 41.
B—
H
N
H
1+
H H
H
C=C
—
— —
39. H
H
—
37.
H
O 45. O 47.
F
N
O
Cl
H 1O
O
O
O
F
49.
F
57. bent, 104.5°, sp 3
complete ionic equation: Al 3+(aq) + 3Cl -(aq) + 3Na +(aq) + 3OH 2(aq) → Al(OH) 3(s) + 3Na +(aq) + 3Cl -(aq) net ionic equation: Al 3+(aq) + 3OH -(aq) → Al(OH) 3(s) 39. chemical equation: 5Na 2CO 3(aq) + 2MnCl 5(aq) →
H 43.
PbC 2O 4(s) + 2NaNO 3(aq)
N
O
F F
1O
O
F S F
10NaCl(aq) + Mn 2(CO 3) 5(s) complete ionic equation: 10Na +(aq) + 5CO 3 2-(aq) + 2Mn 5+(aq) + 10Cl -(aq) → 10Na +(aq) + 10Cl -(aq) + Mn 2(CO 3) 5(s) net ionic equation: 5CO 3 2-(aq) + 2Mn 5+(aq) → Mn 2(CO 3) 5(s) net ionic equation: 2H +(aq) + 2OH -(aq) → 2H 2O(l) or H +(aq) + OH -(aq) → H 2O(l) 41. chemical equation: 2HCl(aq) + Ca(OH) 2(aq) →
F F
59. tetrahedral, 109°, sp 3
2H 2O(l) + CaCl 2(aq) complete ionic equation: 2H +(aq) + 2Cl -(aq) + Ca 2+(aq) + 2OH -(aq) → 2H 2O(l) + Ca 2+(aq) + 2Cl -(aq) net ionic equation: H +(aq) + OH -(aq) → H 2O(l) 43. chemical equation: H 2S(aq) + 1 Ca(OH) 2(aq) →
Chapter 9 1. H 2(g) + Br 2(g) → HBr(g) 3. KClO 3(s) → KCl(s) + O 2(g) 5. CS 2(l) + 3O 2(g) → CO 2(g) + 2SO 2(g) 15. H 2O(l) + N 2O 5(g) → 2HNO 3(aq); synthesis 17. H 2SO 4(aq) + 2NaOH(aq) → Na 2SO 4(aq) + 2H 2O(l) 19. Ni(OH) 2(s) → NiO(s) + H 2O(l) 21. Yes. K is above Zn in the metal activity series.
2K(s) + ZnCl 2(aq) → Zn(s) + 2KCl(aq) 23. No. Fe is below Na in the metal activity series. 25. LiI(aq) + AgNO 3(aq) → AgI(s) + LiNO 3(aq) 994
Solutions to Selected Practice Problems
2H 2O(l) + CaS(aq) complete ionic equation: 2H +(aq) + S 2-(aq) + Ca 2+(aq) + 2OH -(aq) → 2H 2O(l) + Ca 2+(aq) + S 2-(aq) net ionic equation: H +(aq) + OH -(aq) → H 2O(l) 45. chemical equation: 2HClO 4(aq) + K 2CO 3(aq) →
H 2O(l) + CO 2(g) + 2KClO 4(aq) complete ionic equation: 2H +(aq) + 2ClO 4 -(aq) + 2K +(aq) + CO 3 2-(aq) → H 2O(l) + CO 2(g) + 2K +(aq) + 2ClO 4 -(aq) net ionic equation: 2H +(aq) + CO 3 2-(aq) → H 2O(l) + CO 2(g) 47. chemical equation: 2HBr(aq) + (NH 4) 2CO 3(aq) →
H 2O(l) + CO 2(g) + 2NH 4Br(aq)
Solutions to Selected Practice Problems
complete ionic equation: 2H +(aq) + 2Br -(aq) + 2NH 4 +(aq) + CO 3 2-(aq) → H 2O(l) + CO 2(g) + 2NH 4 +(aq) + 2Br -(aq) net ionic equation: 2H +(aq) + CO 3 2-(aq) → H 2O(l) + CO 2(g) 49. chemical equation: 2KI(aq) + Pb(NO 3) 2(aq) →
2KNO 3(aq) + PbI 2(s) complete ionic equation: 2K +(aq) + 2I -(aq) + Pb 2+(aq) + 2NO 3 -(aq) → 2K +(aq) + 2NO 3 -(aq) + PbI 2(s) net ionic equation: Pb 2+(aq) + 2I -(aq) → PbI 2(s)
2 mol Cl 29. 2.50 mol ZnCl 2 × _ = 5.00 mol Cl 1 mol ZnCl 2 3 mol SO 4 231. 3.00 mol Fe 2(SO 4) 3 ×__ = 9.00 mol SO 4 21 mol Fe 2(SO 4) 3 2 mol H 33. 1.15 × 10 1 mol H 2O × _ = 23.0 mol H 1 mol H 2O
= 2.30 × 10 1 mol H 12.01 g C 35. a. 2 mol C × _ = 24.02 g 1 mol C 1.008 gH 6 mol H × _ = 6.048 g 1 mol H 16.00 g O 1 mol O × _ = 16.00 g 1 mol O
molar mass C 2H 5OH = 46.07 g/mol
Chapter 10 10 23
6.02 × atoms 1. 2.50 mol Zn × __ 1 mol
= 1.51 × 10 24 atoms of Zn 6.02 × 10 23 formula units 3. 3.25 mol AgNO 3 × __ 1 mol
= 1.96 × 10 24 formula units of AgNO 3 1 mol 5. a. 5.75 × 10 24 atoms Al × __ 6.02 × 10 23 atoms
= 9.55 mol Al 1 mol b. 2.50 × 10 20 atoms Fe × __ 6.02 × 10 23 atoms
= 4.15 × 10 -4 mol Fe 26.98 g Al 15. a. 3.57 mol Al × _ = 96.3 g Al 1 mol Al 28.09 g Si b. 42.6 mol Si × _ = 1.20 × 10 3 g Si 1 mol Si 1 mol Ag 17. a. 25.5 g Ag × _ = 0.236 mol Ag 107.9 g Ag 1 mol S b. 300.0 g S × _ = 9.355 mol S 32.07 g S 1 mol Li 6.02 × 10 23 atoms 19. a. 55.2 g Li × _ × __ 6.94 g Li 1 mol
= 4.79 × 10 24 atoms Li 1 mol Pb 6.02 × 10 23 atoms b. 0.230 g Pb × _ × __ 6.94 g Pb 1 mol
= 6.68 × 10 20 atoms Pb c.
1 mol Hg 6.02 × 10 23 atoms 11.5 g Hg × _ × __ 200.6 g Hg
1 mol
= 3.45 × 10 22 atoms Hg 1 mol Si 6.02 × 10 23 atoms 21. a. 4.56 × 10 3 g Si × _ × __ 28.09 g Si 1 mol
= 9.77 × 10 25 atoms Si 1000 g Ti 1 mol Ti b. 0.120 kg Ti × _ × _ 47.87 g Ti 1 kg Ti 6.02 × 10 23 atoms × __ = 1.51 × 10 24 atoms Ti 1 mol
1.008 g H b. 1 mol H × _ = 1.008 g 1 mol H 12.01 gC 1 mol C × _ = 12.01 g 1 mol C 14.01 g N 1 mol N × _ = 14.01 g 1 mol N
molar mass HCN
= 27.03 g/mol
12.01 g C c. 1 mol C × _ = 12.01 g 1 mol C 35.45 g Cl 4 mol Cl × _ = 141.80 g 1 mol Cl
molar mass CCl 4
= 153.81 g/mol
37. Step 1: Find the molar mass of H 2SO 4. 1.008 g H 2 mol H × _ = 2.016 g 1 mol H 32.07 gS 1 mol S × _ = 32.07 g 1 mol S 16.00 g O 4 mol O × _ = 64.00 g 1 mol O
molar mass H 2SO 4 = 98.09 g/mol Step 2: Make mole → mass conversion. 98.09 g H 2SO 4 1 mol H 2SO 4
3.25 mol H 2SO 4 × __ = 319 g H 2SO 4 39. Potassium permanganate has a formula of KMnO 4.
Step 1: Find the molar mass of KMnO 4. 39.10 g K = 39.10 g 1 mol K 54.94 g Mn 1 mol Mn × _ = 54.94 g 1 mol Mn 16.00 g O 4 mol O × _ = 64.00 g 1 mol O
1 mol K × _
molar mass KMnO 4 = 158.04 g/mol Step 2: Make mole → mass conversion. 158.04 g KMnO 4 1 mol KMnO 4
2.55 mol KMnO 4 × __ = 403 g KMnO 4
Solutions to Selected Practice Problems 995
Solutions to Selected Practice Problems
41. a. ionic compound
45. Step 1: Find the number of moles of NaCl.
Step 1: Find the molar mass of Fe 2O 3. 55.85 g Fe 1 mol Fe 16.00 gO 3 mol O × _ 1 mol O
2 mol Fe × _ = 111.70 g
molar mass Fe 2O 3
=
48.00 g
= 159.70 g/mol
Step 2: Make mass → mole conversion. 1 mol Fe O 159.70 g Fe 2O 3
2 3 2500 g Fe2O3 × __ = 15.7 × 101 mol Fe2O3
b. ionic compound
Step 1: Find the molar mass of PbCl 4. 207.2 g Pb 1 mol Pb 35.45 g Cl 4 mol Cl × _ = 141.80 g 1 mol Cl
1 mol Pb × _ = 207.2 g
molar mass PbCl 4
= 349.0 g/mol
Step 2: Make mass → mole conversion. 1 mol PbCl 349.0 g PbCl 4
4 254 g PbCl 4 × __ = 0.728 mol PbCl 4
43. a. Step 1: Find the molar mass of Na 2SO 3 22.99 g Na 2 mol Na × _ = 45.98 g 1 mol Na 32.07 g S _ 1 mol S × = 32.07 g 1 mol S 16.00 g O 3 mol O × _ = 48.00 g 1 mol O
molar mass Na 2SO 3
= 126.05 g/mol
Step 2: Make mass → mole conversion. 1 mol Na SO 126.05 g Na 2SO 3
2 3 2.25 g Na 2SO 3 × __
= 0.0179 mol Na 2SO 3 Step 3: Make mole → formula unit conversion. 23
6.02 × 10 formula units 0.0179 mol Na 2SO 3 × __ 1 mol Na 2SO 3
= 1.08 × 10 22 formula units Na 2SO 3 Step 4: Determine the number of Na + ions. 1.08 × 10 22 formula units Na 2SO 3 × 2 Na + ions __ = 2.16 × 10 22 Na + ions 1 formula unit Na 2SO 3
b. 1.08 × formula units Na 2SO 3 × 1 SO 3 2- ion __ = 1.08 × 10 22 SO 3 2- ions 1 formula unit Na 2SO 3
10 22
c.
126.08 g Na 2SO 3 ___ 1 mol Na 2SO 3 __ × 1 mol Na 2SO 3
6.02 × 10 23 formula unit Na 2SO 3
= 2.09 × 10 -22 g Na 2SO 3/formula unit 996
Solutions to Selected Practice Problems
4.59 × 10 24 formula units NaCl × 1 mol NaCl ___ 6.02 × 10 23 formula unit NaCl
= 7.62 mol NaCl 2 Step 2: Find the molar mass of NaCl. g Na _ 1 mol Na × 22.99 = 22.99 g 1 mol Na 35.45 g Cl 1 mol Cl × _ = 35.45 g 1 mol Cl
molar mass NaCl = 58.44 g/mol Step 3: Make mole → mass conversion. 58.44 g NaCl 1 mol NaCl
7.62 mol NaCl × _ = 445 g NaCl 55. Steps 1 and 2: Assume 1 mole; calculate molar mass of
H 2SO 3.
1.008 g H 2.016 g 1 mol H 32.06 g S 1 mol S × _ = 32.06 g 1 mol S 16.00 g O _ 3 mol O × = 48.00 g 1 mol O
2 mol H × _ =
molar mass H 2SO 3 = 82.08 g/mol Step 3: Determine percent by mass of S. 32.06 g S 82.08 g H 2SO 3
percent S = __ × 100 = 39.06% S Repeat steps 1 and 2 for H 2S 2O 8. Assume 1 mole; calculate molar mass of H 2S 2O 8. 1.008 g H 1 mol H 32.06 gS 2 mol S × _ 1 mol S
2 mol H × _ = =
2.016 g 64.12 g
16.00 g O 1 mol O
8 mol O × _ = 128.00 g molar mass H 2S 2O 8 = 194.14 g/mol Step 3: Determine percent by mass of S. 64.12 g S 194.14 g H 2S 2O 8
percent S = __ × 100 = 33.03% S H 2SO 3 has a larger percent by mass of S. 57. a. sodium, sulfur, and oxygen; Na 2SO 4 b. ionic c. Steps 1 and 2: Assume 1 mole; calculate molar
mass of Na 2SO 4. 22.99 g Na 1 mol Na 32.07 gS 1 mol S × _ = 1 mol S 16.00 g O 4 mol O × _ = 1 mol O
2 mol Na × _ =
molar mass Na 2SO 4
45.98 g 32.07 g 64.00 g
= 142.05 g/mol
Solutions to Selected Practice Problems
Step 3: Determine percent by mass of each element. 45.98 g Na percent Na = __ × 100 = 32.37% Na 142.05 g Na 2SO 4 32.07 g S percent S = __ × 100 = 22.58% S 142.05 g Na 2SO 4 64.00 g O percent O = __ × 100 = 45.05% O 142.05 g Na 2SO 4 59. Step 1: Assume 100 g sample; calculate moles of each
element. 1 mol Al 35.98 g Al × _ = 1.334 mol Al 26.98 g Al
1 mol S 64.02 g S × _ = 1.996 mol S 32.06 g S
Step 2: Calculate mole ratios. 1.000 mol Al _ 1.334 mol Al = _ _ = 1 mol Al
1.000 mol Al 1 mol Al 1.334 mol Al 1.500 mol S 1.996 mol S _ _ _ = = 1.5 mol S 1.000 mol Al 1 mol Al 1.334 mol Al
The simplest ratio is 1 mol Al: 1.5 mol S. Step 3: Convert decimal fraction to whole number. In this case, multiply by 2 because 1.5 × 2 = 3. Therefore, the empirical formula is Al 2S 3. 61. Step 1: Assume 100 g sample; calculate moles of each
element. 1 mol C 60.00 g C × _ = 5.00 mol C
12.01 g C 1 mol H 4.44 g H × _ = 4.40 mol H 1.008 g H 1 mol O 35.56 g O × _ = 2.22 mol O 16.00 g O
Step 2: Calculate mole ratios. 2.25 mol C 2.25 mol C 5.00 mol C _ =_ =_ 1.00 mol O 1 mol O 2.22 mol O 1.98 mol H _ 4.40 mol H = _ _ = 2 mol H 1.00 mol O 1 mol O 2.22 mol O 1 mol O 2.22 mol O _ _ = 1.00 mol O = _ 1.00 mol O 1 mol O 2.22 mol O
The simplest ratio is 2.25 mol C: 2 mol H: 1 mol O. Step 3: Convert decimal fraction to whole number. In this case, multiply by 4 because 2.25 × 4 = 9. Therefore, the empirical formula is C 9H 8O 4. 63. Step 1: Assume 100 g sample; calculate moles of each
element. 1 mol N 46.68 g N × _ = 3.332 mol N
14.01 g N _ 53.32 g O × 1 mol O = 3.333 mol O 16.00 g O
Step 2: Calculate mole ratios. 1.000 mol N _ 3.332 mol N = _ _ = 1 mol N 3.332 mol N
1.000 mol N
1 mol N
1 mol O 3.333 mol O _ _ = 1.000 mol O = _ 3.332 mol N
1.000 mol N
1 mol N
The simplest ratio is 1 mol N: 1 mol O. The empirical formula is NO. Step 3: Calculate the molar mass of the empirical formula. 14.01 g N 1 mol N 16.00 gO 1 mol O × _ = 16.00 g 1 mol O
1 mol N × _ = 14.01 g
molar mass NO = 30.01 g/mol Step 4: Determine whole number multiplier. 60.01 g/mol _ = 2.000 30.01 g/mol
The molecular formula is N 2O 2. 65. Step 1: Assume 100 g sample; calculate moles of each
element. 1 mol C 65.45 g C × _ = 5.450 mol C 12.01 g C
1 mol H 5.45 g H × _ = 5.41 mol H
1.008 g H 1 mol O 29.09 g O × _ = 1.818 mol O 16.00 g O
Step 2: Calculate mole ratios. 3.000 mol C 3 mol C 5.450 mol C _ =_ =_ 1.000 mol O 1 mol O 1.818 mol O 2.97 mol H 3 mol H 5.41 mol H = _ = _ _ 1.00 mol O 1 mol O 1.818 mol O 1.000 mol O 1 mol O 1.818 mol O _=_=_ 1.000 mol O 1 mol O 1.818 mol O
The simplest ratio is 3 mol C: 3 mol H: 1 mol O. Therefore, the empirical formula is C 3H 3O. Step 3: Calculate the molar mass of the empirical formula. 12.01 g C 1 mol C 1.008 gH 3 mol H × _ = 3.024 g 1 mol H 16.00 g O 1 mol O × _ = 16.00 g 1 mol O
3 mol C × _ = 36.03 g
molar mass C 3H 3O = 55.05 g/mol Step 4: Determine whole number multiplier. 110.00 g/mol __ = 1.998, or 2 55.05 g/mol
The molecular formula is C 6H 6O 2. 75. Step 1: Calculate the mass of CoCl 2 remaining. 129.83 g CoCl 2 0.0712 mol CoCl 2 × __ = 9.24 g CoCl 2 1 mol CoCl 2
Step 2: Calculate the mass of water driven off. mass of hydrated compound - mass of anhydrous compound remaining = 11.75 g CoCl 2·xH 2O - 9.24 g CoCl 2 = 2.51 g H 2O Solutions to Selected Practice Problems 997
Solutions to Selected Practice Problems
Step 3: Calculate moles of each component. 1 mol CoCl 2 9.24 g CoCl 2 × __ 129.83 g CoCl 2
= 0.0712 mol CoCl 2 1 mol H 2O 2.51 g H 2O × _ = 0.139 mol H 2O 18.02 g H 2O
Step 4: Calculate mole ratios. 1.00 mol CoCl 1 mol CoCl 0.0712 mol CoCl 2 __ = __2 = _2 1.00 mol CoCl 2 1 mol CoCl 2 0.0712 mol CoCl 2 1.95 mol H O 2 mol H 2O 0.139 mol H O 2 2 __ = __ =_ 1.00 mol CoCl 2 1 mol CoCl 2 0.0712 mol CoCl 2
The formula of the hydrate is CoCl 2·2H 2O. Its name is cobalt(II) chloride dehydrate.
Chapter 11 1. a. 1 molecule N 2 + 3 molecules H 2 →
2 molecules NH 3 1 mole N 2 + 3 moles H 2 → 2 moles NH 3 28.02 g N 2 + 6.06 g H 2 → 34.08 g NH 3 b. 1 molecule HCl + 1 formula unit KOH →
1 formula unit KCl + 1 molecule H 2O 1 mole HCl + 1 mole KOH → 1 mole KCl + 1 mole H 2O 36.46 g HCl + 56.11 g KOH → 74.55 g KCl + 18.02 g H 2O c. 2 atoms Mg + 1 molecule O2 → 2 formula units MgO 2 moles Mg + 1 mole O 2 → 2 moles MgO 48.62 g Mg + 32.00 g O 2 → 80.62 g MgO 4 mol Al 3 mol O 2 2 mol Al 2O 3 3. a. _ _ _
3 mol O 2 2 mol Al 2O 3 4 mol Al 2 mol Al 2O 3 _ 3 mol O 2 _ 4 mol Al _ 4 mol Al 3 mol O 2 2 mol Al 2O 3 3 mol Fe 3 mol Fe 3 mol Fe b. _ _ _ 4 mol H 2O 4 mol H 2 1 mol Fe 3O 4 1 mol Fe 3O 4 4 mol H 2 _ 4 mol H 2O _ _ 3 mol Fe 3 mol Fe 3 mol Fe 1 mol Fe 3O 4 _ 1 mol Fe 3O 4 _ 4 mol H 2O _ 4 mol H 2O 4 mol H 2 4 mol H 2 4 mol H 2O _ 4 mol H 2 4 mol H 2 _ _ 1 mol Fe 3O 4 1 mol Fe 3O 4 4 mol H 2O 2 mol HgO 1 mol O 2 1 mol O 2 c. _ _ _ 2 mol Hg 2 mol Hg 2 mol HgO 2 mol Hg _ 2 mol HgO 2 mol Hg _ _ 2 mol HgO 1 mol O 2 1 mol O 2
11. a. 2CH 4(g) + S 8(s) → 2CS 2(l) + 4H 2S(g) 2 mol CS 2 b. 1.50 mol S 8 × _ = 3.00 mol CS 2 1 mol S 8 4 mol H 2S _ c. 1.50 mol S 8 × = 6.00 mol H 2S 1 mol S 8 998
Solutions to Selected Practice Problems
13. Step 1: Balance the chemical equation.
2NaCl(s) → 2Na(s) + Cl 2(g) Step 2: Make mole → mole conversion. 1 mol Cl 2 mol NaCl
2 2.50 mol NaCl × _ = 1.25 mol Cl 2
Step 3: Make mole → mass conversion. 70.9 g Cl 2 1 mol Cl 2
1.25 mol Cl 2 × _ = 88.6 g Cl 2 15. 2NaN 3(s) → 2Na(s) + 3N 2(g)
Step 1: Make mass → mole conversion. 1 mol NaN 65.02 g NaN 3
3 100.0 g NaN 3 × _ = 1.538 mol NaN 3
Step 2: Make mole → mole conversion. 3 mol N 2 mol NaN 3
2 1.538 mol NaN 3 × _ = 2.307 mol N 2
Step 3: Make mole → mass conversion. 28.02 g N 2 1 mol N 2
2.307 mol N 2 × _ = 64.64 g N 2 23. Step 1: Make mass → mole conversion. 1 mol Na 100.0 g Na × _ = 4.350 mol Na 22.99 g Na 1 mol Fe 2O 3 100.0 g Fe 2O 3 × __ = 0.6261 mol Fe 2O 3 159.7 g Fe 2O 3
Step 2: Make mole ratio comparison. 0.6261 mol Fe 2O 3 __ 4.350 mol Na
0.1439
1 mol Fe 2O 3 compared to _ 6 mol Na
compared to
0.1667
a. The actual ratio is less than the needed ratio, so
iron(III) oxide is the limiting reactant. b. Sodium is the excess reactant. c. Step 1: Make mole → mole conversion. 2 mol Fe 0.6261 mol Fe 2O 3 × _ = 1.252 mol Fe 1 mol Fe 2O 3
Step 2: Make mole → mass conversion. 55.85 g Fe 1 mol Fe
1.252 mol Fe × _ = 69.92 g Fe d. Step 1: Make mole → mole conversion. 6 mol Na 0.6261 mol Fe 2O 3 × _ 1 mol Fe 2O 3
= 3.757 mol Na needed Step 2: Make mole → mass conversion. 22.9 g Na 1 mol Na
3.757 mol Na × _ = 86.37 g Na needed 100.0 g Na given - 86.37 g Na needed = 13.6 g Na in excess 29. a. Step 1: Write the balanced chemical equation.
Zn(s) + I 2(s) → ZnI 2(s) Step 2: Make mass → mole conversion. 1 mol Zn 125.0 g Zn × _ = 1.912 mol Zn 65.38 g Zn
Solutions to Selected Practice Problems
Step 3: Make mole → mole conversion. 1 mol ZnI 1.912 mol Zn × _2 = 1.912 mol ZnI 2 1 mol Zn
Step 4: Make mole → mass conversion. 319.2 g ZnI 2 1 mol ZnI 2
1.912 mol ZnI 2 × _ = 610.3 g ZnI 2 610.3 g of ZnI 2 is the theoretical yield. 515.6 g ZnI 2 b. % yield = ___ × 100 610.3 g ZnI 2 = 84.48% yield of ZnI 2
Chapter 12 Rate nitrogen 20.2 g/mol 1. _ = _ = √ 0.721 = 0.849 Rate neon
28.0 g/mol
3. Rearrange Graham’s law to solve for Rate A. molar mass Rate A = Rate B × _B molar mass A
13. T 1 = 0.00°C + 273 = 273 K
T 2 = 30.0°C + 273 = 303 K (1.00 atm)(303 K) PT V2 _ _ = 1 2 = __ = 0.92 V1
P 2T 1
(1.20 atm)(273 K)
This is a ratio, so there are no units. The final volume is less than the original volume, so the piston will move down. 1 mol 21. 1.0 L × _ = 0.045 mol 22.4 L 44.0 g 0.045 mol × _ = 2.0 g 1 mol 1 mol _ 23. 0.416 g × = 0.00496 mol 83.80 g 22.4 L 0.00496 mol × _ = 0.111 L 1 mol 25. 0.860 g - 0.205 g = 0.655 g He remaining
Set up the problem as a ratio.
Rate B = 3.6 mol/min
19.2 L V =_ _
molar mass B _ = 0.5 molar mass A
Solve for V.
Rate A = 3.6 mol/min × √ 0.5 = 3.6 mol/min × 0.71 = 2.5 mol/min
V = __ = 14.6 L
5. P total = 5.00 kPa + 4.56 kPa + 3.02 kPa + 1.20 kPa
= 13.78 kPa 7. N 2 = 590 mm Hg; O 2 = 160 mm Hg; Ar = 8 mm Hg
Chapter 13 (300.0 mL)(99.0 kPa) V 1P 1 1. V 2 = _ = __ = 158 mL P2 188 kPa 3. P 2 = 1.08 atm + (1.08 atm × 0.25) = 1.35 atm (145.7 mL)(1.08 atm) V 1P 1 __ V2 = _ = = 117 mL 1.35 atm P2 5. T 1 = 89°C + 273 = 362 K (362 K)(1.12 L) T 1V 2 __ T2 = _ = = 605 K V1 0.67 L
605 - 273 = 332°C = 330°C 7. V 2 = 0.67 L - (0.67 L × 0.45) = 0.37 L (350 K)(0.37 L) T 1V 2 __ T2 = _ = = 190 K V1 0.67 L 9. T 2 = 36.5°C + 273 = 309.5 K (309.5 K)(1.12 atm) T 2P 1 __ T1 = _ = = 135 K 2.56 atm P2
135 K - 273 = -138°C 11. T 1 = 22.0°C + 273 = 295 K
T 2 = 100.0°C + 273 = 373 K VTP T 2P 1
(0.224 mL)(295 K)(1.23 atm) (373 K)(1.02 atm)
2 1 2 V1 = _ = ___ = 0.214 mL
0.655 g
0.860 g
(19.2 L)(0.655 g) 0.860 g
L·atm (0.323 mol) 0.0821_ (265 K) mol·K nRT 27. V = _ = ___ = 7.81 L 0.900 atm P
)
(
(3.81 atm)(0.44 L) PV 29. n = _ = __ = 6.9 × 10 -3 mol RT L·atm 0.0821_ (298 K)
(
mol·K
)
39. 2H 2(g) + O 2(g) → 2H 2O(g) 2 volumes H 5.00 L O 2 × __2 = 10.0 L H 2 1 volume O 2 41. N 2 + O 2 = N 2O
2N 2 + O 2 = 2N 2O 1 volume O 2 volumes N 2
2 34 L N 2O × __ = 17 L O 2
1000 g 1 mol CaCO 3 1 mol CO 2 43. 2.38 kg × _ × __ × __ 100.09 g 1 kg 1 mol CaCO 3 22.4 L ×_ = 533 L CO 2 1 mol 45. Molecular mass of sodium bicarbonate = 83.9 g/mol 1 mol NaHCO 28 g NaHCO 3 × __3 = 0.33 mol NaHCO 3 83.9 g
For each mole of sodium bicarbonate, one mole of CO 2 is produced, so 0.33 mol NaHCO 3 will produce 0.33 mol CO 2. For an ideal gas, molar volume is 22.4 L at 273 K and 1 atm. T = 20°C + 273 = 293 K 22.4 L _ 0.33 mol CO 2 × _ × 293 K = 7.9 L of CO 2 1 mol
273 K
Solutions to Selected Practice Problems 999
Solutions to Selected Practice Problems
Chapter 14 9. 600.0 mL H 2O × 1.0 g/mL = 600.0 g H 2O 20.0 g NaHCO 3 ___ × 100 = 3% 600.0 g H 2O + 20.0 g NaHCO 3 11. 1500.0 g - 54.3 g = 1445.7 g solvent 13.
35 mL __ × 100 = 18%
155 mL + 35 mL 18 mL 15. 15% = __ × 100 = 120 mL x mL solution 1 mol 17. mol KBr = 1.55 g × _ = 0.0130 mol KBr 119.0 g mol KBr 0.0130 mol molarity = __ =_ 1.60 L 1.60 L solution
= 8.13 × 10 -3M 19.
x mol Ca(OH) 1.5 L solution
0.25M = __2 x = 0.38 mol Ca(OH) 2 74.08 g 1 mol
0.38 mol Ca(OH) 2 × _ = 28 g Ca(OH) 2 1L 21. mol CaCl 2 = 500.0 mL × _ × 0.20M 1000 mL 0.20 mol 1L = 500.0 mL × _ ×_ = 0.10 mol 1000 mL 1L 110.98 g mass CaCl 2 = 0.10 mol CaCl 2 × _ 1 mol
=11 g
46 g ethanol 0.15 mol ethanol 1L 23. 100 mL × _ × __ × __ 1000 mL 1 L solution 1 mol ethanol 1 mL ethanol × __ = 0.87 mL 0.7893 g ethanol 25. (5.0M)V 1 = (0.25M)(100.0 mL) (0.25M)(100.0 mL) V 1 = __ = 5.0 mL 5.0M 1 mol 27. mol Na 2SO 4 = 10.0 g Na 2SO 4 × __ 142.04 g Na 2SO 4
= 0.0704 mol Na 2SO 4 0.0704 mol Na SO 1.0000 kg H 2O
4 2 molality = __ = 0.0704m
mass NaOH 29. 22.8% = __ × 100 mass NaOH + mass H 2O
Assume 100.0 g sample. Then, mass NaOH = 22.8 g mass H 2O = 100.0 g - (mass NaOH) = 77.2 g 1 mol mol NaOH = 22.8 g × _ = 0.570 mol NaOH 40.00 g 1 mol _ mol H 2O = 77.2 g × = 4.28 mol H 2O 18.02 g mol NaOH mol fraction NaOH = __ mol NaOH + mol H 2O 0.570 mol NaOH 0.570 = ___ =_ 4.85 0.570 mol NaOH + 4.28 mol H 2O 1000
Solutions to Selected Practice Problems
= 0.118 The mole fraction of NaOH is 0.118. 1.5 g 37. S 2 = _ = 1.5 g/L 1.0 L 1.5 g/L S P 2 = P 1 × _2 = 10.0 atm × _ = 23 atm S1 0.66 g/L 45. ∆T b = 0.512°C/m × 0.625m = 0.320°C
T b = 100°C + 0.320°C = 100.320°C ∆T f = 1.86°C/m × 0.625m = 1.16°C T f = 0.0°C − 1.16°C = −1.16°C ∆T f 47. K f = _ m 0.080°C =_ 0.045 m
= 1.8°C/m It is most likely water because the calculated value is closest to 1.86°C/m.
Chapter 15 1. 142 Calories = 142 kcal 1000 cal 142 kcal × _ = 142,000 cal 1 kcal 3. Unit X = 0.1 cal
1 cal = 4.184 J X = (0.1 cal)(4.184 J/cal) = 0.4184 J 1 cal = 0.001 Calorie X = (0.1 cal)(1 Cal/1000 cal) = 0.0001 Calorie 5. q = c × m × ∆T
5696 J = c × 155 g × 15.0°C c = 2.45 J/(g·°C) The specific heat is very close to the value for ethanol. 13. q = c × m × ∆T
5650 J = 4.184 J/(g·°C) × m × 26.6°C m = 50.8 g 15. q = c × m × ∆T
9750 J = 4.184 J/(g·ºC) × 335 g × ∆T ∆T = 6.96°C Because the water lost heat, let ∆T = −6.96°C. ∆T = −6.96°C = T f − 65.5°C T f = 58.5°C 3.22 kJ 1 mol CH 3OH 23. 25.7 g CH 3OH × __ × __ 32.04 g CH 3OH 1 mol CH 3OH
= 2.58 kJ
891 kJ 1 mol CH 4 25. 12,880 kJ = m × _ × _ 16.04 g CH 4 1 mol CH 4 16.04 g CH 4 1 mol CH m = 12,880 kJ × _ × _4 1 mol CH 4 891 kJ
Solutions to Selected Practice Problems
0.020M - 0.030M Average reaction rate = - __
m = 232 g CH 4
4.00 s - 0.00 s
33. a. 4Al(s) + 3O 2(g) → 2Al 2O 3(s)
-0.010M =-_ = 0.0025 mol/(L·s)
∆H = -3352 kJ
b. ∆H for Equation b = -x kJ
4.00 s
3. HCl is formed so the average rate expression should
be positive. Average reaction rate =
Add Equation a to Equation b reversed and tripled. 4Al(s) + 3O 2(g) → 2Al 2O 3(s) ∆H = -3352 kJ 3MnO 2(s) → 3Mn(s) + 3O 2(g) ∆H = 3x kJ 4Al(s) + 3MnO 2(s) → 2Al 2O 3(s) + 3Mn(s) -1789 kJ = 3x kJ + (-3352 kJ) 3x kJ = -1789 kJ + 3352 kJ = +1563 kJ
[HCl] at time t 2 - [HCl] at time t 1 ___ = 0.0050 mol/(L·s) t2 - t1
[HCl] at time t 2 = (0.0050 mol/(L·s))(t 2 - t 1) + [HCl] at time t 1 = (0.0050 mol/L·s)(4.00 s - 0.00 s) + 0.00 s = 0.020M
1563 kJ 3
x = _ = +521 kJ Because the direction of Equation b was changed, ∆H for Equation b = -521 kJ. 35. ∆H 0rxn = [4(33.18 kJ) + 6(-285.83 kJ)] -
19. Rate = k[A] 3 21. Examining trials 1 and 2, doubling [A] has no effect
on the rate; therefore, the reaction is zero order in A. Examining trials 2 and 3, doubling [B] doubles the rate; therefore, the reaction is first order in B. Rate = k[A] 0[B] = k[B]
4(-46.11) kJ = -1397.82 37. Reverse Equation a and change the sign of ∆H 0f to
obtain Equation c. Add equation b. c. NO(g) → ΩN 2(g) + ΩO 2(g) ∆H 0f = -91.3 kJ b. ΩN 2(g) + O 2(g) → NO 2(g) ∆H 0f = ? Add the equations. NO(g) + ΩO 2(g) → NO 2(g) ∆H 0rxn = -58.1 kJ = ∆H 0f (c) + ∆H 0f (b) −58.1 kJ = -91.3 kJ + ∆H 0f (b) ∆H 0f (b) = -58.1 kJ + 91.3 kJ = 33.2 kJ 45. The states of the two reactants are the same on both
31. [NO] = 0.00500M
[H 2] = 0.00200M k = 2.90 × 10 2 L 2/(mol 2·s) Rate = k [NO] 2[H 2] = [2.90 × 10 2 L 2/(mol 2·s)](0.00500M) 2(0.00200M) = [2.90 × 10 2 L 2/(mol 2·s)](0.00500 mol/k) 2 (0.00200 mol/L) = 1.45 × 10 -5 mol/(L·s) 33. Rate = k [NO] 2[H 2]
9.00 × 10 -5 mol/(L × s) Rate [NO] = _ = ___ 2
sides of the equation, so it is impossible from the equation alone to predict the sign of ∆S system.
= 1.02 ×
47. Calculate T when ∆G system = 0. 1 kJ -36.8 J/K × _ = -0.0368 kJ/K 1000 J
∆G system = ∆H system - T∆S system -144 kJ - (T × (−0.0368 kJ/K)) = -144 kJ + 0.0368T kJ/K = 0
√
k[H 2]
(2.90 × 10 )(0.00300mol/L)
10 -2M
Chapter 17 [NO 2] 2 1. a. K eq = _ [N 2O 4]
[NO] 4[H 2O] 6 d. K eq = __ [NH 3] 4[O 2] 5
[H 2] 2[S 2] b. K eq = _ [H 2S] 2
144 kJ T = _ = 3910 K 0.0368 kJ/K
[CS 2][H 2] 4 e. K eq = _2 [CH 4][H 2S]
[CH 4][H 2O] c. K eq = _ [CO][H 2] 3
At any temperature above 3910 K, the reaction is spontaneous.
3. a. K eq = [C 10H 8(g)]
Chapter 16
b. K eq = [H 2O(g)] c. K eq = [CO 2(g)]
1. H 2 is consumed. Average reaction rate expression
should be negative. Average reaction rate = [H ] at time t - [H ] at time t
∆[H ] ∆t
2 1 2 2 2 - ___ =-_ t −t 2
1
[CO(g)][H 2(g)] d. K eq = __ [H 2O(g)] [CO 2(g)] _ e. K eq = [CO(g)]
[NO 2] 2 0.0627 2 5. K eq = _ = _ = 0.213 0.0185 [N 2O 4] 7.
[CO][Cl 2] _ = 8.2 × 10 -2 [COCl 2]
Solutions to Selected Practice Problems 1001
Solutions to Selected Practice Problems [C H NH +][OH -] [C 6H 13NH 2]
(0.150)(0.150) __ = 8.2 × 10 -2
3 6 13 K b = __
[COCl 2]
(0.150)(0.150) 8.2 × 10
[COCl 2] = __ = 0.28M -2
b. C 3H 7NH 2(aq) + H 2O(l) ⇌
C 3H 7NH 3 -(aq) + OH-(aq)
19. According to the stoichiometry of the equation, the
concentration of B is 0.450M; C and D are 1.00 0.450 = 0.550M. (0.550)(0.550) K eq = __ = 1.49 (0.450)(0.450) 21. K sp = [Pb 2+][CO 3 2-] = 7.40 × 10 -14
[H SO -][OH -] [HSO 3 ]
2 3 K b = __ -
23. At 298 K, [H +] = [OH −] = 1.0 × 10 −7M −7
1.0 × 10 mol _ Mol H + = __ × 1 L × 300 mL = 1L 1000 mL 3.0 × 10 −8 mol
23. K sp = [Ag +] 3[PO 4 3-] = 2.6 × 10 -18
[PO 4 3-] = s, [Ag +] = 3s (3s) 3(s) = (27s 3)(s) = 27s 4 = 2.6 × 10 −18 4 2.6 × 10 -18 s = _ = 1.8 × 10 -5 mol/L
23
1 mol
1.8 × 10 16 H + ions Number of H + = number of OH − = 1.8 × 10 16 ions 25. a. [H +] = 0.0055M
25. a. PbF 2(s) ⇌ Pb 2+(aq) + 2F -(aq)
Q sp = [Pb 2+][F -] 2 = (0.050M)(0.015M) 2 = 1.12 × 10 -5 K sp = 3.3 × 10 -8 Q sp > K sp, so a precipitate of PbF 2 will form. b. Ag 2SO 4(s) ⇌ 2Ag +(aq) + SO 4 2-(aq)
(0.0050M) 2(0.125M)
K sp = 1.2 × 10 -5 Q sp < K sp, so a precipitate will not form.
Chapter 18 1. a. 2Al(s) + 3H 2SO 4(aq) → Al 2(SO 4) 3(aq) + 3H 2(g) b. CaCO 3(s) + 2HBr(aq) →
CaBr 2(aq) + H 2O(l) + CO 2(g) 3.
Acid
Conjugate base
Base
Conjugate acid
a. NH 4 +
NH 3
OH -
H 2O
b. HBr
Br -
H 2O
H 3O +
c. H 2O
OH -
CO 3 2-
HCO 3 -
13. H 2SeO 3(aq) + H 2O(l) ⇌ HSeO 3 -(aq) + H 3O +(aq)
HSeO 3 -(aq) + H 2O(l) ⇌ SeO 3 2-(aq) + H 3O +(aq) 15. a. C 6H 13NH 2(aq) + H 2O(l) ⇌
C 6H 13NH 3 -(aq ) + OH −(aq) 1002
Solutions to Selected Practice Problems
+
6.02 × 10 H ions 3.0 × 10 −8 mol H + ions × __ =
27
=
c. CO 3 2-(aq) + H 2O(l) ⇌ HCO 3 -(aq) + OH -(aq) [HCO 3 -][OH -] K b = __ [CO 3 2-] d. HSO 3 -(aq) + H 2O(l) ⇌ H 2SO 3(aq) + OH -(aq)
(s)(s) = 7.40 × 10 -14 s = √ 7.40 × 10 -14 = 2.72 × 10 -7M s = 2.72 × 10 -7 mol/L × 267.2 g/mol = 7.27 × 10 -5 g/L
Q sp = [Ag +] 2[SO 4 2-] = 3.1 × 10 -6
[C H NH +][OH -] [C 3H 7NH 2]
3 7 3 K b = __
pH = −log [H +] pH = −log 0.0055 pH = 2.26
b. [H +] = 0.000084M pH = −log [H +] pH = −log 0.000084 pH = 4.08
27. a. [OH −] = 1.0 × 10 −6M
pOH = −log [OH −] pOH = −log(1.0 × 10 −6) pOH = 6.00 pH = 14.00 − pOH = 14.00 − 6.00 = 8.00 b. [OH −] = 6.5 × 10 −4M pOH = −log [OH −] pOH = −log(6.5 × 10 −4) pOH = 3.19 pH = 14.00 − pOH = 14.00 − 3.19 = 10.81 c. [H +] = 3.6 × 10 −9M pH = −log [H +] pH = −log(3.6 × 10 −9 ) pH = 8.44 pOH = 14.00 − pH = 14.00 − 8.44 = 5.56 d. [H +] = 2.5 × 10 −2M pH = −log(−2.5 × 10 −2) pH = 1.60 pOH = 14.00 − pH = 14.00 − 1.60 = 12.40 1.0 × 10 −3 mol 29. [HCl] = [H +] = __ = 0.00020M = 5.0 L
2.0 × 10 −4M pH = −log(2.0 × = −(−3.70) = 3.70 pOH = 14.00 − 3.70 = 10.30 10 −4)
Solutions to Selected Practice Problems
31. [OH −] = antilog (−pOH)
[OH −] = antilog (−5.60) = 2.5 × 10 −6M pH = 14.00 − 5.60 = 8.40 [H +] = antilog (−8.40) = 4.0 × 10 −9M
Chapter 19 1. a. reduction b. oxidation
3. Ag + is the oxidizing agent, Fe is the reducing agent;
33. a. pH = 14.00 − pOH
Ag + is reduced, Fe is oxidized
pH = 14.00 − 10.70 = 3.30 [H +] = antilog (−pH) [H +] = antilog (−3.30) = 5.0 × 10 −4M [C 6H 5COO −] = [H +] = 5.0 × 10 −4M [C 6H 5COOH] = 0.0040M − 5.0 × 10 −4M = 0.0035M (5.0 × 10 −4)(5.0 × 10 −4) [H +][C 6H 5COO −] __ K a = __ = −3 [C 6H 5COOH]
5. a. +7
b. +5
c. +3
7. a. -3
b. -3
c. -2
15.
3(+2) +1 -1
+1 +5 -2
+1 -2 +1
(1.0 × 10 −3)(1.0 × 10 −3) (0.099)
K a = __ = __ K a = 1.0 × 10 −5 c. pH = 14.00 − pOH pH = 14.00 − 11.18 = 2.82 [H +] = antilog (−pH) [H +] = antilog (−2.82) = 1.5 × 10 −3M [C 3H 7COO −] = [H +] = 1.5 × 10 −3M [C 3H 7COOH] = 0.150M − 1.5 × 10 −3M = 0.149M [H +][C H COO −] [C 3H 7COOH]
(1.5 × 10 −3)(1.5 × 10 −3) (0.149)
3 7 K a = __ = __
K a = 1.5 × 10 −5 0.5900 mol HCl 1L 45. 49.90 mL HCl × _ × __ = 1000 mL 1 L HCl
2.944 × 10 −2 mol HCl 1 mol NH
2.944 × 10 −2 mol HCl × _3 = 2.944 × 1 mol HCl 10 −2 mol NH 3 −2 2.944 × 1 0 mol N H M NH 3 = __3 = 1.178M 0.02500 L NH 3
47. a. NH 4 +(aq) + H 2O(l) NH 3(aq) + H 3O +(aq)
The solution is acidic. b. SO 4 2−(aq) + H 2O(l) HSO 4 −(aq) + OH −(aq) The solution is neutral. c. CH 3COO −(aq) + H 2O(l) CH 3COOH(aq) + OH −(aq) The solution is basic. d. CO 3 2−(aq) + H 2O(l) HCO 3 −(aq) + OH −(aq) The solution is basic.
+2 -2
+1 -2
HCl + HNO3 → HOCl + NO + H2O 2(–3)
(3.5 × 10 )
K a = 7.1 × 10 −5 b. pH = 14.00 − pOH pH = 14.00 − 11.00 = 3.00 [H +] = antilog (−pH) [H +] = antilog (−3.00) = 1.0 × 10 −3M [CNO −] = [H +] = 1.0 × 10 −3M [HCNO] = 0.100 − 1.0 × 10 −3M = 0.099M [H +][CNO −] [HCNO]
c. oxidation d. reduction
3HCl + 2HNO 3 → 3HOCl + 2NO + H 2O 17.
4(+3)(2) -3 +1
+4 -2
0
+1 -2
NH3(g) + NO2(g) → N2(g) + H2O(l) 3(–4)(2)
8NH 3(g) + 6NO 2(g) → 7N 2(g) + 12H 2O(l) 19.
3(+2) +1 -2
0
+5 -2
+2 -2
H2S(g) + NO3-(aq) → S(s) + NO(g) 2(–3)
2H +(aq)
+ 3H 2S(g) + 2NO 3 -(aq) → 3S(s) + 2NO(g) + 4H 2O(l)
21.
+2 0
+2
+5 -2
+4 -2
Zn + 2NO3- + 4H+ → Zn2+ + 2NO2 + 2H2O (–1) -
Zn + 2NO 3 + 4H + → Zn 2+ + 2NO 2 + 2H 2O 23. 2I -(aq) → I 2(s) + 2e - (oxidation)
14H +(aq) + 6e - + Cr 2O 7 2-(aq) → 2Cr 3+(aq) + 7H 2O(l) (reduction) Multiply oxidation half-reaction by 3 and add to reduction half-reaction. 14H +(aq) + 6e - + CrO 7 2-(aq) + 6I -(aq) → 3I 2(s) + 2Cr 3+(aq) + 7H 2O(l) + 6e + 14H (aq) + CrO 7 2-(aq) + 6I -(aq) → 3I 2(s) + 2Cr 3+(aq) + 7H 2O(l) 25. 6OH -(aq) + N 2O(g) →
2NO 2 -(aq) + 4e - + 3H 2O(l) (oxidation) ClO -(aq) + 2e - + H 2O(l) → Cl -(aq) + 2OH -(aq) (reduction) Solutions to Selected Practice Problems 1003
Solutions to Selected Practice Problems
Multiply reduction half-reaction by 2 and add to oxidation half-reaction. 6OH -(aq) + N 2O(g) + 2ClO -(aq) + 4e - + 2H 2O(l) → 2NO 2 -(aq) + 4e - + 3H 2O(l) + 2Cl -(aq) + 4OH -(aq)
31. a. propylbenzene b. 1-ethyl-2-methylbenzene c. 1-ethyl-2,3-dimethylbenzene
N 2O(g) + 2ClO -(aq) + 2OH -(aq) → 2NO 2 -(aq) + 2Cl -(aq) + H 2O(l)
Chapter 22 1. 2,3-difluorobutane 3. 1,3-dibromo-2-chlorobenzene
Chapter 20 1. Pt 2+(aq) + Sn(s) → Pt(s) + Sn 2+(aq)
Chapter 23
E 0cell = +1.18 V - (-0.1375 V) E 0cell = +1.32 V Sn|Sn 2+||Pt 2+|Pt
No practice problems
3. Hg 2+(aq) + Cr(s) → Hg(l) + Cr 2+(aq)
Chapter 24
E 0cell = +0.851 V - (-0.913 V) E 0cell = +1.764 V Cr|Cr 2+||Hg 2+|Hg 5.
E 0cell E 0cell E 0cell
7.
= +0.3419 V - (-0.1375 V) = +0.4794 V > 0 spontaneous
9.
()
(2) (2)
2Al 3+(aq)
2+(aq)
11. Sample A will have 16.2 grams remaining after two
half-lives, or 10.54 years. For Sample B, amount 1 remaining = (initial amount) _ 2 ≈ 32.3 g
()
_t 1 (initial amount) T = (37.6 g) _
(2)
—
—
C3H7
—
19.
CH3
—
—
—
b.
C2H5
T
1 = (58.4 g) _
(2)
10.54y _ 12.32y
10.54y _ 28.79y
≈ 29.2 g
4 + n → 24 11Na + 2He
CH3
CH3
CH3
C3H7
b. 2,2,6-trimethyl-3-octene
Solutions to Selected Practice Problems
110 48Cd
Balancing the second equation gives: = β + 110 48Cd The first equation must then be: n + T = 110 47Ag 110 Balancing this equation gives: n + 109 Ag = 47 47Ag The target, then, was silver-109, and the unstable isotope was silver-110.
110 47Ag
CH3
17. a. 4-methyl-2-pentene
27 13Al
n + T = I and I = β +
C2H5
1004
_t
21. Let T = target and I = unstable isotope. Then,
C2H5 C2H5
CH3CH2CHCHCHCH2CH2CH3
11. a.
(2)
For Sample C, amount remaining =
CH3CHCHCH2CH(CH2)4CH3 b.
(2)
For three half-lives, amount remaining = (initial n 1 1 3 amount) _ = (10.0 mg) _ = 1.25 mg.
Chapter 21 CH3
()
For two half-lives, amount remaining = (initial n 1 1 2 amount) _ = (10.0 mg) _ = 2.50 mg.
+ 3Hg 2 E 0cell = 0.920 V - (-1.662 V) = +2.582 V The reaction is spontaneous.
9. a.
225 88Ra
9. For one half-life, amount remaining = (initial n 1 1 1 amount) _ = (10.0 mg) _ = 5.00 mg. 2 2
= -0.587 V < 0 not spontaneous
Al|Al 3+||Hg 2+|Hg 2 2+ 2Al(s) + 6Hg 2+(aq) →
4
→ 2He +
Alpha decay
7. E 0cell = 0.920 V - (+1.507 V)
E 0cell E 0cell
229 90Th
A multilingual science glossary at glencoe.com includes Arabic, Bengali, Chinese, English, Haitian Creole, Hmong, Korean, Portuguese, Russian, Tagalog, Urdu, and Vietnamese.
Pronunciation Key Use the following key to help you sound out words in the glossary. a . . . . . . . . . . . . . . back (BAK) ay . . . . . . . . . . . . . day (DAY) ah . . . . . . . . . . . . . father (FAH thur) ow . . . . . . . . . . . . . flower (FLOW ur) ar. . . . . . . . . . . . . . car (CAR) e . . . . . . . . . . . . . . less (LES) ee . . . . . . . . . . . . . leaf (LEEF) ih. . . . . . . . . . . . . . trip (TRIHP) i (i+con+e). . . . . . idea, life (i DEE uh, life) oh . . . . . . . . . . . . . go (GOH) aw . . . . . . . . . . . . . soft (SAWFT) or . . . . . . . . . . . . . orbit (OR but) oy . . . . . . . . . . . . . coin (COYN) oo . . . . . . . . . . . . . foot (FOOT)
ew . . . . . . . . . . . . . food (FEWD) yoo . . . . . . . . . . . . pure (PYOOR) yew . . . . . . . . . . . . few (FYEW) uh . . . . . . . . . . . . . comma (CAHM uh) u (+con) . . . . . . . . rub (RUB) sh . . . . . . . . . . . . . shelf (SHELF) ch . . . . . . . . . . . . . nature (NAY chur) g . . . . . . . . . . . . . . gift (GIHFT) j . . . . . . . . . . . . . . . gem (JEM) ing . . . . . . . . . . . . sing (SING) zh . . . . . . . . . . . . . vision (VIHZH un) k . . . . . . . . . . . . . . cake (KAYK) s . . . . . . . . . . . . . . . . seed, cent (SEED, SENT) z . . . . . . . . . . . . . . . . zone, raise (ZOHN, RAYZ)
A
Como usar el glosario en espanol: 1. Busca el termino en ingles que desees encontrar. 2. El termino en espanol, junto con la definicion, se encuentran en la columna de la derecha.
English
Español
absolute zero (p. 445) Zero on the Kelvin scale which represents the lowest possible theoretical temperature; atoms are all in the lowest possible energy state.
cero absoluto (pág. 445) Equivale a cero grados en la escala de Kelvin y representa la temperatura teórica más fría posible; a esta temperatura todos los átomos se encuentran en el menor estado energético posible. exactitud (pág. 47) Se refiere a la cercanía entre un valor medido y el valor aceptado. indicador ácido-base (pág. 662) tinción química cuyo color cambia al entrar en contacto con soluciones ácidas y básicas. solución ácida (pág. 636) Solución que contiene más iones hidrógeno que iones hidróxido. constante ácida de ionización (pág. 647) Valor de la expresión de la constante de equilibrio para la ionización de un ácido débil. serie de actínidos (pág. 180) Elementos del bloque F del período 7 de la tabla periódica que aparecen después del elemento actinio. complejo activado (pág. 564) Complejo efímero e inestable de átomos que se puede romper para volver a formar los reactivos o para formar los productos; a veces también se le llama estado de transición. energía de activación (pág. 564) La cantidad mínima de energía que requieren las partículas de una reacción para formar el complejo activado y producir la reacción. sitio activo (pág. 830) Saliente o hendidura a la que se enlaza un sustrato durante una reacción catalizada por enzimas.
accuracy (p. 47) Refers to how close a measured value is to an accepted value. acid-base indicator (p. 662) A chemical dye whose color is affected by acidic and basic solutions. acidic solution (p. 636) Contains more hydrogen ions than hydroxide ions. acid ionization constant (p. 647) The value of the equilibrium constant expression for the ionization of a weak acid. actinide series (p. 180) In the periodic table, the f-block elements from period 7 that follow the element actinium. activated complex (p. 564) A short-lived, unstable arrangement of atoms that can break apart and re-form the reactants or can form products; also sometimes referred to as the transition state. activation energy (p. 564) The minimum amount of energy required by reacting particles in order to form the activated complex and lead to a reaction. active site (p. 830) The pocket or crevice to which a substrate binds in an enzyme-catalyzed reaction.
Glossary/Glosario 1005
Glossary/Glosario actual yield/rendimiento real
actual yield (p. 385) The amount of product produced when a chemical reaction is carried out. addition polymerization (p. 811) Occurs when all the atoms present in the monomers are retained in the polymer product. addition reaction (p. 804) A reaction that occurs when other atoms bond to each of two atoms bonded by double or triple covalent bonds. alcohol (p. 792) An organic compound in which a hydroxyl group replaces a hydrogen atom of a hydrocarbon. aldehyde (p. 796) An organic compound containing the structure in which a carbonyl group at the end of a carbon chain is bonded to a carbon atom on one side and a hydrogen atom on the other side. aliphatic compounds (a luh FA tihk • KAHM pownd) (p. 771) Nonaromatic hydrocarbons, such as the alkanes, alkenes, and alkynes. alkali metals (p. 177) Group 1 elements, except for hydrogen, they are reactive and usually exist as compounds with other elements. alkaline earth metals (p. 177) Group 2 elements in the modern periodic table and are highly reactive. alkane (p. 750) Hydrocarbon that contains only single bonds between atoms. alkene (p. 759) An unsaturated hydrocarbon, such as ethene (C 2H 4), with one or more double covalent bonds between carbon atoms in a chain. alkyl halide (p. 787) An organic compound containing a halogen atom covalently bonded to an aliphatic carbon atom. alkyne (p. 763) An unsaturated hydrocarbon, such as ethyne (C 2H 2), with one or more triple bonds between carbon atoms in a chain. allotrope (p. 422) One of two or more forms of an element with different structures and properties when they are in the same state—solid, liquid, or gas. alloy (p. 227) A mixture of elements that has metallic properties; most commonly forms when the elements are either similar in size (substitutional alloy) or the atoms of one element are much smaller than the atoms of the other (interstitial alloy). alpha particle (p. 123) A particle with two protons and two neutrons, with a 2+ charge; is equivalent to a helium-4 nucleus, can be represented as α; and is emitted during radioactive decay. alpha radiation (p. 123) Radiation that is made up of alpha particles; is deflected toward a negatively charged plate when radiation from a radioactive source is directed between two electrically charged plates. amide (AM ide) (p. 800) An organic compound in which the -H group of a carboxylic acid is replaced by a nitrogen atom bonded to other atoms. amines (A meen) (p. 795) Organic compounds that contain nitrogen atoms bonded to carbon atoms in aliphatic chains or aromatic rings and have the general formula RNH 2. amino acid (p. 826) An organic molecule that has both an amino group (-NH 2) and a carboxyl group (-COOH). 1006
Glossary/Glosario
amino acid/amino ácido
rendimiento real (pág. 385) Cantidad de producto que se obtiene al realizar una reacción química. polimerización de adición (pág. 811) Ocurre cuando todos los átomos presentes en los monómeros forman parte del producto polimérico. reacción de adición (pág. 804) Reacción que ocurre cuando dos átomos unidos entre sí por enlaces covalentes dobles o triples se unen con otros átomos. alcohol (pág. 792) Compuesto orgánico en el que un grupo hidroxilo reemplaza a un átomo de hidrógeno de un hidrocarburo. aldehído (pág. 796) Compuesto orgánico que contiene una estructura en la que un grupo carbonilo, situado al final de una cadena de carbonos, se une a un átomo de carbono por un lado y a un átomo de hidrógeno por el lado opuesto. compuestos alifáticos (pág. 771) Hidrocarburos no aromáticos como los alcanos, los alquenos y los alquinos. metales alcalinos (pág. 177) Incluyen los elementos del grupo 1, a excepción del hidrógeno. Son reactivos y generalmente existen como compuestos con otros elementos. metales alcalinotérreos (pág. 177) Elementos altamente reactivos del grupo 2 de la tabla periódica moderna. alcano (pág. 750) Hidrocarburo que sólo contiene enlaces sencillos entre sus átomos. alqueno (pág. 759) Hidrocarburo no saturado, como el eteno (C 2H 4), que tiene uno o más enlaces covalentes dobles entre los átomos de carbono en una cadena. haluro de alquilo (pág. 787) Compuesto orgánico que contiene un átomo de halógeno enlazado covalentemente a un átomo de carbono alifático. alquino (pág. 763) Hidrocarburo no saturado, como el acetileno (C 2H 2), que tiene uno o más enlaces triples entre los átomos de carbono en una cadena. alótropos (pág. 422) Formas de un elemento que tienen estructura y propiedades distintas cuando están en el mismo estado: sólido, líquido o gaseoso. aleación (pág. 227) Mezcla de elementos que posee propiedades metálicas; en general se forman cuando los elementos tienen un tamaño similar (aleación de sustitución) o cuando los átomos de un elemento son mucho más pequeños que los átomos del otro (aleación intersticial). partícula alfa (pág. 123) Partícula con dos protones y dos neutrones que tiene una carga 2+ ; equivale a un núcleo de helio 4, se puede representar como α y es emitida durante la desintegración radiactiva. radiación alfa (pág. 123) Radiación compuesta de partículas alfa; si la radiación proveniente de una fuente radiactiva es dirigida hacia dos placas cargadas eléctricamente, este tipo de radiación se desvía hacia la placa con carga negativa. amida (pág. 800) Compuesto orgánico en el que el grupo -H de un ácido carboxílico es sustituido por un átomo de nitrógeno unido a otros átomos. aminas (pág. 795) Compuestos orgánicos que contienen átomos de nitrógeno unidos a átomos de carbono en cadenas alifáticas o anillos aromáticos; su fórmula general es RNH 2. amino ácido (pág. 826) Molécula orgánica que posee un grupo amino (-NH 2) y un grupo carboxilo (-COOH).
Glossary/Glosario amorphous solid/sólido amorfo
amorphous solid (p. 424) A solid in which particles are not arranged in a regular, repeating pattern that often is formed when molten material cools too quickly to form crystals. amphoteric (AM foh TAR ihk) (p. 639) Describes water and other substances that can act as both acids and bases. amplitude (p. 137) The height of a wave from the origin to a crest, or from the origin to a trough. anabolism (ah NAB oh lih zum) (p. 844) Refers to the metabolic reactions through which cells use energy and small building blocks to build large, complex molecules needed to carry out cell functions and for cell structures. anion (AN i ahn) (p. 209) An ion that has a negative charge. anode (p. 710) In an electrochemical cell, the electrode where oxidation takes place. applied research (p. 17) A type of scientific investigation that is undertaken to solve a specific problem. aqueous solution (p. 299) A solution in which the solvent is water. aromatic compounds (p. 771) Organic compounds that contain one or more benzene rings as part of their molecular structure. Arrhenius model (ah REE nee us • MAH dul) (p. 637) A model of acids and bases; states that an acid is a substance that contains hydrogen and ionizes to produce hydrogen ions in aqueous solution and a base is a substance that contains a hydroxide group and dissociates to produce a hydroxide ion in aqueous solution. aryl halide (p. 788) An organic compound that contains a halogen atom bonded to a benzene ring or another aromatic group asymmetric carbon (p. 768) A carbon atom that has four different atoms or groups of atoms attached to it; occurs in chiral compounds. atmosphere (p. 407) The unit that is often used to report air pressure. atom (p. 106) The smallest particle of an element that retains all the properties of that element; is electrically neutral, spherically shaped, and composed of electrons, protons, and neutrons. atomic emission spectrum (p. 144) A set of frequencies of electromagnetic waves given off by atoms of an element; consists of a series of fine lines of individual colors. atomic mass (p. 119) The weighted average mass of the isotopes of that element. atomic mass unit (amu) (p. 119) One-twelfth the mass of a carbon-12 atom. atomic number (p. 115) The number of protons in an atom. atomic orbital (p. 152) A three-dimensional region around the nucleus of an atom that describes an electron’s probable location. ATP (p. 845) Adenosine triphosphate—a nucleotide that functions as the universal energy-storage molecule in living cells.
ATP/ATP
sólido amorfo (pág. 424) Sólido cuyas partículas no están ordenadas de modo que formen un patrón regular repetitivo; a menudo se forma cuando el material fundido se enfría demasiado rápido como para formar cristales. anfotérico (pág. 639) Término que describe al agua y otras sustancias que pueden actuar como ácidos y bases. amplitud (pág. 137) Altura de una onda desde el origen hasta una cresta o desde el origen hasta un valle. anabolismo (pág. 844) Reacciones metabólicas en las que las células usan energía y pequeñas unidades básicas para formar las moléculas grandes y complejas que requieren para realizar sus funciones celulares y para construir sus estructuras. anión (pág. 209) Ion con carga negativa. ánodo (pág. 710) Electrodo donde sucede la oxidación en una celda electroquímica. investigación aplicada (pág. 17) Tipo de investigación científica que se realiza para resolver un problema concreto. solución acuosa (pág. 299) Solución en la que el agua funciona como disolvente. compuestos aromáticos (pág. 771) Compuestos orgánicos que contienen uno o más anillos de benceno como parte de su estructura molecular. modelo de Arrhenius (pág. 637) Modelo de ácidos y bases; establece que un ácido es una sustancia que contiene hidrógeno y se ioniza para producir iones hidrógeno en solución acuosa, y que una base es una sustancia que contiene un grupo hidróxido y se disocia para producir un ion hidróxido en solución acuosa. haluro de arilo (pág. 788) Compuesto orgánico que contiene un átomo de halógeno unido a un anillo de benceno u otro grupo aromático. carbono asimétrico (pág. 768) Átomo de carbono que está unido a cuatro átomos o grupos de átomos diferentes; se hallan en compuestos quirales. atmósfera (pág. 407) Unidad que a menudo se usa para reportar la presión atmosférica. átomo (pág. 106) La partícula más pequeña de un elemento que retiene todas las propiedades de ese elemento; es eléctricamente neutro, de forma esférica y está compuesto de electrones, protones y neutrones. espectro de emisión atómica (pág. 144) Conjunto de frecuencias de ondas electromagnéticas que emiten los átomos de un elemento; consta de una serie de líneas finas de distintos colores. masa atómica (pág. 119) La masa promedio ponderada de los isótopos de un elemento. unidad de masa atómica (uma) (pág. 119) La doceava parte de la masa de un átomo de carbono 12. número atómico (pág. 115) El número de protones en un átomo. orbital atómico (pág. 152) Región tridimensional alrededor del núcleo de un átomo que describe la ubicación probable de un electrón. ATP (pág. 845) Trifosfato de adenosina; nucleótido que sirve como la molécula universal de almacenamiento de energía en las células vivas.
Glossary/Glosario 1007
Glossary/Glosario aufbau principle/principio de aufbau
buffer capacity/capacidad amortiguadora
aufbau principle (p. 156) States that each electron occupies the lowest energy orbital available. Avogadro’s number (p. 321) The number 6.0221367 × 10 23, which is the number of representative particles in a mole, and can be rounded to three significant digits 6.02 × 10 23. Avogadro’s principle (p. 452) States that equal volumes of gases at the same temperature and pressure contain equal numbers of particles.
principio de aufbau (pág. 156) Establece que cada electrón ocupa el orbital de energía más bajo disponible. número de Avogadro (pág. 321) Equivale al número 6.0221367 × 10 23; es el número de partículas representativas en un mol; se puede redondear a tres dígitos significativos: 6.02 × 10 23. principio de Avogadro (pág. 452) Establece que los volúmenes iguales de gases, a la misma temperatura y presión, contienen igual número de partículas.
B band of stability (p. 866) The region on a graph within which all stable nuclei are found when plotting the number of neutrons versus the number of protons. barometer (p. 407) An instrument that is used to measure atmospheric pressure. base ionization constant (p. 649) The value of the equilibrium constant expression for the ionization of a base. base unit (p. 33) A defined unit in a system of measurement that is based on an object or event in the physical world and is independent of other units. basic solution (p. 636) Contains more hydroxide ions than hydrogen ions. battery (p. 718) One or more electrochemical cells in a single package that generates electrical current. beta particle (p. 123) A high-speed electron with a 1− charge that is emitted during radioactive decay. beta radiation (p. 123) Radiation that is made up of beta particles; is deflected toward a positively charged plate when radiation from a radioactive source is directed between two electrically charged plates. boiling point (p. 427) The temperature at which a liquid’s vapor pressure is equal to the external or atmospheric pressure. boiling-point elevation (p. 500) The temperature difference between a solution’s boiling point and a pure solvent’s boiling point. Boyle’s law (p. 442) States that the volume of a fixed amount of gas held at a constant temperature varies inversely with the pressure. breeder reactor (p. 882) A nuclear reactor that is able to produce more fuel than it uses. Brønsted-Lowry model (p. 638) A model of acids and bases in which an acid is a hydrogen-ion donor and a base is a hydrogen-ion acceptor. Brownian motion (p. 477) The erratic, random, movements of colloid particles that results from collisions of particles of the dispersion medium with the dispersed particles. buffer (p. 666) A solution that resists changes in pH when limited amounts of acid or base are added. buffer capacity (p. 667) The amount of acid or base a buffer solution can absorb without a significant change in pH.
1008
Glossary/Glosario
banda de estabilidad (pág. 866) Región de una gráfica en la que se hallan todos los núcleos estables cuando se grafica el número de neutrones contra el número de protones. barómetro (pág. 407) Instrumento que se utiliza para medir la presión atmosférica. constante de ionización básica (pág. 649) El valor de la expresión de la constante de equilibrio para la ionización de una base. unidad básica (pág. 33) Unidad definida en un sistema de medidas; está basada en un objeto o evento del mundo físico y es independiente de otras unidades. solución básica (pág. 636) Solución que contiene más iones hidróxido que iones hidrógeno. batería (pág. 718) Una o más celdas electroquímicas contenidas en una sola unidad que genera corriente eléctrica. partícula beta (pág. 123) Electrón de alta velocidad con una carga 1− que es emitido durante la desintegración radiactiva. radiación beta (pág. 123) Radiación compuesta de partículas beta; si la radiación proveniente de una fuente radiactiva es dirigida hacia dos placas cargadas eléctricamente, este tipo de radiación se desvía hacia la placa con carga positiva. punto de ebullición (pág. 427) Temperatura a la cual la presión de vapor de un líquido es igual a la presión externa o atmosférica. elevación del punto de ebullición (pág. 500) Diferencia de temperatura entre el punto de ebullición de una solución y el punto de ebullición de un disolvente puro. ley de Boyle (pág. 442) Establece que el volumen de una cantidad dada de gas a temperatura constante varía inversamente según la presión. reactor generador (pág. 882) Reactor nuclear capaz de producir más combustible del que utiliza. modelo de Brønsted-Lowry (pág. 638) Modelo de ácidos y bases en el que un ácido es un donante de iones hidrógeno y una base es un receptor de iones hidrógeno. movimiento browniano (pág. 477) Movimientos erráticos, aleatorios de las partículas coloidales, producidos por el choque entre las partículas del medio de dispersión con las partículas dispersas. amortiguador (pág. 666) Solución que resiste los cambios de pH cuando se agregan cantidades moderadas del ácido o la base. capacidad amortiguadora (pág. 667) Cantidad de ácido o base que una solución amortiguadora puede absorber sin sufrir un cambio significativo en el pH.
Glossary/Glosario calorie/caloría
chemical property/propiedad química
C calorie (p. 518) The amount of heat required to raise the temperature of one gram of pure water by one degree Celsius. calorimeter (p. 523) An insulated device that is used to measure the amount of heat released or absorbed during a physical or chemical process. carbohydrates (p. 832) Compounds that contain multiple hydroxyl groups, plus an aldehyde or a ketone functional group, and function in living things to provide immediate and stored energy. carbonyl group (p. 796) Arrangement in which an oxygen atom is double-bonded to a carbon atom. carboxyl group (p. 798) Consists of a carbonyl group bonded to a hydroxyl group. carboxylic acid (p. 798) An organic compound that contains a carboxyl group and is polar and reactive. catabolism (kuh TAB oh lih zum) (p. 844) Refers to metabolic reactions that break down complex biological molecules for the purpose of forming smaller building blocks and extracting energy. catalyst (p. 571) A substance that increases the rate of a chemical reaction by lowering activation energies but is not itself consumed in the reaction. cathode (p. 710) In an electrochemical cell, the electrode where reduction takes place. cathode ray (p. 108) Radiation that originates from the cathode and travels to the anode of a cathode-ray tube. cation (KAT i ahn) (p. 207) An ion that has a positive charge. cellular respiration (p. 846) The process in which glucose is broken down in the presence of oxygen gas to produce carbon dioxide, water, and energy. Charles’s law (p. 445) States that the volume of a given mass of gas is directly proportional to its kelvin temperature at constant pressure. chemical bond (p. 206) The force that holds two atoms together; may form by the attraction of a positive ion for a negative ion or by sharing electrons. chemical change (p. 77) A process involving one or more substances changing into new substances; also called a chemical reaction. chemical equation (p. 285) A statement using chemical formulas to describe the identities and relative amounts of the reactants and products involved in the chemical reaction. chemical equilibrium (p. 596) The state in which forward and reverse reactions balance each other because they occur at equal rates. chemical potential energy (p. 517) The energy stored in a substance because of its composition; most is released or absorbed as heat during chemical reactions or processes. chemical property (p. 74) The ability or inability of a substance to combine with or change into one or more new substances.
caloría (pág. 518) Cantidad de calor que se requiere para elevar un grado centígrado la temperatura de un gramo de agua pura. calorímetro (pág. 523) Dispositivo aislado que sirve para medir la cantidad de calor liberada o absorbida durante un proceso físico o químico. carbohidratos (pág. 832) Compuestos que contienen múltiples grupos hidroxilo, además de un grupo funcional aldehído o cetona, cuya función en los seres vivos es proporcionar energía inmediata o almacenada. grupo carbonilo (pág. 796) Grupo formado por un átomo de oxígeno unido por un enlace doble a un átomo de carbono. grupo carboxilo (pág. 798) Consiste en un grupo carbonilo unido a un grupo hidroxilo. ácido carboxílico (pág. 798) Compuesto orgánico que contiene un grupo carboxilo; es polar y reactivo. catabolismo (pág. 844) Reacciones metabólicas en las que se desdoblan moléculas biológicas complejas para obtener unidades básicas más pequeñas y energía. catalizador (pág. 571) Sustancia que aumenta la velocidad de una reacción química al reducir su energía de activación; el catalizador no es consumido durante la reacción. cátodo (pág. 710) Electrodo donde sucede la reducción en una celda electroquímica. rayo catódico (pág. 108) Radiación que se origina en el cátodo y viaja hacia el ánodo de un tubo de rayos catódicos. catión (pág. 207) Ion con carga positiva. respiración celular (pág. 846) Proceso en el cual la glucosa es desdoblada en presencia del gas oxígeno para producir dióxido de carbono, agua y energía. Ley de Charles (pág. 445) Establece que el volumen de una masa dada de gas es directamente proporcional a su temperatura Kelvin a presión constante. enlace químico (pág. 206) La fuerza que mantiene a dos átomos unidos; puede formarse por la atracción de un ion positivo por un ion negativo compartiendo electrones. cambio químico (pág. 77) Proceso que involucra una o más sustancias que se transforman en sustancias nuevas; también se conoce como reacción química. ecuación química (pág. 285) Expresión que utiliza fórmulas químicas para describir las identidades y cantidades relativas de los reactivos y productos presentes en una reacción química. equilibrio químico (pág. 596) Estado en el que se equilibran mutuamente las reacciones en sentido directo e inverso de una reacción química debido a que suceden a tasas iguales. energía potencial química (pág. 517) La energía almacenada en una sustancia debido a su composición; la mayoría es liberada o absorbida como calor durante reacciones o procesos químicos. propiedad química (pág. 74) La capacidad de una sustancia de combinarse con una o más sustancias nuevas o de transformarse en una o más sustancias nuevas.
Glossary/Glosario 1009
Glossary/Glosario chemical reaction/reacción química
condensation polymerization/polimerización por condensación
chemical reaction (p. 282) The process by which the atoms of one or more substances are rearranged to form different substances; occurrence can be indicated by changes in temperature, color, odor, and physical state. chemistry (p. 4) The study of matter and the changes that it undergoes. chirality (p. 767) A property of a compound to exist in both left (l-) and right (d-) forms; occurs whenever a compound contains an asymmetric carbon. chromatography (p. 83) A technique that is used to separate the components of a mixture based on the tendency of each component to travel or be drawn across the surface of another material. coefficient (p. 285) In a chemical equation, the number written in front of a reactant or product; in a balanced equation describes the lowest whole-number ratio of the amounts of all reactants and products.
reacción química (pág. 282) Proceso por el cual los átomos de una o más sustancias se reordenan para formar sustancias diferentes; su pueden identificar cuando suceden cambios en temperatura, color, olor o estado físico. química (pág. 4) El estudio de la materia y los cambios que ésta experimenta. quiralidad (pág. 767) Propiedad de un compuesto para existir en forma levógira (i-) o dextrógira (d-); ocurre cuando un compuesto contiene un carbono asimétrico. cromatografía (pág. 83) Técnica que sirve para separar los componentes de una mezcla según la tendencia de cada componente a desplazarse o ser atraído a lo largo de la superficie de otro material. coeficiente (pág. 285) Número que precede a un reactivo o un producto en una ecuación química; en una ecuación equilibrada, indica la razón más pequeña expresada en números enteros de las cantidades de reactivos y productos en dicha reacción. propiedad coligativa (pág. 498) Propiedad física de una solución que depende del número, pero no de la identidad, de las partículas de soluto disueltas.
colligative property (kol LIHG uh tihv • PRAH pur tee) (p. 498) A physical property of a solution that depends on the number, but not the identity, of the dissolved solute particles. collision theory (p. 563) States that atoms, ions, and molecules must collide in order to react. colloids (p. 477) A heterogeneous mixture of intermediatesized particles (between atomic-size of solution particles and the size of suspension particles). combined gas law (p. 449) A single law combining Boyle’s, Charles’s, and Gay-Lussac’s laws that states the relationship among pressure, volume, and temperature of a fixed amount of gas. combustion reaction (p. 290) A chemical reaction that occurs when a substance reacts with oxygen, releasing energy in the form of heat and light. common ion (p. 620) An ion that is common to two or more ionic compounds. common ion effect (p. 620) The lowering of the solubility of a substance by the presence of a common ion. complete ionic equation (p. 301) An ionic equation that shows all the particles in a solution as they realistically exist. complex reaction (p. 580) A chemical reaction that consists of two or more elementary steps. compound (p. 85) A chemical combination of two or more different elements; can be broken down into simpler substances by chemical means and has properties different from those of its component elements. concentration (p. 480) A measure of how much solute is dissolved in a specific amount of solvent or solution. conclusion (p. 15) A judgment based on the information obtained. condensation (p. 428) The energy-releasing process by which a gas or vapor becomes a liquid. condensation polymerization (p. 811) Occurs when monomers containing at least two functional groups combine with the loss of a small by-product, usually water.
1010
Glossary/Glosario
teoría de colisión (pág. 563) Establece que los átomos, iones y moléculas deben chocar para reaccionar. coloides (pág. 477) Mezcla heterogénea de partículas de tamaño intermedio (entre el tamaño atómico de partículas en solución y el de partículas en suspensión). ley combinada de los gases (pág. 449) Ley que combina las leyes de Boyle, Charles y de Gay-Lussac; indica la relación entre la presión, el volumen y la temperatura de una cantidad constante de gas. reacción de combustión (pág. 290) Reacción química que ocurre al reaccionar una sustancia con el oxígeno, liberando energía en forma de calor y luz. ion común (pág. 620) Ion común a dos o más compuestos iónicos. efecto del ion común (pág. 620) Disminución de la solubilidad de una sustancia debida a la presencia de un ion común. ecuación iónica total (pág. 301) Ecuación iónica que muestra cómo existen realmente todas las partículas en una solución. reacción compleja (pág. 580) Reacción química que consiste en dos o más pasos elementales. compuesto (pág. 85) Combinación química de dos o más elementos diferentes; puede ser separado en sustancias más sencillas por medios químicos y exhibe propiedades que difieren de los elementos que lo componen. concentración (pág. 480) Medida de la cantidad de soluto que se disuelve en una cantidad dada de disolvente o solución. conclusión (pág. 15) Juicio basado en la información obtenida. condensación (pág. 428) El proceso de liberación de energía mediante el cual un gas o vapor se convierte en líquido. polimerización por condensación (pág. 811) Ocurre cuando monómeros que contienen al menos dos grupos funcionales se combinan y pierden un producto secundario pequeño, generalmente agua.
Glossary/Glosario condensation reaction/reacción de condensación
condensation reaction (p. 801) Occurs when two smaller organic molecules combine to form a more complex molecule, accompanied by the loss of a small molecule such as water. conjugate acid (p. 638) The species produced when a base accepts a hydrogen ion from an acid. conjugate acid-base pair (p. 638) Consists of two substances related to each other by the donating and accepting of a single hydrogen ion. conjugate base (p. 638) The species produced when an acid donates a hydrogen ion to a base. control (p. 14) In an experiment, the standard that is used for comparison. conversion factor (p. 44) A ratio of equivalent values used to express the same quantity in different units; is always equal to 1 and changes the units of a quantity without changing its value. coordinate covalent bond (p. 259) Forms when one atom donates a pair of electrons to be shared with an atom or ion that needs two electrons to become stable. corrosion (p. 724) The loss of metal that results from an oxidation-reduction reaction of the metal with substances in the environment. covalent bond (p. 241) A chemical bond that results from the sharing of valence electrons. cracking (p. 748) The process by which heavier fractions of petroleum are converted to gasoline by breaking their large molecules into smaller molecules. critical mass (p. 880) The minimum mass of a sample of fissionable material necessary to sustain a nuclear chain reaction. crystal lattice (p. 214) A three-dimensional geometric arrangement of particles in which each positive ion is surrounded by negative ions and each negative ion is surrounded by positive ions; vary in shape due to sizes and relative numbers of the ions bonded. crystalline solid (p. 420) A solid whose atoms, ions, or molecules are arranged in an orderly, geometric, threedimensional structure. crystallization (p. 83) A separation technique that produces pure solid particles of a substance from a solution that contains the dissolved substance. cyclic hydrocarbon (p. 755) An organic compound that contains a hydrocarbon ring. cycloalkane (p. 755) Cyclic hydrocarbons that contain single bonds only and can have rings with three, four, five, six, or more carbon atoms. Dalton’s atomic theory (p. 104) States that matter is composed of extremely small particles called atoms; atoms are invisible and indestructable; atoms of a given element are identical in size, mass, and chemical properties; atoms of a specific element are different from those of another element; different atoms combine in simple whole-number ratios to form compounds; in a chemical reaction, atoms are separated, combined, or rearranged.
Dalton’s atomic theory/teoría atómica de Dalton
reacción de condensación (pág. 801) Ocurre cuando dos moléculas orgánicas pequeñas se combinan para formar una molécula más compleja; esta reacción es acompañada de la pérdida de una molécula pequeña como el agua. ácido conjugado (pág. 638) Especie que se produce cuando una base acepta un ion hidrógeno de un ácido. par ácido-base conjugado (pág. 638) Consiste en dos sustancias que se relacionan entre sí mediante la donación y aceptación de un solo ion hidrógeno. base conjugada (pág. 638) Especie que se produce cuando un ácido dona un ion hidrógeno a una base. control (pág. 14) Estándar de comparación en un experimento. factor de conversión (pág. 44) Razón de valores equivalentes que sirve para expresar una misma cantidad en unidades diferentes; siempre es igual a 1 y cambia las unidades de una cantidad sin cambiar su valor. enlace covalente coordinado (pág. 259) Se forma cuando un átomo dona un par de electrones para compartirlos con un átomo o un ion que requieren dos electrones para adquirir estabilidad. corrosión (pág. 724) Pérdida de metal producida por una reacción de óxido-reducción del metal con sustancias en el ambiente. enlace covalente (pág. 241) Enlace químico que se produce al compartir electrones de valencia. cracking (pág. 748) Proceso por el cual las fracciones más pesadas de petróleo son convertidas en gasolina al romper las moléculas grandes en moléculas más pequeñas. masa crítica (pág. 880) La masa mínima de una muestra de material fisionable que se necesita para sostener una reacción nuclear en cadena. red cristalina (pág. 214) Ordenamiento geométrico tridimensional de partículas en el que cada ion positivo queda rodeado de iones negativos y cada ion negativo queda rodeado de iones positivos; su forma varía según el tamaño y número de iones enlazados. sólido cristalino (pág. 420) Sólido cuyos átomos, iones o moléculas forman una estructura tridimensional, ordenada y geométrica. cristalización (pág. 83) Técnica de separación que produce partículas sólidas puras de una sustancia a partir de una solución que contiene dicha sustancia en solución. hidrocarburo cíclico (pág. 755) Compuesto orgánico que contiene un anillo de hidrocarburos. cicloalcano (pág. 755) Hidrocarburos cíclicos que sólo contienen enlaces simples; pueden formar anillos con tres, cuatro, cinco, seis o más átomos de carbono.
D teoría atómica de Dalton (pág. 104) Establece que la materia se compone de partículas extremadamente pequeñas denominadas átomos; los átomos son invisibles e indestructibles; los átomos de un elemento dado son idénticos en tamaño, masa y propiedades químicas; los átomos de un elemento específico difieren de los de otros elementos; átomos diferentes se combinan en razones simples de números enteros para formar compuestos; los átomos se separan, se combinan o se reordenan durante una reacción química. Glossary/Glosario 1011
Glossary/Glosario Dalton’s law of partial pressures/ley de Dalton de las presiones parciales
Dalton’s law of partial pressures (p. 408) States that the total pressure of a mixture of gases is equal to the sum of the pressures of all the gases in the mixture. de Broglie equation (p. 150) Predicts that all moving particles have wave characteristics and relates each particle’s wavelength to its frequency, its mass, and Planck’s constant. decomposition reaction (p. 292) A chemical reaction that occurs when a single compound breaks down into two or more elements or new compounds. dehydration reaction (p. 803) An elimination reaction in which the atoms removed form water. dehydrogenation reaction (p. 803) A reaction that eliminates two hydrogen atoms, which form a hydrogen molecule of gas. delocalized electrons (p. 225) The electrons involved in metallic bonding that are free to move easily from one atom to the next throughout the metal and are not attached to a particular atom. denaturation (p. 829) The process in which a protein’s natural, intricate three-dimensional structure is disrupted. denatured alcohol (p. 793) Ethanol to which noxious substances have been added in order to make it unfit to drink. density (p. 36) The amount of mass per unit volume; a physical property. dependent variable (p. 14) In an experiment, the variable whose value depends on the independent variable. deposition (p. 429) The energy-releasing process by which a substance changes from a gas or vapor to a solid without first becoming a liquid. derived unit (p. 35) A unit defined by a combination of base units. diffusion (p. 404) The movement of one material through another from an area of higher concentration to an area of lower concentration. dimensional analysis (p. 44) A systematic approach to problem solving that uses conversion factors to move from one unit to another. dipole-dipole forces (p. 412) The attractions between oppositely charged regions of polar molecules. disaccharide (p. 833) Forms when two monosaccharides bond together. dispersion forces (p. 412) The weak forces resulting from temporary shifts in the density of electrons in electron clouds. disaccharide (p. 82) A technique that can be used to physically separate most homogeneous mixtures based on the differences in the boiling points of the substances. double-replacement reaction (p. 296) A chemical reaction that involves the exchange of ions between two compounds and produces either a precipitate, a gas, or water. dry cell (p. 718) An electrochemical cell that contains a moist electrolytic paste inside a zinc shell. elastic collision (p. 403) Collision in which no kinetic energy is lost; kinetic energy can be transferred between the colliding particles, but the total kinetic energy of the two particles remains the same. 1012
Glossary/Glosario
elastic collision/choque elástico
ley de Dalton de las presiones parciales (pág. 408) Establece que la presión total de una mezcla de gases es igual a la suma de las presiones de todos los gases en la mezcla. ecuación de deBroglie (pág. 150) Predice que todas las partículas móviles tienen características ondulatorias y relaciona la longitud de onda de cada partícula con su frecuencia, su masa y la constante de Planck. reacción de descomposición (pág. 292) Reacción química que ocurre cuando un solo compuesto se divide en dos o más elementos o nuevos compuestos. reacción de deshidratación (pág. 803) Una reacción de eliminación en la que los átomos que se pierden forman agua. reacción de deshidrogenación (pág. 803) Reacción orgánica en la que se pierden dos átomos de hidrógeno, los cuales se unen y forman una molécula de hidrógeno. electrones deslocalizados (pág. 225) Los electrones que forman un enlace metálico; estos electrones pasan fácilmente de un átomo a otro a través del metal y no están unidos a ningún átomo en particular. desnaturalización (pág. 829) Proceso que afecta la estructura tridimensional, compleja y natural de una proteína. alcohol desnaturalizado (pág. 793) Etanol al cual se añaden sustancias nocivas para evitar que se pueda beber. densidad (pág. 36) La cantidad de masa por unidad de volumen; una propiedad física. variable dependiente (pág. 14) Es la variable de un experimento cuyo valor depende de la variable independiente. depositación (pág. 429) Proceso de liberación de energía por el cual una sustancia cambia de gas o vapor a sólido sin antes convertirse en un líquido. unidad derivada (pág. 35) Unidad definida por una combinación de unidades básicas. difusión (pág. 404) El movimiento de un material a través de otro en dirección al área de menor concentración. análisis dimensional (pág. 44) Un enfoque sistemático para resolver un problema en el que se usan factores de conversión para pasar de una unidad a otra. fuerzas dipolo-dipolo (pág. 412) La atracción entre regiones con cargas opuestas de moléculas polares. disacárido (pág. 833) Se forma a partir de la unión de dos monosacáridos. fuerzas de dispersión (pág. 412) Fuerzas débiles causadas por los cambios temporales en la densidad de electrones en las nubes electrónicas. destilación (pág. 82) Técnica que se usa para separar físicamente la mayoría de las mezclas homogéneas según las diferencias en los puntos de ebullición de las sustancias. reacción de sustitución doble (pág. 296) Reacción química en la que dos compuestos intercambian iones positivos, produciendo un precipitado, un gas o agua. pila seca (pág. 718) Celda electroquímica que contiene una pasta electrolítica húmeda dentro de un armazón de zinc.
E
choque elástico (pág. 403) Colisión en que no se pierde energía cinética; la energía cinética es transferida entre las partículas en choque, pero la energía cinética total de las dos partículas permanece igual.
Glossary/Glosario electrochemical cell/celda electroquímica
electrochemical cell (p. 709) An apparatus that uses a redox reaction to produce electrical energy or uses electrical energy to cause a chemical reaction. electrolysis (p. 728) The process that uses electrical energy to bring about a chemical reaction. electrolyte (p. 215) An ionic compound whose aqueous solution conducts an electric current. electrolytic cell (p. 728) An electrochemical cell in which electrolysis occurs. electromagnetic radiation (p. 137) A form of energy exhibiting wavelike behavior as it travels through space; can be described by wavelength, frequency, amplitude, and speed. electromagnetic spectrum (p. 139) Includes all forms of electromagnetic radiation; the types of radiation differ in their frequencies and wavelengths. electron (p. 108) A negatively charged, fast-moving particle with an extremely small mass that is found in all forms of matter and moves through the empty space surrounding an atom’s nucleus. electron capture (p. 868) A radioactive decay process that occurs when an atom’s nucleus draws in a surrounding electron, which combines with a proton to form a neutron, resulting in an X-ray photon being emitted. electron configuration (p. 156) The arrangement of electrons in an atom, which is prescribed by three rules— the aufbau principle, the Pauli exclusion principle, and Hund’s rule. electron-dot structure (p. 161) Consists of an element’s symbol, representing the atomic nucleus and inner-level electrons, that is surrounded by dots, representing the atom’s valence electrons. electron sea model (p. 225) Proposes that all metal atoms in a metallic solid contribute their valence electrons to form a “sea” of electrons, and can explain properties of metallic solids such as malleability, conduction, and ductility. electronegativity (p. 194) Indicates the relative ability of an element’s atoms to attract electrons in a chemical bond. element (p. 84) A pure substance that cannot be broken down into simpler substances by physical or chemical means. elimination reaction (p. 802) A reaction of organic compounds that occurs when a combination of atoms is removed from two adjacent carbon atoms forming an additional bond between the atoms. empirical formula (p. 344) A formula that shows the smallest whole-number mole ratio of the elements of a compound, and may or may not be the same as the actual molecular formula. endothermic (p. 247) A chemical reaction or process in which a greater amount of energy is required to break the existing bonds in the reactants than is released when the new bonds form in the product molecules. end point (p. 663) The point at which the indicator that is used in a titration changes color.
end point/punto final
celda electroquímica (pág. 709) Aparato que usa una reacción redox para producir energía eléctrica o que utiliza energía eléctrica para causar una reacción química. electrólisis (pág. 728) Proceso que emplea energía eléctrica para producir una reacción química. electrolito (pág. 215) Compuesto iónico cuya solución acuosa conduce una corriente eléctrica. celda electrolítica (pág. 728) Celda electroquímica en donde ocurre la electrólisis. radiación electromagnética (pág. 137) Forma de energía que exhibe un comportamiento ondulatorio al viajar por el espacio; se puede describir por su longitud de onda, su frecuencia, su amplitud y su rapidez. espectro electromagnético (pág. 139) Incluye toda forma de radiación electromagnética; los distintos tipos de radiación difirien en sus frecuencias y sus longitudes de onda. electrón (pág. 108) Partícula móvil rápida, de carga negativa y con una masa extremadamente pequeña. que se encuentra en todas las formas de materia y que se mueve a través del espacio vacío que rodea el núcleo de un átomo. captura electrónica (pág. 868) Proceso de desintegración radiactiva que ocurre cuando el núcleo de un átomo atrae un electrón circundante, que luego se combina con un protón para formar un neutrón, provocando la emisión de un fotón de rayos X. configuración electrónica (pág. 156) El ordenamiento de los electrones en un átomo; está determinado por tres reglas: el principio de Aufbau, el principio de exclusión de Pauli y la regla de Hund. estructura de puntos de electrones (pág. 161) Consiste en el símbolo del elemento, que representa al núcleo atómico y los electrones de los niveles internos, rodeado por puntos que representan los electrones de valencia del átomo. modelo del mar de electrones (pág. 225) Propone que todos los átomos de metal en un sólido metálico contribuyen con sus electrones de valencia para formar un “mar” de electrones. electronegatividad (pág. 194) Indica la capacidad relativa de los átomos de un elemento para atraer electrones en un enlace químico. elemento (pág. 84) Sustancia pura que no puede separarse en sustancias más sencillas por medios físicos ni químicos. reacción de eliminación (pág. 802) Reacción de compuestos orgánicos que ocurre cuando se pierden un conjunto de átomos en dos átomos adyacentes de carbono, al formarse un enlace entre dichos átomos de carbono. fórmula empírica (pág. 344) Fórmula que muestra la proporción molar más pequeña expresada en números enteros de los elementos de un compuesto; puede ser distinta de la fórmula molecular real. endotérmica (pág. 247) Reacción o proceso químico que requiere una mayor cantidad de energía para romper los enlaces existentes en los reactivos, que la que se se libera al formarse los enlaces nuevos en las moléculas del producto. punto final (pág. 663) Punto en el que el indicador que se utiliza en una titulación cambia de color.
Glossary/Glosario 1013
Glossary/Glosario energy/energía
fatty acid/ácido graso
energy (p. 516) The capacity to do work or produce heat; exists as potential energy, which is stored in an object due to its composition or position, and kinetic energy, which is the energy of motion. energy sublevels (p. 153) The energy levels contained within a principal energy level. enthalpy (p. 527) The heat content of a system at constant pressure. enthalpy (heat) of combustion (p. 529) The enthalpy change for the complete burning of one mole of a given substance. enthalpy (heat) of reaction (p. 527) The change in enthalpy for a reaction—the difference between the enthalpy of the substances that exist at the end of the reaction and the enthalpy of the substances present at the start
energía (pág. 516) Capacidad de realizar trabajo o producir calor; existe como energía potencial (almacenada en un objeto debido a su composición o posición) o como energía cinética (energía del movimiento). subniveles de energía (pág. 153) Los niveles de energía dentro de un nivel principal de energía. entalpía (pág. 527) El contenido de calor en un sistema a presión constante. entalpía (calor) de combustión (pág. 529) El cambio de entalpía causado por la combustión completa de un mol de una sustancia dada. entalpía (calor) de reacción (pág. 527) El cambio en la entalpía que ocurre en una reacción; es decir, la diferencia entre la entalpía de las sustancias que existen al final de la reacción y la entalpía de las sustancias presentes al comienzo de la misma. entropía (pág. 543) Una medida de las formas posibles en que se puede distribuir la energía de un sistema; está relacionada con la libertad de movimiento de las partículas del sistema y el número de maneras en que éstas se pueden ordenar. enzima (pág. 829) Catalizador biológico. constante de equilibrio (pág. 599) K eq es el valor numérico que describe la razón de las concentraciones de los productos con respecto a las concentraciones de los reactivos, cada una de ellas elevada a la potencia correspondiente a su coeficiente en la ecuación equilibrada. punto de equivalencia (pág. 661) Punto en el cual los moles de iones H + del ácido equivalen a los moles de iones OH - de la base. error (pág. 48) La diferencia entre el valor experimental y el valor aceptado. éster (pág. 799) Compuesto orgánico con un grupo carboxilo en el que el hidrógeno del grupo de hidroxilo es reemplazado por un grupo alquilo; es polar y puede ser volátil y de olor dulce. éter (pág. 794) Compuesto orgánico que contiene un átomo de oxígeno unido a dos átomos de carbono. evaporación (pág. 426) Proceso en el cual la vaporización ocurre sólo en la superficie de un líquido. reactivo en exceso (pág. 379) Reactivo que sobra luego de finalizar una reacción química. exotérmica (pág. 247) Reacción o proceso químico en el que se libera más energía que la requerida para romper los enlaces en los reactivos iniciales. experimento (pág. 14) Conjunto de observaciones controladas que se realizan para probar una hipótesis. propiedad extensiva (pág. 73) Propiedades físicas, como la masa, la longitud y el volumen, que dependen de la cantidad de sustancia presente.
entropy (p. 543) A measure of the number of possible ways that the energy of a system can be distributed; related to the freedom of the system’s particles to move and the number of ways they can be arranged. enzyme (p. 829) A biological catalyst. equilibrium constant (p. 599) K eq is the numerical value that describes the ratio of product concentrations to reactant concentrations, with each raised to the power corresponding to its coefficient in the balanced equation. equivalence point (p. 661) The point at which the moles of H + ions from the acid equals moles of OH - ions from the base. error (p. 48) The difference between an experimental value and an accepted value ester (p. 799) An organic compound with a carboxyl group in which the hydrogen of the hydroxyl group is replaced by an alkyl group; may be volatile and sweet-smelling and is polar. ether (p. 794) An organic compound that contains an oxygen atom bonded to two carbon atoms. evaporation (p. 426) The process in which vaporization occurs only at the surface of a liquid. excess reactant (p. 379) A reactant that remains after a chemical reaction stops. exothermic (p. 247) A chemical reaction or process in which more energy is released than is required to break bonds in the initial reactants. experiment (p. 14) A set of controlled observations that test a hypothesis. extensive property (p. 73) A physical property, such as mass, length, and volume, that is dependent upon the amount of substance present.
F fatty acid (p. 835) A long-chain carboxylic acid that usually has between 12 and 24 carbon atoms and can be saturated (no double bonds), or unsaturated (one or more double bonds).
1014 Glossary/Glosario
ácido graso (pág. 835) Ácido carboxílico de cadena larga que tiene generalmente entre 12 y 24 átomos de carbono; puede ser saturado (sin enlaces dobles) o insaturado o no saturado (con uno o más enlaces dobles).
Glossary/Glosario fermentation/fermentación
group/grupo
fermentation (p. 847) The process in which glucose is broken down in the absence of oxygen, producing either ethanol, carbon dioxide, and energy (alcoholic fermentation) or lactic acid and energy (lactic acid fermentation). filtration (p. 82) A technique that uses a porous barrier to separate a solid from a liquid. formula unit (p. 218) The simplest ratio of ions represented in an ionic compound. fractional distillation (p. 747) The process by which petroleum can be separated into simpler components, called fractions, as they condense at different temperatures.
fermentación (pág. 847) Proceso en el cual la glucosa es desdoblada en ausencia de oxígeno produciendo etanol, dióxido de carbono y energía (fermentación alcohólica) o ácido láctico y energía (fermentación del ácido láctico). filtración (pág. 82) Técnica que utiliza una barrera porosa para separar un sólido de un líquido. fórmula unitaria (pág. 218) La razón más simple de iones representados en un compuesto iónico. destilación fraccionaria (pág. 747) Proceso mediante el cual se separa el petróleo en componentes más simples llamados fracciones, las cuales se condensan a temperaturas diferentes. energía libre (pág. 546) Energía disponible para hacer trabajo: la diferencia entre el cambio en la entalpía y el producto del cambio de entropía por la temperatura kelvin. punto de congelación (pág. 428) La temperatura a la cual un líquido se convierte en un sólido cristalino. depresión del punto de congelación (pág. 502) Diferencia de temperatura entre el punto de congelación de una solución y el punto de congelación de su disolvente puro. frecuencia (pág. 137) Número de ondas que pasan por un punto dado en un segundo. celda de combustible (pág. 722) Celda voltaica en la cual la oxidación de un combustible, como el gas hidrógeno, se utiliza para producir energía eléctrica. grupo funcional (pág. 786) Átomo o grupo de átomos que siempre reaccionan de cierta manera en una molécula orgánica.
free energy (p. 546) The energy available to do work—the difference between the change in enthalpy and the product of the entropy change and the kelvin temperature. freezing point (p. 428) The temperature at which a liquid is converted into a crystalline solid. freezing-point depression (p. 502) The difference in temperature between a solution’s freezing point and the freezing point of its pure solvent. frequency (p. 137) The number of waves that pass a given point per second. fuel cell (p. 722) A voltaic cell in which the oxidation of a fuel, such as hydrogen gas, is used to produce electric energy. functional group (p. 786) An atom or group of atoms that always reacts in a certain way in an organic molecule.
G galvanization (p. 727) The process in which an iron object is dipped into molten zinc or electroplated with zinc to make the iron more resistant to corrosion. gamma rays (p. 124) High-energy radiation that has no electrical charge and no mass, is not deflected by electric or magnetic fields, usually accompanies alpha and beta radiation, and accounts for most of the energy lost during radioactive decay. gas (p. 72) A form of matter that flows to conform to the shape of its container, fills the container’s entire volume, and is easily compressed. Gay-Lussac’s law (p. 447) States that the pressure of a fixed mass of gas varies directly with the kelvin temperature when the volume remains constant. geometric isomers (p. 766) A category of stereoisomers that results from different arrangements of groups around a double bond. Graham’s law of effusion (p. 404) States that the rate of effusion for a gas is inversely proportional to the square root of its molar mass. graph (p. 55) A visual display of data. ground state (p. 146) The lowest allowable energy state of an atom. group (p. 177) A vertical column of elements in the periodic table arranged in order of increasing atomic number; also called a family.
galvanizado (pág. 727) Proceso en el cual un objeto de hierro en sumergido o galvanizado en zinc para aumentar la resistencia del hierro a la corrosión. rayos gamma (pág. 124) Radiación de alta energía sin carga eléctrica ni masa; no es desviada por campos eléctricos ni magnéticos; acompaña generalmente a la radiación alfa y beta; representa la mayor parte de la energía perdida durante la desintegración radiactiva. gas (pág. 72) Forma de la materia que fluye para adaptarse a la forma de su contenedor, llena el volumen entero del recipiente y se comprime fácilmente. ley de Gay-Lussac (pág. 447) Establece que la presión de una masa dada de gas varía directamente con la temperatura en grados Kelvin cuando el volumen permanece constante. isómeros geométricos (pág. 766) Categoría de estereoisómeros originada por los diversos ordenamientos posibles de grupos alrededor de un enlace doble. ley de efusión de Graham (pág. 404) Establece que la tasa de efusión de un gas es inversamente proporcional a la raíz cuadrada de su masa molar. gráfica (pág. 55) Representación visual de datos. estado base (pág. 146) Estado de energía más bajo posible de un átomo. grupo (pág. 177) Columna vertical de los elementos en la tabla periódica ordenados en sentido creciente según su número atómico; llamado también familia.
Glossary/Glosario 1015
Glossary/Glosario half-cells/semiceldas
Hund’s rule/regla de Hund
H half-cells (p. 710) The two parts of an electrochemical cell in which the separate oxidation and reduction reactions occur. half-life (p. 870) The time required for one-half of a radioisotope’s nuclei to decay into its products. half-reaction (p. 693) One of two parts of a redox reaction—the oxidation half, which shows the number of electrons lost when a species is oxidized, or the reduction half, which shows the number of electrons gained when a species is reduced. halocarbon (p. 787) Any organic compound containing a halogen substituent. halogen (p. 180) A highly reactive group 17 element. halogenation (p. 790) A process by which hydrogen atoms are replaced by halogen atoms. heat (p. 518) A form of energy that flows from a warmer object to a cooler object. heat of solution (p. 492) The overall energy change that occurs during the solution formation process. Heisenberg uncertainty principle (p. 151) States that it is not possible to know precisely both the velocity and the position of a particle at the same time. Henry’s law (p. 496) States that at a given temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas above the liquid. Hess’s law (p. 534) States that if two or more thermochemical equations can be added to produce a final equation for a reaction, then the sum of the enthalpy changes for the individual reactions is the enthalpy change for the final reaction. heterogeneous catalyst (p. 573) A catalyst that exists in a different physical state than the reaction it catalyzes. heterogeneous equilibrium (p. 602) A state of equilibrium that occurs when the reactants and products of a reaction are present in more than one physical state. heterogeneous mixture (p. 81) One that does not have a uniform composition and in which the individual substances remain distinct. homogeneous catalyst (p. 573) A catalyst that exists in the same physical state as the reaction it catalyzes. homogeneous equilibrium (p. 600) A state of equilibrium that occurs when all the reactants and products of a reaction are in the same physical state. homogeneous mixture (p. 81) One that has a uniform composition throughout and always has a single phase; also called a solution. homologous series (p. 751) Describes a series of compounds that differ from one another by a repeating unit. Hund’s rule (p. 157) States that single electrons with the same spin must occupy each equal-energy orbital before additional electrons with opposite spins can occupy the same orbitals.
1016
Glossary/Glosario
semiceldas (pág. 710) Las dos partes de una celda electroquímica en las que ocurren las reacciones separadas de oxidación y reducción. vida media (pág. 870) Tiempo requerido para que la mitad de los núcleos de un radioisótopo se desintegren en sus productos. semirreacción (pág. 693) Una de dos partes de una reacción redox: la correspondiente a la oxidación muestra el número de electrones que se pierden al oxidarse una especie y la correspondiente a la reducción muestra el número de electrones que se ganan al reducirse una especie. halocarbono (pág. 787) Cualquier compuesto orgánico que contiene un sustituyente halógeno. halógeno (pág. 180) Elemento sumamente reactivo del grupo 17. halogenación (pág. 790) Proceso mediante el cual se reemplazan átomos de hidrógeno por átomos de halógeno. calor (pág. 518) Forma de energía que fluye hacia cuerpos más fríos. calor de solución (pág. 492) El cambio global de energía que ocurre durante el proceso de formación de una solución. principio de incertidumbre de Heisenberg (pág. 151) Establece que no es posible saber con precisión y al mismo tiempo la velocidad y la posición de una partícula. ley de Henry (pág. 496) Establece que a una temperatura dada, la solubilidad de un gas en un líquido es directamente proporcional a la presión del gas sobre el líquido. ley de Hess (pág. 534) Establece que si para producir la ecuación final para una reacción se pueden sumar dos o más ecuaciones termoquímicas, entonces la suma de los cambios de entalpía para las reacciones individuales equivale al cambio de entalpía de la reacción final. catalizador heterogéneo (pág. 573) Catalizador que existe en un estado físico diferente al de la reacción que cataliza. equilibrio heterogéneo (pág. 602) Estado de equilibrio que ocurre cuando los reactivos y los productos de una reacción están presentes en más de un estado físico. mezcla heterogénea (pág. 81) Aquella que no tiene una composición uniforme y en la que las sustancias individuales permanecen separadas. catalizador homogéneo (pág. 573) Catalizador que existe en el mismo estado físico de la reacción que cataliza. equilibrio homogéneo (pág. 600) Estado de equilibrio que ocurre cuando todos los reactivos y productos de una reacción están en el mismo estado físico. mezcla homogénea (pág. 81) Aquella que tiene una composición uniforme y siempre tiene una sola fase; también llamada solución. serie homóloga (pág. 751) Describe una serie de compuestos que difieren entre sí por una unidad repetitiva. regla de Hund (pág. 157) Establece que los electrones individuales con igual rotación deben ocupar cada uno orbitales distintos con la misma energía, antes de que electrones adicionales con rotación opuesta puedan ocupar los mismos orbitales.
Glossary/Glosario hybridization/hibridación
intermediate/intermediario
hybridization (p. 262) A process in which atomic orbitals are mixed to form new, identical hybrid orbitals.
hibridación (pág. 262) Proceso mediante el cual se mezclan los orbitales atómicos para formar orbitales híbridos nuevos e idénticos. hidrato (pág. 351) Compuesto que tiene un número específico de moléculas de agua unidas a sus átomos. reacción de hidratación (pág. 804) Reacción de adición en la que se añaden el átomo de hidrógeno y el grupo hidroxilo de una molécula de agua a un enlace doble o triple. hidrocarburo (pág. 745) El compuesto orgánico más simple; está formado sólo por los elementos carbono e hidrógeno. reacción de hidrogenación (pág. 804) Reacción de adición en la que se agrega hidrógeno a los átomos que forman un enlace doble o triple; requiere generalmente de un catalizador. enlace de hidrógeno (pág. 413) Fuerte atracción dipolodipolo entre moléculas que contienen un átomo de hidrógeno unido a un átomo pequeño, sumamente electronegativo. grupo hidroxilo (pág. 792) Un grupo hidrógeno-oxígeno unido covalentemente a un átomo de carbono. hipótesis (pág. 13) Enunciado tentativo y comprobable o predicción acerca de lo que ha sido observado.
hydrate (p. 351) A compound that has a specific number of water molecules bound to its atoms. hydration reaction (p. 804) An addition reaction in which a hydrogen atom and a hydroxyl group from a water molecule add to a double or triple bond. hydrocarbon (p. 745) Simplest organic compound composed only of the elements carbon and hydrogen. hydrogenation reaction (p. 804) An addition reaction in which hydrogen is added to atoms in a double or triple bond; usually requires a catalyst. hydrogen bond (p. 413) A strong dipole-dipole attraction between molecules that contain a hydrogen atom bonded to a small, highly electronegative atom. hydroxyl group (p. 792) An oxygen-hydrogen group covalently bonded to a carbon atom. hypothesis (p. 13) A tentative, testable statement or prediction about what has been observed.
I ideal gas constant (R) (p. 454) An experimentally determined constant whose value in the ideal gas equation depends on the units that are used for pressure. ideal gas law (p. 454) Describes the physical behavior of an ideal gas in terms of pressure, volume, temperature, and number of moles of gas. immiscible (ih MIHS ih bul) (p. 479) Describes two liquids that can be mixed together but separate shortly after you cease mixing them. independent variable (p. 14) In an experiment, the variable that the experimenter plans to change. induced transmutation (p. 875) The process in which nuclei are bombarded with high-velocity charged particles in order to create new elements. inhibitor (p. 571) A substance that slows down the reaction rate of a chemical reaction or prevents a reaction from happening. inner transition metal (p. 180) A type of group B element that is contained in the f-block of the periodic table and is characterized by a filled outermost orbital, and filled or partially filled 4f and 5f orbitals. insoluble (p. 479) Describes a substance that cannot be dissolved in a given solvent. instantaneous rate (p. 578) The rate of decomposition at a specific time, calculated from the rate law, the specific rate constant, and the concentrations of all the reactants. intensive property (p. 73) A physical property that remains the same no matter how much of a substance is present. intermediate (p. 580) A substance produced in one elementary step of a complex reaction and consumed in a subsequent elementary step.
constante de los gases ideales (R) (pág. 454) Constante determinada experimentalmente cuyo valor en la ecuación de los gases ideales depende de las unidades en las que se expresa la presión. ley de los gases ideales (pág. 454) Describe el comportamiento físico de un gas ideal en términos de la presión, el volumen, la temperatura y el número de moles del gas. inmiscible (pág. 479) Describe dos líquidos que se pueden mezclar entre sí, pero que se separan poco después de que se cesa de mezclarlos. variable independiente (pág. 14) La variable de un experimento que el experimentador piensa cambiar. transmutación inducida (pág. 875) Proceso en cual se bombardean núcleos con partículas cargadas de alta velocidad para crear elementos nuevos. inhibidor (pág. 571) Sustancia que reduce la tasa de reacción de una reacción química o evita que ésta suceda. metal de transición interna (pág. 180) Tipo de elemento del grupo B contenido dentro del bloque F de la tabla periódica; se caracteriza por tener el orbital más externo lleno y los orbitales 4f y 5f parcialmente llenos. insoluble (pág. 479) Describe una sustancia que no se puede disolver en un disolvente dado. velocidad instantánea (pág. 578) La tasa de descomposición en un tiempo dado, se calcula a partir de la ley de velocidad de la reacción, la constante de velocidad de la reacción y las concentraciones de los reactivos. propiedad intensiva (pág. 73) Propiedad física que permanece igual sea cual sea la cantidad de sustancia presente. intermediario (pág. 580) Sustancia producida en un paso elemental de una reacción compleja y que es consumida en un paso elemental subsecuente. Glossary/Glosario 1017
Glossary/Glosario ion/ion
law of conservation of mass/ley de conservación de la masa
ion (p. 189) An atom or bonded group of atoms with a positive or negative charge. ionic bond (p. 210) The electrostatic force that holds oppositely charged particles together in an ionic compound.
ion (pág. 189) Átomo o grupo de átomos unidos que tienen carga positiva o negativa. enlace iónico (pág. 210) Fuerza electrostática que mantiene unidas las partículas con carga opuesta en un compuesto iónico. compuestos iónicos (pág. 210) Compuestos que contienen enlaces iónicos. energía de ionización (pág. 191) Energía que se requiere para separar un electrón de un átomo en estado gaseoso; generalmente aumenta al moverse de izquierda a derecha a lo largo de un período de la tabla periódica y disminuye al moverse hacia abajo a lo largo de un grupo. radiación ionizante (pág. 885) Radiación que posee suficiente energía como para ionizar la materia con la que choca. constante del producto iónico del agua (pág. 650) Valor de la expresión de la constante de equilibrio de la ionización del agua. isómeros (pág. 765) Dos o más compuestos que tienen la misma fórmula molecular pero poseen estructuras moleculares diferentes. isótopos (pág. 117) Átomos del mismo elemento con diferente número de neutrones.
ionic compounds (p. 210) Compounds that contain ionic bonds ionization energy (p. 191) The energy required to remove an electron from a gaseous atom; generally increases in moving from left-to-right across a period and decreases in moving down a group ionizing radiation (p. 885) Radiation that is energetic enough to ionize matter it collides with. ion product constant for water (p. 650) The value of the equilibrium constant expression for the self-ionization of water. isomers (p. 765) Two or more compounds that have the same molecular formula but have different molecular structures. isotopes (p. 117) Atoms of the same element with different numbers of neutrons.
J joule (p. 518) The SI unit of heat and energy.
julio (pág. 518) La unidad SI de medida del calor y la energía.
K kelvin (p. 35) The SI base unit of temperature. ketone (p. 797) An organic compound in which the carbon of the carbonyl group is bonded to two other carbon atoms. kilogram (p. 34) The SI base unit for mass. kinetic-molecular theory (p. 402) Describes the behavior of gases in terms of particles in motion; makes several assumptions about size, motion, and energy of gas particles. lanthanide series (p. 180) In the periodic table, the f-block elements from period 6 that follow the element lanthanum. lattice energy (p. 216) The energy required to separate one mole of the ions of an ionic compound, which is directly related to the size of the ions bonded and is also affected by the charge of the ions. law of chemical equilibrium (p. 599) States that at a given temperature, a chemical system may reach a state in which a particular ratio of reactant and product concentrations has a constant value. law of conservation of energy (p. 517) States that in any chemical reaction or physical process, energy may change from one form to another, but it is neither created nor destroyed. law of conservation of mass (p. 77) States that mass is neither created nor destroyed during a chemical reaction but is conserved. 1018
Glossary/Glosario
kelvin (pág. 35) Unidad básica de temperatura del SI. cetona (pág. 797) Compuesto orgánico en el que el carbono del grupo carbonilo está unido a otros dos átomos de carbono. kilogramo (pág. 34) Unidad básica de masa del SI. teoría cinético-molecular (pág. 402) Explica el comportamiento de los gases en términos de partículas en movimiento; hace varias suposiciones acerca del tamaño, movimiento y energía de las partículas de gas.
L
serie de los lantánidos (pág. 180) Los elementos del bloque F del período 6 de la tabla periódica que siguen al elemento lantano. energía reticular (pág. 216) Energía que se requiere para separar un mol de los iones de un compuesto iónico; está directamente relacionada con el tamaño de los iones enlazados y es afectada también por la carga de los iones. ley del equilibrio químico (pág. 599) Establece que a una temperatura dada, un sistema químico puede alcanzar un estado en el que la razón particular de las concentraciones del reactivo y el producto tiene un valor constante. ley de conservación de la energía (pág. 517) Establece que en toda reacción química y en todo proceso físico la energía puede cambiar de una forma a otra, pero no puede ser creada ni destruida. ley de conservación de la masa (pág. 77) Establece que durante una reacción química la masa no se crea ni se destruye, sino que se conserva.
Glossary/Glosario law of definite proportions/ley de las proporciones definidas
meter/metro
law of definite proportions (p. 87) States that, regardless of the amount, a compound is always composed of the same elements in the same proportion by mass.
ley de las proporciones definidas (pág. 87) Establece que, independientemente de la cantidad, un compuesto siempre se compone de los mismos elementos en la misma proporción por masa. ley de las proporciones múltiples (pág. 89) Establece que cuando la combinación de los mismos elementos forma compuestos diferentes, una masa dada de uno de los elementos se combina con masas diferentes del otro elemento de acuerdo con una razón que se expresa en números enteros pequeños. Principio de Le Châtelier (pág. 607) Establece que si se aplica una perturbación a un sistema en equilibrio, el sistema cambia en la dirección que reduce la perturbación.
law of multiple proportions (p. 89) States that when different compounds are formed by the combination of the same elements, different masses of one element combine with the same mass of the other element in a ratio of small whole numbers. Le Châtelier’s principle (luh SHAHT uh lee yays • PRIHN sih puhl) (p. 607) States that if a stress is applied to a system at equilibrium, the system shifts in the direction that relieves the stress. Lewis model (p. 641) An acid is an electron-pair acceptor and a base is an electro-pair donor.
modelo de Lewis (pág. 641) Un ácido es un receptor de pares de electrones y una base es un donante de pares de electrones. estructura de Lewis (pág. 242) Modelo que utiliza diagramas de puntos de electrones para mostrar la disposición de los electrones en las moléculas. Los pares de puntos o líneas representan pares de electrones enlazados. reactivo limitante (pág. 379) Reactivo que se consume completamente durante una reacción química, limita la duración de la reacción y determina la cantidad del producto. lípidos (pág. 835) Moléculas biológicas no polares de gran tamaño que varían en estructura, almacenan energía en los seres vivos y conforman la mayor parte de la estructura de las membranas celulares. líquido (pág. 71) Forma de materia que fluye, tiene volumen constante y toma la forma de su envase. litro (pág. 35) Unidad de volumen del sistema métrico; equivale a un decímetro cúbico.
Lewis structure (p. 242) A model that uses electron-dot structures to show how electrons are arranged in molecules. Pairs of dots or lines represent bonding pairs. limiting reactant (p. 379) A reactant that is totally consumed during a chemical reaction, limits the extent of the reaction, and determines the amount of product. lipids (p. 835) Large, nonpolar biological molecules that vary in structure, store energy in living organisms, and make up most of the structure of cell membranes. liquid (p. 71) A form of matter that flows, has constant volume, and takes the shape of its container. liter (p. 35) The metric unit for volume equal to one cubic decimeter.
M mass (p. 9) A measure that reflects the amount of matter. mass defect (p. 877) The difference in mass between a nucleus and its component nucleons. mass number (p. 117) The number after an element’s name, representing the sum of its protons and neutrons. matter (p. 4) Anything that has mass and takes up space. melting point (p. 426) For a crystalline solid, the temperature at which the forces holding a crystal lattice together are broken and it becomes a liquid. metabolism (p. 844) The sum of the many chemical reactions that occur in living cells. metal (p. 177) An element that is solid at room temperature, a good conductor of heat and electricity, and generally is shiny; most metals are ductile and malleable. metallic bond (p. 225) The attraction of a metallic cation for delocalized electrons. metalloid (p. 181) An element that has physical and chemical properties of both metals and nonmetals. meter (p. 33) The SI base unit for length.
masa (pág. 9) Medida que refleja la cantidad de materia. defecto másico (pág. 877) La diferencia de masa entre un núcleo y los nucleones que lo componen. número de masa (pág. 117) El número que va después del nombre de un elemento; representa la suma de sus protones y neutrones. materia (pág. 4) Cualquier cosa que tiene masa y ocupa espacio. punto de fusión (pág. 426) Para un sólido cristalino, es la temperatura a la que se rompen las fuerzas que mantienen unida la red cristalina y el sólido se convierte en líquido. metabolismo (pág. 844) El conjunto de las numerosas reacciones químicas que ocurren en las células vivas. metal (pág. 177) Elemento sólido a temperatura ambiente, es buen conductor de calor y electricidad y generalmente es brillante; la mayoría de los metales son dúctiles y maleables. enlace metálico (pág. 225) Atracción de un catión metálico por los electrones deslocalizados. metaloide (pág. 181) Elementos que tienen las propiedades físicas y químicas de metales y de no metales. metro (pág. 33) Unidad básica de longitud del SI.
Glossary/Glosario 1019
Glossary/Glosario method of initial rates/método de las velocidades iniciales
neutralization reaction/reacción de neutralización
method of initial rates (p. 576) Determines the reaction order by comparing the initial rates of a reaction carried out with varying reactant concentrations.
método de las velocidades iniciales (pág. 576) Determina el orden de la reacción al comparar las velocidades iniciales de una reacción realizada con diversas concentraciones de reactivo. miscible (pág. 479) Describe dos líquidos que son solubles entre sí. mezcla (pág. 80) Combinación física de dos o más sustancias puras en cualquier proporción en la que cada sustancia retiene sus propiedades individuales; las sustancias se pueden separar por medios físicos. modelo (pág. 10) Explicación matemática, verbal o visual de datos recolectados en muchos experimentos. molalidad (pág. 487) La razón del número de moles de soluto disueltos en un kilogramo de disolvente; también se conoce como concentración molal. entalpía (calor) molar de fusión (pág. 530) Cantidad requerida de calor para fundir un mol de una sustancia sólida. entalpía (calor) molar de vaporización (pág. 530) Cantidad requerida de calor para vaporizar un mol de un líquido. molaridad (pág. 482) Número de moles de soluto disueltos por litro de solución; también se conoce como concentración molar. masa molar (pág. 326) Masa en gramos de un mol de cualquier sustancia pura. volumen molar (pág. 452) Para un gas, es el volumen que ocupa un mol a 0.00°C y una presión de 1.00 atm. mol (pág. 321) Unidad básica del SI para medir la cantidad de una sustancia, se abrevia mol; el número de átomos de carbono en 12 g exactos de carbono puro; un mol es la cantidad de sustancia pura que contiene 6.02 × 10 23 partículas representativas. fórmula molecular (pág. 346) Fórmula que especifica el número real de átomos de cada elemento en una molécula de la sustancia. molécula (pág. 241) Se forma cuando dos o más átomos se unen covalentemente y posee menor energía potencial que los átomos que la conforman. fracción molar (pág. 488) La razón del número de moles de soluto en solución al número total de moles de soluto y disolvente. razón molar (pág. 371) En una ecuación equilibrada, se refiere a la razón entre el número de moles de dos sustancias cualesquiera. ion poliatómico (pág. 218) Ion formado de un sólo átomo. monómero (pág. 810) Molécula a partir de la cual se forma un polímero. monosacáridos (pág. 832) Los carbohidratos más simples; se llaman también azúcares simples.
miscible (p. 479) Describes two liquids that are soluble in each other. mixture (p. 80) A physical blend of two or more pure substances in any proportion in which each substance retains its individual properties; can be separated by physical means. model (p. 10) A visual, verbal, and/or mathematical explanation of data collected from many experiments. molality (p. 487) The ratio of the number of moles of solute dissolved in one kilogram of solvent; also known as molal concentration. molar enthalpy (heat) of fusion (p. 530) The amount of heat required to melt one mole of a solid substance. molar enthalpy (heat) of vaporization (p. 530) The amount of heat required to vaporize one mole of a liquid. molarity (p. 482) The number of moles of solute dissolved per liter of solution; also known as molar concentration. molar mass (p. 326) The mass in grams of one mole of any pure substance. molar volume (p. 452) For a gas, the volume that one mole occupies at 0.00°C and 1.00 atm pressure. mole (p. 321) The SI base unit used to measure the amount of a substance, abbreviated mol; the number of carbon atoms in exactly 12 g of pure carbon; one mole is the amount of a pure substance that contains 6.02 × 10 23 representative particles. molecular formula (p. 346) A formula that specifies the actual number of atoms of each element in one molecule of a substance. molecule (p. 241) Forms when two or more atoms covalently bond and is lower in potential energy than its constituent atoms. mole fraction (p. 488) The ratio of the number of moles of solute in solution to the total number of moles of solute and solvent. mole ratio (p. 371) In a balanced equation, the ratio between the numbers of moles of any two substances. monatomic ion (p. 218) An ion formed from only one atom. monomer (p. 810) A molecule from which a polymer is made. monosaccharides (p. 832) The simplest carbohydrates, also called simple sugars.
N net ionic equation (p. 301) An ionic equation that includes only the particles that participate in the reaction. neutralization reaction (p. 659) A reaction in which an acid and a base react in aqueous solution to produce a salt and water.
1020
Glossary/Glosario
ecuación iónica neta (pág. 301) Ecuación iónica que incluye sólo las partículas que participan en la reacción. reacción de neutralización (pág. 659) Reacción en la que un ácido y una base reaccionan en una solución acuosa para producir sal y agua.
Glossary/Glosario neutron/neutrón
osmotic pressure/presión osmótica
neutron (p. 113) A neutral, subatomic particle in an atom’s nucleus that has a mass nearly equal to that of a proton.
neutrón (pág. 113) Partícula subatómica neutral en el núcleo de un átomo que tiene una masa casi igual a la de un protón. gas noble (pág. 180) Elemento extremadamente no reactivo del grupo 18. no metales (pág. 180) Elementos que generalmente son gases o sólidos quebradizos, sin brillo y malos conductores de calor y electricidad. ecuación nuclear (pág. 123) Tipo de ecuación que muestra el número atómico y el número de masa de las partículas involucradas. fisión nuclear (pág. 883) Ruptura de un núcleo en fragmentos más pequeños y más estables; se acompaña de una gran liberación de energía. fusión nuclear (pág. 878) Proceso de unión de núcleos atómicos pequeños en un solo núcleo más grande y más estable. reacción nuclear (pág. 122) Reacción que implica un cambio en el núcleo de un átomo. ácido nucleico (pág. 840) Polímero biológico que contiene nitrógeno y que participa en el almacenamiento y transmisión de información genética. nucleones (pág. 865) Los protones de carga positiva y los neutrones sin carga que contiene el núcleo de un átomo. nucleótido (pág. 840) Monómeros que forman los ácidos nucleicos; consisten de una base nitrogenada, un grupo fosfato inorgánico y un azúcar monosacárido de cinco carbonos. núcleo (pág. 112) El diminuto y denso centro con carga positiva de un átomo; contiene protones con su carga positiva y neutrones sin carga.
noble gas (p. 180) An extremely unreactive group 18 element. nonmetals (p. 180) Elements that are generally gases or dull, brittle solids that are poor conductors of heat and electricity. nuclear equation (p. 123) A type of equation that shows the atomic number and mass number of the particles involved. nuclear fission (p. 883) The splitting of a nucleus into smaller, more stable fragments, accompanied by a large release of energy. nuclear fusion (p. 878) The process of binding smaller atomic nuclei into a single, larger, and more stable nucleus. nuclear reaction (p. 122) A reaction that involves a change in the nucleus of an atom. nucleic acid (p. 840) A nitrogen-containing biological polymer that is involved in the storage and transmission of genetic information. nucleons (p. 865) The positively charged protons and neutral neutrons contained in an atom’s nucleus. nucleotide (p. 840) The monomer that makes up a nucleic acid; consists of a nitrogen base, an inorganic phosphate group, and a five-carbon monosaccharide sugar. nucleus (p. 112) The extremely small, positively charged, dense center of an atom that contains positively charged protons and neutral neutrons.
O octet rule (p. 193) States that atoms lose, gain, or share electrons in order to acquire the stable electron configuration of a noble gas. optical isomers (p. 768) Result from different arrangements of four different groups around the same carbon atom and have the same physical and chemical properties except in chemical reactions where chirality is important. optical rotation (p. 769) An effect that occurs when polarized light passes through a solution containing an optical isomer and the plane of polarization is rotated to the right by a d-isomer or to the left by an l-isomer. organic compounds (p. 745) All compounds that contain carbon with the primary exceptions of carbon oxides, carbides, and carbonates, all of which are considered inorganic. osmosis (p. 504) The diffusion of solvent particles across a semipermeable membrane from an area of higher solvent concentration to an area of lower solvent concentration. osmotic pressure (p. 504) The pressure caused when water molecules move into or out of a solution.
regla del octeto (pág. 193) Establece que los átomos pierden, ganan o comparten electrones para adquirir la configuración electrónica estable de un gas noble. isómeros ópticos (pág. 768) Son resultado de los distintos ordenamientos que adquieren los cuatro grupos diferentes que rodean a un mismo átomo de carbono; todos poseen las mismas propiedades químicas y físicas, excepto en las reacciones químicas donde la quiralidad es importante. rotación óptica (pág. 769) Efecto que ocurre cuando la luz polarizada atraviesa una solución que contiene un isómero óptico y el plano de polarización rota a la derecha en los isómeros dextrógiros (-d) y a la izquierda en los isómeros levógiros (-l). compuestos orgánicos (pág. 745) Todo compuesto que contiene carbono; las excepciones más importantes son los óxidos de carbono, los carburos y los carbonatos, todos los cuales se consideran inorgánicos. osmosis (pág. 504) Difusión de partículas de disolvente a través de una membrana semipermeable hacia el área donde la concentración del disolvente es menor. presión osmótica (pág. 504) La presión que causan las moléculas de agua al entrar o salir de una solución.
Glossary/Glosario 1021
Glossary/Glosario oxidation/oxidación
periodic table/tabla periódica
oxidation (p. 681) The loss of electrons from the atoms of a substance; increases an atom’s oxidation number.
oxidación (pág. 681) Pérdida de electrones de los átomos de una sustancia; aumenta el número de oxidación de un átomo. número de oxidación (pág. 219) La carga positiva o negativa de un ion monoatómico. método del número de oxidación (pág. 689) Técnica que sirve para equilibrar las reacciones redox más difíciles; se basa en el hecho de que el número de electrones transferidos por los átomos debe ser igual al número de electrones aceptados por otros átomos. reacción de oxidación-reducción (pág. 680) Toda reacción química en la que sucede transferencia de electrones de un átomo a otro; también se llama reacción redox. agente oxidante (pág. 683) Sustancia que oxida otra sustancia al aceptar sus electrones. oxiácido (pág. 250) Todo ácido que contiene hidrógeno y un oxianión. oxianión (pág. 222) Ion poliatómico compuesto de un elemento, generalmente un no metal, unido a uno o a más átomos de oxígeno.
oxidation number (p. 219) The positive or negative charge of a monatomic ion. oxidation-number method (p. 689) The technique that can be used to balance more difficult redox reactions, based on the fact that the number of electrons transferred from atoms must equal the number of electrons accepted by other atoms. oxidation-reduction reaction (p. 680) Any chemical reaction in which electrons are transferred from one atom to another; also called a redox reaction. oxidizing agent (p. 683) The substance that oxidizes another substance by accepting its electrons. oxyacid (p. 250) Any acid that contains hydrogen and an oxyanion. oxyanion (ahk see AN i ahn) (p. 222) A polyatomic ion composed of an element, usually a nonmetal, bonded to one or more oxygen atoms.
P parent chain (p. 753) The longest continuous chain of carbon atoms in a branched-chain alkane, alkene, or alkyne. pascal (p. 407) The SI unit of pressure; one pascal (Pa) is equal to a force of one newton per square meter. Pauli exclusion principle (p. 157) States that a maximum of two electrons can occupy a single atomic orbital but only if the electrons have opposite spins. penetrating power (p. 864) The ability of radiation to pass through matter. peptide (p. 828) A chain of two or more amino acids linked by peptide bonds. peptide bond (p. 828) The amide bond that joins two amino acids. percent by mass (p. 87) A percentage determined by the ratio of the mass of each element to the total mass of the compound. percent composition (p. 342) The percent by mass of each element in a compound. percent error (p. 48) The ratio of an error to an accepted value. percent yield (p. 386) The ratio of actual yield (from an experiment) to theoretical yield (from stoichiometric calculations) expressed as a percent. period (p. 177) A horizontal row of elements in the modern periodic table. periodic law (p. 176) States that when the elements are arranged by increasing atomic number, there is a periodic repetition of their properties. periodic table (p. 85) A chart that organizes all known elements into a grid of horizontal rows (periods) and vertical columns (groups or families) arranged by increasing atomic number.
1022 Glossary/Glosario
cadena principal (pág. 753) La cadena continua más larga de átomos de carbono en un alcano, un alqueno o un alquino ramificados. pascal (pág. 407) La unidad SI de presión; un pascal (Pa) es igual a una fuerza de un newton por metro cuadrado. principio de exclusión de Pauli (pág. 157) Establece que cada orbital atómico sólo puede ser ocupado por un máximo de dos electrones, pero sólo si los electrones tienen giros opuestos. poder de penetración (pág. 864) La capacidad de la radiación de atravesar la materia. péptido (pág. 828) Cadena de dos o más aminoácidos unidos por enlaces peptídicos. enlace peptídico (pág. 828) Enlace amida que une dos aminoácidos. porcentaje en masa (pág. 87) Porcentaje determinado por la razón de la masa de cada elemento respecto a la masa total del compuesto. composición porcentual (pág. 342) Porcentaje en masa de cada elemento en un compuesto. porcentaje de error (pág. 48) La razón del error al valor aceptado. porcentaje de rendimiento (pág. 386) Razón del rendimiento real (de un experimento) al rendimiento teórico (de cálculos estequiométricos) expresada como porcentaje. período (pág. 177) Fila horizontal de elementos en la tabla periódica moderna. ley periódica (pág. 176) Establece que al ordenar los elementos por número atómico en sentido ascendente, existe una repetición periódica de sus propiedades. tabla periódica (pág. 85) Tabla en la que se organizan todos los elementos conocidos en una cuadrícula de filas horizontales (períodos) y columnas verticales (grupos o familias), ordenados según su número atómico en sentido ascendente.
Glossary/Glosario pH/pH
pH (p. 652) The negative logarithm of the hydrogen ion concentration of a solution; acidic solutions have pH values between 0 and 7, basic solutions have values between 7 and 14, and a solution with a pH of 7.0 is neutral. phase change (p. 76) A transition of matter from one state to another. phase diagram (p. 429) A graph of pressure versus temperature that shows which phase a substance exists in under different conditions of temperature and pressure. phospholipid (p. 838) A triglyceride in which one of the fatty acids is replaced by a polar phosphate group photoelectric effect (p. 142) A phenomenon in which photoelectrons are emitted from a metal’s surface when light of a certain frequency shines on the surface. photon (p. 143) A particle of electromagnetic radiation with no mass that carries a quantum of energy. photosynthesis (p. 846) The complex process that converts energy from sunlight to chemical energy in the bonds of carbohydrates. physical change (p. 76) A type of change that alters the physical properties of a substance but does not change its composition. physical property (p. 73) A characteristic of matter that can be observed or measured without changing the sample’s composition—or example, density, color, taste, hardness, and melting point. pi bond (p. 245) A bond that is formed when parallel orbitals overlap to share electrons. Planck’s constant (h) (p. 142) 6.626 × 10 -34 J·s, where J is the symbol for the joule. plastic (p. 789) A polymer that can be heated and molded while relatively soft. pOH (p. 652) The negative logarithm of the hydroxide ion concentration of a solution; a solution with a pOH above 7.0 is acidic, a solution with a pOH below 7.0 is basic, and a solution with a pOH of 7.0 is neutral. polar covalent bond (p. 266) A type of bond that forms when electrons are not shared equally. polyatomic ion (p. 221) An ion made up of two or more atoms bonded together that acts as a single unit with a net charge. polymerization reaction (p. 810) A reaction in which monomer units are bonded together to form a polymer. polymers (p. 809) Large molecules formed by combining many repeating structural units (monomers); are synthesized through addition or condensation reactions. polysaccharide (p. 833) A complex carbohydrate, which is a polymer of simple sugars that contains 12 or more monomer units. positron (p. 868) A particle that has the same mass as an electron but an opposite charge. positron emission (p. 868) A radioactive decay process in which a proton in the nucleus is converted into a neutron and a positron, and then the positron is emitted from the nucleus.
positron emission/emisión de positrones
pH (pág. 652) El logaritmo negativo de la concentración de iones hidrógeno de una solución; las soluciones ácidas poseen valores de pH entre 0 y 7, las soluciones básicas tienen valores entre 7 y 14 y una solución con un pH de 7.0 es neutra. cambio de fase (pág. 76) La transición de la materia de un estado a otro. diagrama de fase (pág. 429) Gráfica de presión contra temperatura que muestra la fase en la que se encuentra una sustancia bajo distintas condiciones de temperatura y presión. fosfolípido (pág. 838) Triglicérido en el que uno de los ácidos grasos es sustituido por un grupo fosfato polar. efecto fotoeléctrico (pág. 142) Fenómeno en el cual la superficie de un metal emiten fotoelectrones cuando una luz de cierta frecuencia ilumina su superficie. fotón (pág. 143) Partícula de radiación electromagnética sin masa que transporta un cuanto de energía. fotosíntesis (pág. 846) Proceso complejo que convierte la energía de la luz solar en la energía química de los enlaces en carbohidratos. cambio físico (pág. 76) Tipo de cambio que altera las propiedades físicas de una sustancia pero no cambia su composición. propiedad física (pág. 73) Característica de la materia que se puede observar o medir sin cambiar la composición de una muestra de la materia; por ejemplo, la densidad, el color, el sabor, la dureza y el punto de fusión. enlace pi (pág. 245) Enlace que se forma cuando orbitales paralelos se superponen para compartir electrones. constante de Planck (h) (pág. 142) 6.626 × 10 -34 J·s, donde J es el símbolo de julios. plástico (pág. 789) Polímero que se puede calentar y moldear mientras esté relativamente suave. pOH (pág. 652) El logaritmo negativo de la concentración de iones hidróxido de una solución; una solución con un pOH mayor que 7.0 es ácida, una solución con un pOH menor que 7.0 es básica y una solución con un pOH de 7.0 es neutra. enlace covalente polar (pág. 266) Tipo de enlace que se forma cuando los electrones no se comparten de manera equitativa. ion poliatómico (pág. 221) Ion compuesto de dos o más átomos unidos entre sí que actúan como una unidad con carga neta. reacción de polimerización (pág. 810) Reacción en la cual los monómeros se unen para formar un polímero. polímeros (pág. 809) Moléculas grandes formadas por la unión de muchas unidades estructurales repetidas (monómeros); se sintetizan a través de reacciones de adición o de condensación. polisacárido (pág. 833) Carbohidrato complejo; es un polímero de azúcares simples que contiene 12 ó más monómeros. positrón (pág. 868) Partícula que tiene la misma masa que un electrón pero carga opuesta. emisión de positrones (pág. 868) Proceso de desintegración radiactiva en el que un protón del núcleo se convierte en un neutrón y un positrón y luego el positrón es emitido del núcleo. Glossary/Glosario 1023
Glossary/Glosario precipitate/precipitado
radiochemical dating/datación radioquímica
precipitate (p. 296) A solid produced during a chemical reaction in a solution. precision (p. 47) Refers to how close a series of measurements are to one another; precise measurements show little variation over a series of trials but might not be accurate. pressure (p. 406) Force applied per unit area. primary battery (p. 720) A type of battery that produces electric energy by redox reactions that are not easily reversed, delivers current until the reactants are gone, and then is discarded. principal energy levels (p. 153) The major energy levels of an atom. principal quantum number (n) (p. 153) Assigned by the quantum mechanical model to indicate the relative sizes and energies of atomic orbitals. product (p. 283) A substance formed during a chemical reaction. protein (p. 826) An organic polymer made up of animo acids linked together by peptide bonds that can function as an enzyme, transport important chemical substances, or provide structure in organisms. proton (p. 113) A subatomic particle in an atom’s nucleus that has a positive charge of 1+. pure research (p. 17) A type of scientific investigation that seeks to gain knowledge for the sake of knowledge itself.
precipitado (pág. 296) Sólido que se produce durante una reacción química en una solución. precisión (pág. 47) Se refiere a la cercanía de una serie de medidas entre sí; las medidas precisas muestran poca variación durante una serie de pruebas, incluso si no son exactas. presión (pág. 406) Fuerza aplicada por unidad de área. batería primaria (pág. 720) Tipo de batería que produce energía eléctrica por reacciones redox que no son fácilmente reversibles, produce corriente hasta que se agotan los reactivos y luego se desecha. niveles energéticos principales (pág. 153) Los niveles energéticos más importantes de un átomo. número cuántico principal (pág. 153) Asignado por el modelo mecánico cuántico para indicar el tamaño y la energía relativas de los orbitales atómicos. producto (pág. 283) Sustancia que se forma durante una reacción química. proteína (pág. 826) Polímero orgánico compuesto de aminoácidos unidos por enlaces peptídicos; puede funcionar como enzima, transportar sustancias químicas importantes o ser parte de la estructura en los organismos. protón (pág. 113) Partícula subatómica en el núcleo de un átomo con carga positiva 1+. investigación pura (pág. 17) Tipo de investigación científica que busca obtener conocimiento sin otro interés que satisfacer el interés científico.
Q qualitative data (p. 13) Information describing color, odor, shape, or some other physical characteristic. quantitative data (p. 13) Numerical information describing how much, how little, how big, how tall, or how fast. quantum (p. 141) The minimum amount of energy that can be gained or lost by an atom. quantum mechanical model of the atom (p. 152) An atomic model in which electrons are treated as waves; also called the wave mechanical model of the atom.
datos cualitativos (pág. 13) Información que describe el color, el olor, la forma o alguna otra característica física. datos cuantitativos (pág. 13) Información numérica que describe cantidad, tamaño o rapidez. cuanto (pág. 141) La cantidad mínima de energía que puede ganar o perder un átomo. modelo mecánico cuántico del átomo (pág. 152) Modelo atómico en el cual los electrones se estudian como si fueran ondas; también se denomina modelo mecánico ondulatorio del átomo. número cuántico (pág. 146) Número que se asigna a cada órbita de un electrón.
quantum number (p. 146) The number assigned to each orbit of an electron.
R radiation (p. 122) The rays and particles—alpha and beta particles and gamma rays—that are emitted by radioactive materials. radioactive decay (p. 122) A spontaneous process in which unstable nuclei lose energy by emitting radiation. radioactive decay series (p. 870) A series of nuclear reactions that starts with an unstable nucleus and results in the formation of a stable nucleus. radioactivity (p. 122) The process in which some substances spontaneously emit radiation. radiochemical dating (p. 873) The process that is used to determine the age of an object by measuring the amount of a certain radioisotope remaining in that object. 1024 Glossary/Glosario
radiación (pág. 122) Los rayos y partículas que emiten los materiales radiactivos (partículas alfa y beta y rayos gamma). desintegración radiactiva (pág. 122) Proceso espontáneo en el que los núcleos inestables pierden energía al emitir radiación. serie de desintegración radiactiva (pág. 870) Serie de reacciones nucleares que empieza con un núcleo inestable y produce la formación de un núcleo estable. radiactividad (pág. 122) Proceso en el que algunas sustancias emiten radiación espontáneamente. datación radioquímica (pág. 873) Proceso que sirve para determinar la edad de un objeto al medir la cantidad restante de cierto radioisótopo en dicho objeto.
Glossary/Glosario radioisotopes/radioisótopos
salt hydrolysis/hidrólisis de sales
radioisotopes (p. 861) Isotopes of atoms that have unstable nuclei and emit radiation to attain more stable atomic configurations. radiotracer (p. 887) An isotope that emits non-ionizing radiation and is used to signal the presence of an element or specific substance; can be used to analyze complex chemical reactions mechanisms and to diagnose disease.
radioisótopos (pág. 861) Isótopos de átomos que poseen núcleos inestables y emiten radiación para obtener una configuración atómica más estable. radiolocalizador (pág. 887) Isótopo que emite radiación no ionizante y se utiliza para señalar la presencia de un elemento o sustancia específica; se usan para analizar los mecanismos de reacciones químicas complejas y para diagnosticar enfermedades. paso determinante de la velocidad de reacción (pág. 581) El paso elemental más lento en una reacción compleja; limita la velocidad instantánea de la reacción general. ley de velocidad de la reacción (pág. 574) Relación matemática entre la velocidad de una reacción química a una temperatura dada y las concentraciones de los reactivos. reactivo (pág. 283) Sustancia inicial en una reacción química. mecanismo de reacción (pág. 580) Sucesión completa de pasos elementales que componen una reacción compleja. orden de la reacción (pág. 575) Describe cómo la concentración de un reactivo afecta la velocidad de la reacción para dicho reactivo. tasa de reacción (pág. 561) Cambio en la concentración de un reactivo o producto por unidad de tiempo, generalmente se calcula y expresa en moles por litro por segundo. reacción redox (pág. 680) Una reacción de oxidorreducción. agente reductor (pág. 683) Sustancia que reduce otra sustancia al perder electrones. reducción (pág. 681) Ganancia de electrones por los átomos de una sustancia; reduce el número de oxidación de los átomos. potencial de reducción (pág. 711) Tendencia de una sustancia a ganar electrones. elementos representativos (pág. 177) Elementos de los grupos 1, 2 y 13 a 18 de la tabla periódica moderna; poseen una gran variedad de propiedades químicas y físicas. resonancia (pág. 258) Condición que ocurre cuando existe más de una estructura válida de Lewis para una misma molécula. reacción reversible (pág. 595) Reacción que puede ocurrir en direcciones normal e inversa; produce un estado de equilibrio donde las reacciones en sentido normal e inverso ocurren a tasas iguales, ocasionando que la concentración de reactivos y productos permanezcan constantes.
rate-determining step (p. 581) The slowest elementary step in a complex reaction; limits the instantaneous rate of the overall reaction. rate law (p. 574) The mathematical relationship between the rate of a chemical reaction at a given temperature and the concentrations of reactants. reactant (p. 283) The starting substance in a chemical reaction. reaction mechanism (p. 580) The complete sequence of elementary steps that make up a complex reaction. reaction order (p. 575) For a reactant, describes how the rate is affected by the concentration of that reactant. reaction rate (p. 561) The change in concentration of a reactant or product per unit time, generally calculated and expressed in moles per liter per second. redox reaction (p. 680) An oxidation-reduction reaction. reducing agent (p. 683) The substance that reduces another substance by losing electrons. reduction (p. 681) The gain of electrons by the atoms of a substance; decreases an atom’s oxidation number. reduction potential (p. 711) The tendency of a substance to gain electrons. representative elements (p. 177) Elements from groups 1, 2, and 13–18 in the modern periodic table, possessing a wide range of chemical and physical properties. resonance (p. 258) Condition that occurs when more than one valid Lewis structure exists for the same molecule. reversible reaction (p. 595) A reaction that can take place in both the forward and reverse directions; leads to an equilibrium state where the forward and reverse reactions occur at equal rates and the concentrations of reactants and products remain constant.
S salt (p. 659) An ionic compound made up of a cation from a base and an anion from an acid. salt bridge (p. 709) A pathway constructed to allow positive and negative ions to move from one solution to another. salt hydrolysis (p. 665) The process in which anions of the dissociated salt accept hydrogen ions from water, or the cations of the dissociated salt donate hydrogen ions to water.
sal (pág. 659) Compuesto iónico formado por un catión proveniente de una base y un anión proveniente de un ácido. puente salino (pág. 709) Medio que permite el movimiento de iones positivos y negativos de una solución a otra. hidrólisis de sales (pág. 665) Proceso en el que los aniones de una sal disociada aceptan iones hidrógeno del agua o en el que los cationes de la sal disociada donan iones hidrógeno al agua.
Glossary/Glosario 1025
Glossary/Glosario saponification/saponificación
saponification (suh pahn ih fih KAY shuhn) (p. 837) The hydrolysis of the ester bonds of a triglyceride using an aqueous solution of a strong base to form carboxylate salts and glycerol. saturated hydrocarbon (p. 746) A hydrocarbon that contains only single bonds. saturated solution (p. 493) Contains the maximum amount of dissolved solute for a given amount of solvent at a specific temperature and pressure. scientific law (p. 16) Describes a relationship in nature that is supported by many experiments. scientific methods (p. 12) A systematic approach used in scientific study; an organized process used by scientists to do research and to verify the work of others. scientific notation (p. 40) Expresses any number as a number between 1 and 10 (known as a coefficient) multiplied by 10 raised to a power (known as an exponent). second (p. 33) The SI base unit for time. second law of thermodynamics (p. 543) The spontaneous processes always proceed in such a way that the entropy of the universe increases. secondary battery (p. 720) A rechargeable battery that depends on reversible redox reactions. sigma bond (p. 244) A single covalent bond that is formed when an electron pair is shared by the direct overlap of bonding orbitals. significant figures (p. 50) The number of all known digits reported in measurements plus one estimated digit. single-replacement reaction (p. 293) A chemical reaction that occurs when the atoms of one element replace the atoms of another element in a compound. solid (p. 71) A form of matter that has its own definite shape and volume, is incompressible, and expands only slightly when heated. solubility (p. 614) The maximum amount of solute that will dissolve in a given amount of solvent at a specific temperature and pressure. solubility product constant (p. 614) K sp, which is an equilibrium constant for the dissolving of a sparingly soluble ionic compound in water. soluble (p. 479) Describes a substance that can be dissolved in a given solvent. solute (p. 299) One or more substances dissolved in a solution. solution (p. 81) A uniform mixture that can contain solids, liquids, or gases; also called a homogeneous mixture. solvation (p. 489) The process of surrounding solute particles with solvent particles to form a solution; occurs only where and when the solute and solvent particles come in contact with each other. solvent (p. 299) The substance that dissolves a solute to form a solution; the most plentiful substance in the solution. species (p. 693) Any kind of chemical unit involved in a process.
1026 Glossary/Glosario
species/especie
saponificación (pág. 837) La hidrólisis de los enlaces éster de un triglicérido, usando una solución acuosa de una base fuerte, para formar sales de carboxilato y glicerol. hidrocarburo saturado (pág. 746) Hidrocarburo que sólo contiene enlaces sencillos. solución saturada (pág. 493) Solución que contiene la cantidad máxima de soluto disuelto para una cantidad dada de disolvente a una temperatura y presión específicas. ley científica (pág. 16) Describe una relación natural demostrada en muchos experimentos. métodos científicos (pág. 12) Enfoque sistemático que se usa en los estudios científicos; proceso organizado que siguen los científicos para realizar sus investigaciones y verificar el trabajo realizado por otros científicos. notación científica (pág. 40) Expresa cualquier número como un número entre 1 y 10 (conocido como coeficiente) multiplicado por 10 elevado a alguna potencia (conocida como exponente). segundo (pág. 33) Unidad básica de tiempo del SI. segunda ley de la termodinámica (pág. 543) Los procesos espontáneos siempre proceden de una forma que aumenta la entropía del universo. batería secundaria (pág. 720) Batería recargable que depende de reacciones redox reversibles. enlace sigma (pág. 244) Enlace covalente simple que se forma cuando se comparte un par de electrones mediante la superposición directa de los orbitales del enlace. cifras significativas (pág. 50) El número de dígitos conocidos que se reportan en medidas, más un dígito estimado. reacción de sustitución simple (pág. 293) Reacción química que ocurre cuando los átomos de un elemento reemplazan a los átomos de otro elemento en un compuesto. sólido (pág. 71) Forma de la materia que tiene su propia forma y volumen, es incompresible y sólo se expande levemente cuando se calienta. solubilidad (pág. 614) Cantidad máxima de soluto que se disolverá en una cantidad dada de disolvente a una temperatura y presión específicas. constante de producto de solubilidad (pág. 614) Se representa como K sp; es la constante de equilibrio para la disolución de un compuesto iónico moderadamente soluble en agua. soluble (pág. 479) Describe una sustancia que se puede disolver en un disolvente dado. soluto (pág. 299) Una o más sustancias disueltas en una solución. solución (pág. 81) Mezcla uniforme que puede contener sólidos, líquidos o gases; llamada también mezcla homogénea. solvatación (pág. 489) Proceso de rodear las partículas de soluto con partículas del disolvente para formar una solución; ocurre sólo en los lugares y en el momento en que las partículas de soluto y disolvente entran en contacto. disolvente (pág. 299) Sustancia que disuelve un soluto para formar una solución; la sustancia más abundante en la solución. especie (pág. 693) Cualquier clase de unidad química que participa en un proceso.
Glossary/Glosario specific heat/calor específico
specific heat (p. 519) The amount of heat required to raise the temperature of one gram of a given substance by one degree Celsius. specific rate constant (p. 575) A numerical value that relates reaction rate and concentration of reactant at a specific temperature. spectator ion (p. 301) Ion that does not participate in a reaction. spontaneous process (p. 542) A physical or chemical change that occurs without outside intervention and may require energy to be supplied to begin the process. standard enthalpy (heat) of formation (p. 537) The change in enthalpy that accompanies the formation of one mole of a compound in its standard state from its constituent elements in their standard states. standard hydrogen electrode (p. 711) The standard electrode against which the reduction potential of all electrodes can be measured. states of matter (p. 71) The physical forms in which all matter naturally exists on Earth—most commonly as a solid, a liquid, or a gas. stereoisomers (p. 766) A class of isomers whose atoms are bonded in the same order but are arranged differently in space. steroids (p. 839) Lipids that have multiple cyclic rings in their structures. stoichiometry (p. 368) The study of quantitative relationships between the amounts of reactants used and products formed by a chemical reaction; is based on the law of conservation of mass. strong acid (p. 644) An acid that ionizes completely in aqueous solution. strong base (p. 648) A base that dissociates entirely into metal ions and hydroxide ions in aqueous solution. strong nuclear force (p. 865) A force that acts on subatomic particles that are extremely close together. structural formula (p. 253) A molecular model that uses symbols and bonds to show relative positions of atoms; can be predicted for many molecules by drawing the Lewis structure. structural isomers (p. 765) A class of isomers whose atoms are bonded in different orders with the result that they have different chemical and physical properties despite having the same formula. sublimation (p. 83) The energy-requiring process by which a solid changes directly to a gas without first becoming a liquid. substance (p. 5) Matter that has a definite composition; also known as a chemical. substituent groups (p. 753) The side branches that extend from the parent chain; they appear to substitute for a hydrogen atom in the straight chain. substitution reaction (p. 790) A reaction of organic compounds in which one atom or group of atoms in a molecule is replaced by another atom or group of atoms.
substitution reaction/reacción de sustitución
calor específico (pág. 519) Cantidad de calor requerida para elevar la temperatura de un gramo de una sustancia dada en un grado centígrado (Celsius). constante de velocidad de la reacción (pág. 575) Valor numérico que relaciona la velocidad de la reacción y la concentración de reactivos a una temperatura específica. ion espectador (pág. 301) Ion que no participa en una reacción. proceso espontáneo (pág. 542) Cambio físico o químico que ocurre sin intervención externa; la iniciación del proceso puede requerir un suministro de energía. entalpía (calor) estándar de formación (pág. 537) Cambio en la entalpía que acompaña la formación de un mol de un compuesto en su estado normal, a partir de sus elementos constituyentes en su estado normal. electrodo normal de hidrógeno (pág. 711) Electrodo estándar que sirve de referencia para medir el potencial de reducción de todos los electrodos. estados de la materia (pág. 71) Las formas físicas en las que la materia existe naturalmente en la Tierra, más comúnmente como sólido, líquido o gas. estereoisómeros (pág. 766) Clase de isómeros cuyos átomos se unen en el mismo orden, pero con distinta disposición espacial. esteroides (pág. 839) Lípidos con múltiples anillos en sus estructuras. estequiometría (pág. 368) El estudio de las relaciones cuantitativas entre las cantidades de reactivos utilizados y los productos formados durante una reacción química; se basa en la ley de la conservación de la masa. ácido fuerte (pág. 644) Ácido que se ioniza completamente en solución acuosa. base fuerte (pág. 648) Base que se disocia enteramente en iones metálicos e iones hidróxido en solución acuosa. fuerza nuclear fuerte (pág. 865) Fuerza que actúa sólo en las partículas subatómicas que se encuentran extremadamente cercanas. fórmula estructural (pág. 253) Modelo molecular que usa símbolos y enlaces para mostrar las posiciones relativas de los átomos; esta fórmula se puede predecir para muchas moléculas al trazar su estructura de Lewis. isómeros estructurales (pág. 765) Clase de isómeros cuyos átomos están unidos en distinto orden, por lo que tienen propiedades químicas y físicas diferentes a pesar de tener la misma fórmula. sublimación (pág. 83) Proceso que requiere de energía en el que un sólido se convierte directamente en gas, sin convertirse primero en un líquido. sustancia (pág. 5) Materia con una composición definida; también se conoce como sustancia química. grupos sustituyentes (pág. 753) Las ramas laterales que se extienden desde la cadena principal y parecen sustituir un átomo de hidrógeno de la cadena recta. reacción de sustitución (pág. 790) Reacción de compuestos orgánicos en la cual un átomo o un grupo de átomos en una molécula son sustituidos por otro átomo o grupo de átomos.
Glossary/Glosario 1027
Glossary/Glosario substrate/sustrato
titration/titulación
substrate (p. 830) A reactant in an enzyme-catalyzed reaction that binds to specific sites on enzyme molecules.
sustrato (pág. 830) Reactivo en una reacción catalizada por enzimas que se enlaza a sitios específicos en las moléculas de la enzima. solución sobresaturada (pág. 494) Aquella que contiene más soluto disuelto que una solución saturada a la misma temperatura. tensión superficial (pág. 418) Energía requerida para aumentar el área superficial de un líquido en una cantidad dada; es producida por una distribución desigual de las fuerzas de atracción. surfactante (pág. 419) Compuesto, como el jabón, que reduce la tensión superficial del agua al romper los enlaces de hidrógeno entre las moléculas de agua; llamado también agente tensioactivo. alrededores (pág. 526) En termoquímica, incluye todo el universo a excepción del sistema. suspensión (pág. 476) Tipo de mezcla heterogénea cuyas partículas se asientan con el tiempo y pueden separarse de la mezcla por filtración. reacción de síntesis (pág. 289) Reacción química en la que dos o más sustancias reaccionan para generar un solo producto. sistema (pág. 526) En termoquímica, se refiere a la parte específica del universo que contiene la reacción o el proceso en estudio.
supersaturated solution (p. 494) Contains more dissolved solute than a saturated solution at the same temperature. surface tension (p. 418) The energy required to increase the surface area of a liquid by a given amount; results from an uneven distribution of attractive forces. surfactant (p. 419) A compound, such as soap, that lowers the surface tension of water by disrupting hydrogen bonds between water molecules; also called a surface active agent. surroundings (p. 526) In thermochemistry, includes everything in the universe except the system. suspension (p. 476) A type of heterogeneous mixture whose particles settle out over time and can be separated from the mixture by filtration. synthesis reaction (p. 289) A chemical reaction in which two or more substances react to yield a single product. system (p. 526) In thermochemistry, the specific part of the universe containing the reaction or process being studied.
T technology (p. 9) The practical use of scientific information. temperature (p. 403) A measure of the average kinetic energy of the particles in a sample of matter. theoretical yield (p. 385) In a chemical reaction, the maximum amount of product that can be produced from a given amount of reactant. theory (p. 16) An explanation supported by many experiments; is still subject to new experimental data, can be modified, and is considered valid it if can be used to make predictions that are proven true. thermochemical equation (p. 529) A balanced chemical equation that includes the physical states of all the reactants and the energy change, usually expressed as the the change in enthalpy. thermochemistry (p. 525) The study of heat changes that accompany chemical reactions and phase changes. thermonuclear reaction (p. 883) A nuclear fusion reaction. thermoplastic (p. 813) A type of polymer that can be melted and molded repeatedly into shapes that are retained when it is cooled. thermosetting (p. 813) A type of polymer that can be molded when it is first prepared but when cool cannot be remelted. titrant (p. 661) A solution of known concentration used to titrate a solution of unknown concentration; also called the standard solution. titration (p. 660) The process in which an acid-base neutralization reaction is used to determine the concentration of a solution of unknown concentration. 1028 Glossary/Glosario
tecnología (pág. 9) Uso práctico de la información científica. temperatura (pág. 403) Medida de la energía cinética promedio de las partículas en una muestra de materia. rendimiento teórico (pág. 385) La cantidad máxima de producto que se puede producir a partir de una cantidad dada de reactivo, durante una reacción química. teoría (pág. 16) Explicación respaldada por muchos experimentos; está sujeta a los resultados obtenidos en nuevos experimentos, se puede modificar y se considera válida si permite hacer predicciones verdaderas. ecuación termoquímica (pág. 529) Ecuación química equilibrada que incluye el estado físico de todos los reactivos y el cambio de energía, este último usualmente expresado como el cambio en entalpía. termoquímica (pág. 525) El estudio de los cambios de calor que acompañan a las reacciones químicas y a los cambios de fase. reacción termonuclear (pág. 883) Reacción de fusión nuclear. termoplástico (pág. 813) Tipo de polímero que se puede fundir y moldear repetidas veces en formas que el plástico mantiene al enfriarse. fraguado (pág. 813) Tipo de polímero que se puede moldear la primera vez que es producido, pero que no puede fundirse de nuevo una vez que se ha enfriado. solución tituladora (pág. 661) Solución de concentración conocida que se usa para titular una solución de concentración desconocida; también conocida como solución estándar. titulación (pág. 660) Proceso en el que se usa una reacción de neutralización ácido-base para determinar la concentración de una solución de concentración desconocida.
Glossary/Glosario transition elements/elementos de transición
viscosity/viscosidad
transition elements (p. 177) Elements in groups 3–12 of the modern periodic table and are further divided into transition metals and inner transition metals. transition metal (p. 180) The elements in groups 3–12 that are contained in the d-block of the periodic table and, with some exceptions, is characterized by a filled outermost s orbital of energy level n, and filled or partially filled d orbitals of energy level n −1. transition state (p. 564) Term used to describe an activated complex because the activated complex is as likely to form reactants as it is to form products. transmutation (p. 865) The conversion of an atom of one element to an atom of another element. transuranium element (p. 876) An element with an atomic number of 93 or greater in the periodic table. triglyceride (p. 836) Forms when three fatty acids are bonded to a glycerol backbone through ester bonds; can be either solid or liquid at room temperature. triple point (p. 429) The point on a phase diagram representing the temperature and pressure at which the three phases of a substance (solid, liquid, and gas) can coexist. Tyndall effect (TIHN duhl • EE fekt) (p. 478) The scattering of light by colloidal particles.
elementos de transición (pág. 177) Elementos de los grupos 3 al 12 de la tabla periódica moderna; se subdividen en metales de transición y metales de transición interna. metal de transición (pág. 180) Elementos de los grupos 3 al 12 del bloque d de la tabla periódica; con algunas excepciones, se caracterizan por tener lleno el orbital externo s del nivel de energía n y por tener orbitales d llenos o parcialmente llenos en el nivel de energía n −1. estado de transición (pág. 564) Término que se usa para describir un complejo activado por su probabilidad de formar tanto reactivos como productos. transmutación (pág. 865) Conversión de un átomo de un elemento a un átomo de otro elemento. elemento transuránico (pág. 876) Elementos de la tabla periódica con un número atómico igual o mayor que 93. triglicérido (pág. 836) Se forma cuando tres ácidos grasos se enlazan a un cadena principal de glicerol por enlaces éster; puede ser sólido o líquido a temperatura ambiente. punto triple (pág. 429) El punto en un diagrama de fase que representa la temperatura y la presión en la que coexisten las tres fases de una sustancia (sólido, líquido y gas). efecto Tyndall (pág. 478) Dispersión de la luz causada por las partículas coloidales.
U unit cell (p. 421) The smallest arrangement of atoms in a crystal lattice that has the symmetry as the whole crystal; a small representative part of a larger whole. universe (p. 526) In thermochemistry, is the system plus the surroundings. unsaturated hydrocarbon (p. 746) A hydrocarbon that contains at least one double or triple bond between carbon atoms. unsaturated solution (p. 493) Contains less dissolved solute for a given temperature and pressure than a saturated solution; has further capacity to hold more solute.
celda unitaria (pág. 421) El conjunto más pequeño de átomos en una red cristalina que posee la simetría de todo el cristal; pequeña parte representativa de un entero mayor. universo (pág. 526) En termoquímica, se refiere el sistema más los alrededores. hidrocarburo no saturado (pág. 746) Hidrocarburo que contiene por lo menos un enlace doble o triple entre sus átomos de carbono. solución no saturada (pág. 493) Aquella que contiene menos soluto disuelto a una temperatura y presión dadas que una solución saturada; puede contener cantidades adicionales del soluto.
V valence electrons (p. 161) The electrons in an atom’s outermost orbitals; determine the chemical properties of an element. vapor (p. 72) Gaseous state of a substance that is a liquid or a solid at room temperature. vaporization (p. 426) The energy-requiring process by which a liquid changes to a gas or vapor. vapor pressure (p. 427) The pressure exerted by a vapor over a liquid. vapor pressure lowering (p. 499) The lowering of vapor pressure of a solvent by the addition of a nonvolatile solute to the solvent. viscosity (p. 417) A measure of the resistance of a liquid to flow, which is affected by the size and shape of particles, and generally increases as the temperature decreases and as intermolecular forces increase.
electrones de valencia (pág. 161) Los electrones en el orbital más externo de un átomo; determinan las propiedades químicas de un elemento. vapor (pág. 72) Estado gaseoso de una sustancia que es líquida o sólida a temperatura ambiente. vaporización (pág. 426) Proceso que requiere energía en el que un líquido se convierte en gas o vapor. presión de vapor (pág. 427) Presión que ejerce un vapor sobre un líquido. disminución de la presión de vapor (pág. 499) Reducción de la presión de vapor de un disolvente por la adición de un soluto no volátil al disolvente. viscosidad (pág. 417) Medida de la resistencia de un líquido a fluir; es afectada por el tamaño y la forma de las partículas y en general aumenta cuando disminuye temperatura y cuando aumentan las fuerzas intermoleculares.
Glossary/Glosario 1029
Glossary/Glosario voltaic cell/pila voltaica
X ray/rayos X
voltaic cell (p. 709) A type of electrochemical cell that converts chemical energy into electrical energy by a spontaneous redox reaction. VSEPR model (p. 261) Valence Shell Electron Pair Repulsion model, which is based on an arrangement that minimizes the repulsion of shared and unshared pairs of electrons around the central atom.
pila voltaica (pág. 709) Tipo de celda electroquímica que convierte la energía química en energía eléctrica mediante una reacción redox espontánea. modelo RPCEV (pág. 261) Modelo de Repulsión de los Pares Electrónicos de la Capa de Valencia; se basa en un ordenamiento que minimiza la repulsión de los pares de electrones compartidos y no compartidos alrededor del átomo central.
W wavelength (p. 137) The shortest distance between equivalent points on a continuous wave; is usually expressed in meters, centimeters, or nanometers. wax (p. 838) A type of lipid that is formed by combining a fatty acid with a long-chain alcohol; is made by both plants and animals. weak acid (p. 645) An acid that ionizes only partially in dilute aqueous solution. weak base (p. 648) A base that ionizes only partially in dilute aqueous solution to form the conjugate acid of the base and hydroxide ion. weight (p. 9) A measure of an amount of matter and also the effect of Earth’s gravitational pull on that matter.
longitud de onda (pág. 137) La distancia más corta entre puntos equivalentes en una onda continua; se expresa generalmente en metros, centímetros o nanómetros. cera (pág. 838) Tipo de lípido que se forma al combinarse un ácido graso con un alcohol de cadena larga; son elaborados por plantas y animales. ácido débil (pág. 645) Ácido que se ioniza parcialmente en una solución acuosa diluida. base débil (pág. 648) Base que se ioniza parcialmente en una solución acuosa diluida para formar el ácido conjugado de la base y el ion hidróxido. peso (pág. 9) Medida de la cantidad de materia y también del efecto de la fuerza gravitatoria de la Tierra sobre esa materia.
X X ray (p. 864) A form of high-energy, penetrating electromagnetic radiation emitted from some materials that are in an excited electron state.
1030
Glossary/Glosario
rayos X (pág. 864) Forma de radiación electromagnética penetrante de alta energía que emiten algunos materiales que se encuentran en un estado electrónico excitado.
Absolute zero
Anions
Index Key Italic numbers = illustration/photo act. = activity
A Absolute zero, 445 Absorption spectrum, 145, 164 act. Accelerants, 91 Accuracy, 47–48 Acetaldehyde, 796 Acetaminophen, 800 Acetic acid, 634, 798, 800 Acetone, 432 act., 797 Acetylene. See Ethyne Acid anhydrides, 643 Acid-base chemistry, 633 act., 634–668; acid-base titration, 660–663, 664 prob., 670 act.; acids, strength of, 644–647, 648 act.; Arrhenius model, 637, 642 table; bases, strength of, 648–649; Brønsted-Lowry model, 638–640, 642 table; buffers, 666–667, 668 act.; chemical properties of acids and bases, 635; hydronium and hydroxide ions, 636; ion-product of water and, 650 prob., 650–651; Lewis model, 641–643, 642 table; litmus paper and, 633 act., 635, 658; milestones in understanding, 636–637; molarity and pH, 656; monoprotic and polyprotic acids, 640–641, 641 table; neutralization reactions, 659–660; pH and, 633 act., 652, 653, 653 prob., 654 prob.; physical properties of acids and bases, 634–635; pOH and, 652, 653; salt hydrolysis, 665 Acid-base indicators, 658, 663, 664 Acid-base titration. See Titration Acid hydrolysis, 665 Acidic solutions, 636 Acid ionization constant (K a), 647, 647 table, 970 table; calculate from pH, 656, 657 prob. Acid mine waste, biotreatment of, 920 Acidosis, 666 Acid rain, 637 Acids. See also Acid-base chemistry; acid ionization constant (K a), 647, 647 table, 656, 657 prob.; anhydrides, 643; Arrhenius, 637; Brønsted-Lowry, 638–639, 646; chemical properties, 635; conjugate, 638; electrical conductivity, 635; in household items, 633 act.; ionization equations, 645, 645 table; molarity and pH of strong, 656; monoprotic, 640, 640 table; naming, 250–251, 252; pH of. See pH; physical
Bold numbers = vocabulary term prob. = problem
properties, 634–635; polyprotic, 640– 641, 641 table; strength of, 644–647, 648 act.; strong, 644; titration of. See Titration; weak, 645 Actinide series, 180, 185, 921 Activated complex, 564 Activation energy (E a), 564–566, 571–572 Active site, 830 Activities. See CHEMLABs; Data Analysis Labs; Launch Labs; MiniLabs; Problem-Solving Labs Activity series, 293–294, 310 act. Actual yield, 385 Addition: scientific notation and, 42, 948; significant figures and, 53, 53 prob., 952, 953 prob. Addition polymerization, 811 Addition reactions, 804 table, 804–805 Adenine (A), 841 Adenosine diphosphate (ADP), 845 Adenosine triphosphate (ATP), 532, 845 Adhesion, 419 Adipic acid, 798 ADP (adenosine diphosphate), 845 Age of Polymers. See Polymers Agitation, 492 AIDS, 389 Air masses, density of and weather, 37 Air pressure, 406; deep sea diving and, 408 act.; measurement of, 406–407; units of, 407 Alcoholic fermentation, 847 Alcohols, 792–793; denatured, 793; elimination reactions, 803; evaporation of, 432 act., 816 act.; functional groups, 787 table; layering of in graduated cylinder, 31 act.; naming, 793; properties, 792–793, 816 act. Aldehydes, 787 table, 796 table, 796–797 Algal blooms, 250 Algebraic equations, 954–955, 955 prob. Aliphatic compounds, 771. See also Alkanes; Alkenes; Alkynes Alkali metals (Group 1A), 177, 906–909 Alkaline batteries, 719 Alkaline earth metals (Group 2A), 177, 910–915 Alkanes, 750–758; alkyl halides and, 789; branched-chain, 752–753, 754–755 prob.; burner gas analysis, 776 act.; chemical properties, 758; condensed structural formulas, 751; cycloalkanes, 755–756, 756–757
prob.; hydrogenation reactions, 805; naming, 751, 752–753, 754–755 prob.; nonpolarity of, 757, 758; physical properties, 758; solubility, 758; straight-chain, 750–751 Alkenes, 759; addition reactions involving, 804; naming, 760, 761 prob.; properties, 762; stereoisomers, 766; uses, 762 Alkyl groups, 752, 753 table Alkyl halides, 787; dehydrogenation reactions, 803; naming, 788; parent alkanes v., 789 table; substitution reactions, 791 Alkynes, 763–764; ethyne, synthesize and observe, 762 act.; examples, 763 table; hydrogenation reactions, 805; naming, 763; properties, 764; uses, 764 Allotropes, 938 Alloys, 81, 227–228; commercially important, 228 table; interstitial, 228; magnesium, 913; substitutional, 228; transition metal, 916 Alnico, 228 table Alpha decay, 867, 868 table Alpha particles, 123, 861 table, 862, 864, 888 table Alpha radiation, 123, 124 table, 861, 861 table, 862, 888 table Alternative energy specialist, 729 Aluminum, 159 table, 226 table, 730– 731, 922, 923, 924 Aluminum oxide, 212 Amide functional group, 787 table Amides, 787 table, 800, 800 table Amines, 787 table, 795, 795 table Amino acids, 826–827, 827 table Amino functional group, 787 table, 826 Ammonia: as Brønsted-Lowry base, 639; evaporation of, 432 act.; Lewis structure, 243, 255 prob.; polarity of, 268; production of, 290, 462, 594, 596, 597; sigma bonds in, 244, 245 Ammoniated cattle feed, 601 Ammonium, 221 table Amorphous solids, 424 Amphoteric, 639 Amplitude, 137 Anabolism, 844–845 Analytical balance, 77, 79 Analytical chemistry, 11 table, 79, 341 Anhydrides, 643 Anhydrous calcium chloride, 354 Aniline, 795 Anions, 209 Index 1031
Index Anodes Anodes, 107, 710 Antacids, 659 Antarctica, ozone hole over, 7, 20–21 Anthracene, 772 Antilogarithms, 966–967 Antimony, 932, 933, 935 Applied research, 17 Aqueous solutions, 299–308. See also Solutions; electrolytes in and colligative properties, 498–499; ionic compounds in, 300; ionic equations and, 301, 302 prob.; molecular compounds in, 299; nonelectrolytes in and colligative properties, 499; overall equations for reactions in, 307; reactions producing water in, 303, 304 prob.; reactions that form gases, 281 act., 304–305, 306 prob.; reactions that form precipitates in, 300, 301 act., 302 prob.; solvation of ionic compounds in, 490; solvation of molecular compounds in, 491 Aragonite, 214 Archaeologist, 891 Argon, 159 table, 185 table, 944, 945 Aristotle, 103, 103 table, 416 Aromatic compounds, 771–774; benzene, 770–771; carcinogenic, 774; fused-ring systems, 772; naming, 772–773, 773 prob. Arrhenius model of acid-base chemistry, 637, 642 table Arrhenius, Svante, 636, 637 Arsenic, 932, 933 Arson investigator, 91 Art restorer, 23 Aryl halides, 788 Aspirin, 810 Astatine, 940, 941 Asymmetric carbon, 768 Atmosphere (atm), 407, 407 table Atmosphere, Earth’s: cycling of carbon dioxide in, 505; elements in, 901; layers of, 5; ozone layer and, 5–8 Atomic bomb, 879 Atomic distances, 113 act. Atomic emission spectrum, 144–145, 164 act. Atomic Force Microscope, 291 Atomic mass, 119–120, 121 prob., 126 act. Atomic mass unit (amu), 119, 325, 969 table Atomic nucleus, 112; discovery of, 112; nuclear model of mass and, 326 act. Atomic number, 115, 116 prob., 118 prob. Atomic orbitals, 152, 154, 262 Atomic radii, trends in, 187, 188, 189 prob. 1032 Index
Blood Atomic solids, 422, 422 table Atomic structure: Bohr model of, 146–148, 150 act.; Dalton’s model of, 104 table, 104–105; Democritus’ early idea of, 103; Greek philosophers’ views of, 102–103, 103 table; milestones in understanding, 110–111; nuclear atomic model, 112–114, 136; plum pudding model, 110; quantum mechanical model, 149–152; try to determine, 135 act. Atomic weapons, 111 Atoms, 10, 106–107; atom-to-mass conversions, 331 prob.; determining structure of. See Atomic structure; excited state, 146, 147; ground state, 146; mass-to-atom conversions, 329–330, 330 prob.; size of, 106, 112; stability of, 240; subatomic particles, 113–114, 114 table; viewing, 107 ATP (adenosine triphosphate), 845 Aufbau diagram, 156–157, 157 table, 160 Aufbau principle, 156, 157 table Automobile air safety bags, 292 Average rate of reaction, 560–562, 562 prob. Avogadro’s number, 321, 326 act., 969 table Avogadro’s principle, 452
B Bacteria, nitrogen-fixing, 934 Bakelite, 809, 810, 813 Baker, 847 Baking, acid-base chemistry and, 669 Baking powder, 669 Baking soda, 378 act., 669 Balanced chemical equations: conservation of mass and, 285, 288; deriving, 285–286, 286 table, 287 prob., 288, 288. See also Stoichiometry; mole ratios and, 371–372; particle and mole relationships in, 368–369; relationships derived from, 369 table Balanced forces, 597 Ball-and-stick molecular models, 253, 746 Balmer (visible) series, 147, 148, 150 act. Band of stability, 866 Bar graphs, 56 Barite, 214 Barium, 226 table, 910–911, 913, 914 Barium carbonate, 302, 302 prob. Barium chloride, 913 Barium sulfate, 621 Barometers, 407, 416 Base hydrolysis, 665
Base ionization constant (K b), 649, 649 table, 970 table Bases. See also Acid-base chemistry; antacids, 659; Arrhenius, 637; base ionization constant (K b), 649, 649 table; Brønsted-Lowry, 638–639; chemical properties, 635; conjugate, 638; in household items, 633 act.; molarity and pH of strong, 656; physical properties, 634–635; strength of, 648–649; strong, 649; titration of. See Titration; weak, 649 Base units, 33, 35–37 Basic solutions, 636 Batteries, 717, 718–723; dry cells, 718– 720; fuel cells, 722–723; lead-acid, 720–721, 930; lemon battery, 707 act.; lithium, 721–722 Becquerel, Henri, 860–861, 885 Beetles, bioluminescent, 309 Bent molecular shape, 263 table Benzaldehyde, 796 table, 797 Benzene, 770–771; carcinogenic nature of, 774; naming of substituted, 772–773 Benzopyrene, 774 Bernoulli, Daniel, 416 Beryl, 214 Beryllium, 158 table, 161 table, 910– 911, 912 Beryls, 912 Best-fit line, 56–57 Beta decay, 867, 868 table Beta particles, 123, 861 table, 863, 864, 888 table Beta radiation, 123, 124 table, 861, 861 table, 862, 863, 888 table Binary acids, 250, 252 Binary ionic compounds, 210, 219 Binary molecular compounds, 248–250, 249 prob., 252 Binding energy, 877, 878 Biochemist, 308 Biochemistry, 11 table Biofuel cells, 724 act. Biofuels, 774 act., 775 Biogas, 775 Biological metabolism. See Metabolism Bioluminescence, 309, 693 Biomolecules: carbohydrates, 825 act., 832–834; lipids, 835–839; nucleic acids, 840–843; proteins, 826–831 Bioremediation, 920 Bismuth, 932, 933, 935 Bismuth subsalicylate, 935 Blocks, periodic table, 183–185. See also Specific blocks Blood, pH of, 666, 668 act.
Index Bloodstains
Chemical equilibrium
Bloodstains, detecting, 697 Body temperature, reaction rate and, 583 Bohr atomic model, 146–148, 150 act. Bohr, Niels, 110, 146 Boiling, 427 Boiling point, 77, 427; of alkanes, 758; of covalent compounds, 270; of halocarbons, 789; as physical property, 73 Boiling point elevation, 500–501, 503 prob. Boltzmann, Ludwig, 402 Bond angles, 261 Bond character, 266 Bond dissociation energies, 247 Bonding pairs, 242 Bonds. See Chemical bonds Book preservation, 661 Borates, 214 Boron, 158 table, 161 table, 184, 922, 923, 924 Boron group (Group 13), 922–925 Bose-Einstein condensate, 417 Bose, Satyendra Nath, 417 Boyle, Robert, 442 Boyle’s law, 442–443, 443 prob., 444 act., 451 table Branched-chain alkanes, 752–753; alkyl groups, 752; naming, 752–753, 754–755 prob., 760, 761 prob. Brass, 228 table Breathing, Boyle’s law and, 444 act. Breeder reactors, 882 Brine, electrolysis of, 730 Bromate, 221 table Bromine, 120, 180, 940, 941, 942 Brønsted, Johannes, 638 Brønsted-Lowry model, 638–640, 642 table, 646 Bronze, 228 table Brownian motion, 477 Brown, Robert, 477 Buckminsterfullerene, 928 Buckyballs, 928 Buffer capacity, 667 Buffers, 666–667, 668 act. Buffer systems, 666–667, 668 act. Bufotoxin, 839 Burner gas analysis, 776 act. Butane, 750, 751, 751 table 1-Butene, 759 table 2-Butene, 759 table Butyl group, 753 table
C Cadaverine, 795 Cadmium, 920 Calcium, 177, 195, 910–911, 913, 914
Calcium chloride, 913 Calcium hydroxide, 287 Calibration technician, 56 Calorie (cal), 518 Calorimeter, 523–524, 525 prob., 532 prob. Calx of mercury, 79 Cancer, 163, 887 Canola oil, hydrogenation of, 805 act. Capillary action, 419 Caramide, 800 Carbohydrates, 832–834; disaccharides, 833; functions of, 832; monosaccharides, 832–833; polysaccharides, 833– 834; test for simple sugars, 825 act. Carbolic acid, 636 Carbon. See also Organic compounds; abundance of, 84; analytical tests for, 926–927; atomic properties, 158 table, 161 table, 926–927; common reactions involving, 926–927; in human body, 195; organic compounds and, 745; physical properties, 926; uses of, 928 Carbonated beverages, 495 Carbonates, 214 Carbon dating, 873–874, 883 Carbon dioxide, 256 prob., 430, 505 Carbon group (Group 4A), 926–931, 932–935 Carbonic acid, 634 Carbon tetrachloride, 20, 267–268 Carbonyl compounds, 796–801; aldehydes, 796–797; carboxylic acids, 798; ketones, 797 Carbonyl group, 787 table, 796 Carboxyl group, 787 table, 798, 798 table, 826 Carboxylic acids, 798, 798 table; condensation reactions, 801; functional groups, 787 table; naming, 798; organic compounds derived from, 799–800, 800 act.; properties, 798 Carcinogens, 774 Cardiac scans, 925 Careers. See Careers in Chemistry; In the Field Careers in Chemistry: alternative energy specialist, 729; baker, 847; biochemist, 308; calibration technician, 56; chemical engineer, 580; chemistry teacher, 123; environmental chemist, 7; flavor chemist, 267; food scientist, 219; heating and cooling specialist, 527; materials scientist, 81; medicinal chemist, 342; metallurgist, 423; meteorologist, 447; nursery worker, 646; petroleum technician, 748; pharmacist, 381; pharmacy technician, 483; polymer chemist, 813; potter, 682; radiation therapist,
887; research chemist, 185; science writer, 604; spectroscopist, 139 Cast iron, 228 table Catabolism, 844–845 Catalysts, 571–573. See also Enzymes; chemical equilibrium and, 611; hydrogenation reactions and, 805; temperature and, 850 act. Catalytic converters, 573 Cathode rays, 108 Cathode-ray tubes, 107–108 Cathodes, 107, 710 Cations, 207–208 Cattle feed, 601 Cave formation, 643 CDs, 924 Cell membrane, 838 Cell notation, 713 Cell potential: applications of, 716; calculate, 713–714, 715 prob., 717; measure, 734 act. Cellular respiration, 846 Celluloid, 490 Cellulose, 834 Celsius scale, 34 Centrifuge, 490 CERN, 111 Cesium, 194, 906, 907, 909 Cesium clock, 909 CFCs. See Chlorofluorocarbons (CFCs) Chadwick, James, 110, 113 Chain reactions, 859 act., 879, 880 Chance, scientific discoveries and, 18 Charles, Jacques, 444 Charles’s law, 441 act., 444–445, 446 prob., 451 table Chelation therapy, 229 Chemical bonds, 206; character of, 266; covalent. See Covalent bonds; electron affinity and, 265; ionic. See Ionic bonds; melting point and, 242 act.; metallic. See Metallic bonds; valence electrons and, 207 Chemical changes, 69 act., 77, 92 act., 281 act. See also Chemical reactions Chemical engineer, 580 Chemical equations, 285. See also Ionic equations; Nuclear equations; Redox equations; Stoichiometry; Thermochemical equations; balancing, 285–286, 286 table, 287 prob., 288; coefficients in, 369; interpretation, 370 prob.; mole ratios and, 371–372; products, 283; reactants, 283; relationships derived from, 369; symbols used in, 283, 283 table Chemical equilibrium, 596; addition of products and, 608; addition of Index 1033
Index Chemical formulas reactants and, 607; catalysts and, 611; changes affecting, 593 act.; characteristics of, 604; common ion effect and, 620–621; concentration and, 607; determine point of, 593 act.; dynamic nature of, 597–598; equilibrium constant (K eq), 599–600, 604, 605 prob.; equilibrium expressions, 600, 601 prob., 602, 603 prob.; hemoglobinoxygen equilibrium in body, 623; law of, 599–600; Le Châtelier’s principle and, 606–611; moles of reactant v. moles of product and, 609; removal of products and, 608; reversible reactions and, 595–596; temperature and, 609–610, 611 act.; volume and pressure and, 608–609 Chemical formulas, 85; for binary ionic compounds, 219, 220 prob.; empirical. See Empirical formula; for hydrates, 351 table, 352, 353 prob., 356 act.; for ionic compounds, 218–219, 220 prob., 221, 222 prob.; molecular. See Molecular formulas; mole relationship to, 333–334, 334–335 prob.; for monatomic ions, 218–219; name of molecular compound from, 251; percent composition from, 342, 343 prob.; for polyatomic ionic compounds, 221, 222 prob.; structural. See Structural formulas Chemical potential energy, 517 Chemical properties, 74 Chemical reaction rates. See Reaction rates Chemical reactions, 77, 282–288; actual yield from, 385; addition, 804–805; in aqueous solutions, 299–301, 302 prob., 303–305, 306 prob., 307–308; classification of, 291 prob.; combustion, 290–291, 532 prob., 533; condensation, 801; conservation of mass and, 77, 78 prob., 79, 285, 288; decomposition, 292, 292 prob.; dehydration, 803; dehydrogenation, 803; elimination, 802; endothermic, 216, 247; equations for, 283 table, 283–285; evidence of, 69 act., 77, 282–283, 367 act.; excess reactants in, 379, 384; exothermic, 216, 247; heat from. See Thermochemistry; limiting reactants, 379–381, 382–383 prob.; milestones in understanding, 290–291; neutralization, 659–660; nuclear reactions v., 860 table; organic. See Organic reactions; oxidation reduction reactions, 806–807; percent yield from, 386, 386 prob., 388; products of, identify, 1034 Index
Concentration 92 act.; products of, predict, 298, 298 table, 807–808; rates of. See Reaction rates; redox. See Redox reactions; replacement, 293–294, 295 prob., 296–297; spontaneity of, 542–545, 546–547, 548 prob., 566–567; stoichiometry in. See Stoichiometry; substitution, 790–791; synthesis, 289; theoretical yield from, 385 Chemical symbols, 84 Chemistry, 4, 11; benefits of studying, 22; branches of, 11, 11 table; symbols and abbreviations used in, 968 table Chemistry & Health: elements of the body, 195; evolution and HIV, 389; hemoglobin-oxygen equilibrium, 623; hyperbaric oxygen therapy, 465; laser scissors, 163; PA-457 anti-HIV drug, 389; rate of reaction and body temperature, 583; toxicology, 59 Chemistry teacher, 123 CHEMLABs, 228. See also Data Analysis Labs; Launch Labs; MiniLabs; absorption and emission spectra, 164 act.; alcohols, properties of, 816 act.; atomic mass of unknown element, 126 act.; burner gas analysis, 776 act.; calorimetry, 550 act.; density, dating coins by, 60 act.; descriptive chemistry, 196 act.; enzyme action and temperature, 850 act.; evaporation, compare rates of, 432 act.; gas, identify an unknown, 466 act.; hydrate, determine formula for, 356 act.; hydrocarbon burner gas analysis, 776 act.; ionic compounds, formation of, 230 act.; metals, reactivity of, 310 act.; molar solubility, calculate and compare, 624 act.; molecular shape, 272 act.; mole ratios, determine, 390 act.; products of chemical reaction, identify, 92 act.; reaction rate, affect of concentration on, 584 act.; redox and the damaging dumper, 698 act.; solubility rate, factors affecting, 506 act.; vapor pressure and popcorn popping, 466 act.; voltaic cell potentials, measure, 734 act.; water analysis, 24 act. Chernobyl, 880, 883, 889 act. Chewing gum, percent composition, 342 act. Chimney soot, 774 Chirality, 767, 768 Chlorate, 221 table Chlorine, 89–90, 119–120, 159 table, 180, 940, 941, 942 Chlorine bleach, 942 Chlorite, 221 table Chlorofluorocarbons (CFCs), 7–8, 17, 20, 291, 788
Chloromethane, 787 Chlorophyll, 912 Chocolate, 431 Chromatograms, polarity and, 269 act. Chromatography, 82 act., 83, 269 act. Chrome, 328 Chromium, 160, 328, 918, 919 Cinnameldehyde, 796 table, 797 Circle graphs, 55 cis- isomers, 766 Clay, 476 Clay roofing tiles, 302 Clouds, 428 Cloud seeding, 495 Cobalt, 918, 919 Coefficients, 285; balancing equations and, 285; scientific notation and, 40–41 Cohesion, 419 Cold-packs, 515 act., 528 Collagen, 831 Colligative properties, 498–504; boiling point elevation, 500–501; electrolytes and, 498–499; freezing point depression, 501–502, 502 act., 503 prob.; osmotic pressure, 504; vapor pressure lowering, 499–500 Collision theory, 563–564, 564 table Colloids, 477, 477 table, 478 Color: change in as evidence of chemical reaction, 283; as physical property, 73 Combined gas law, 449, 450 prob., 451 table, 454 Combustion engines, 290 Combustion reactions, 290–291, 532 prob., 533 Common ion, 620 Common ion effect, 620–621 Complementary base pairs, 841, 842 Complete ionic equations, 301, 302 prob., 304 prob. Complex carbohydrates. See Polysaccharides Complex reactions, 580 Compounds, 85–87; compare melting points of, 242 act.; formulas for. See Formulas; ionic. See Ionic compounds; law of definite proportions and, 87–88; law of multiple proportions and, 89–90; mass-to-mole conversions, 337, 337 prob.; molar mass of, 335, 335 prob.; mole-to-mass conversions, 336, 336 prob.; percent composition and. See Percent composition; properties of, 86; separating components of, 86; stability of, 240 Computer chips, 181, 929 Concentration, 475 act., 480–488. See Solution concentration; calculate from
Index Concentration ratios equilibrium constant expression, 612, 613 prob.; chemical equilibrium and, 607; qualitative descriptions of, 480; ratios of. See Concentration ratios; reaction rate and, 569, 574–576, 584 act. Concentration ratios: molality, 480 table, 487, 487 prob.; molarity, 480 table, 482, 483 prob.; mole fraction, 480 table, 488; percent by mass, 480 table, 481, 481 prob.; percent by volume, 480 table, 482 Conclusions, 15 Condensation, 76, 428 Condensation polymerization, 811 Condensation reactions, 801 Condensed structural formulas, 751 Conductivity: among types of elements 177–181; as physical property, 73; explanation of, 226; of ionic compounds in solution, 215, 498–499 Conjugate acid-base pair, 638 Conjugate acids, 638, 641 table Conjugate bases, 638, 641 table Conservation of energy. See Law of conservation of energy Conservation of mass. See Law of conservation of mass Constant, 14 Controls, 14 Conversion factors, 44–46, 46 prob., 319 act. Coordinate covalent bonds, 259 Copper: acid mine waste, 920; electron configuration, 160; in fireworks, 913; flame test for, 92 act.; law of multiple proportions and, 89–90; melting and boiling point, 226 table; in microchip wiring, 919; as paint pigment, 919; properties of, 74 table; purification of, 731–732 Core, iron in Earth’s, 919 Corn oil, 31 act. Corrosion, 724–727, 726 act. Counting units, 320 Covalent bonds, 241–247; bond angle, 261, 263 table; coordinate, 259; double, 245; electron affinity and, 265; electronegativity and, 266; energy in, 247; formation of, 241; hybridization and, 262; length of, 246; nonpolar, 266; pi bonds and, 245; polar, 266, 267–268; sigma bonds and, 244, 245; single, 242–244; strength of, 246–247; super ball properties, 239 act.; triple, 245 Covalent compounds: boiling points of, 270; formulas from names of, 251; intermolecular forces in, 269–270;
Dissociation equations Lewis structures for, 253–260, 255 prob., 256 prob., 257 prob., 258 prob., 260 prob.; melting points of, 242 act., 270; naming, 248–251, 249 prob., 252; polarity of and chromatograms, 269 act.; properties of, 270; shape of (VSEPR model), 261–262, 263 table, 264 prob. Covalent gases, 270 Covalent molecular solids, 270 Covalent network solids, 270, 422, 422 table, 423 Cracking, 748 CRC Handbook of Chemistry and Physics, 75, 77 Crick, Francis, 637, 841–842 Crime-scene investigator, 697 Critical mass, 880 Critical point, 429 Crookes, Sir William, 108 Crude oil. See Petroleum Crust, Earth’s, 901 Cryosurgery, 934 Cryotherapy, 934 Crystal lattices, 214, 270, 420–421, 422 act. Crystalline solids, 420–421, 422 table; categories, 422 table, 422–423; crystal unit cells, 421, 422 act. Crystallization, 83 Cube root, 949 Cubic unit cells, 421 table Curie, Marie, 861, 882, 915 Curie, Pierre, 861, 882 Cyanide, 221 table Cyclic hydrocarbons, 755 Cycloalkanes, 755–756, 756–757 prob. Cyclohexane, 755 Cyclohexanol, 793 Cyclohyexylamine, 795 Cysteine, 827 table Cytosine (C), 841
D Dalton, John, 417 Dalton’s atomic theory, 104 table, 104–105, 109 Dalton’s law of partial pressures, 408, 409 prob., 410 Data, 13 Data Analysis Labs. See also CHEMLABs; Launch Labs; MiniLabs; Problem-Solving Labs; antimicrobial properties of polymers, 216 act.; atomic distances in highly ordered pyrolytic graphite (HOPG), 113 act.; biofuel cells, 724 act.; gas pressure and deep sea diving, 408 act.; hydrogena-
tion of canola oil, 805 act.; microbes, electric current from, 724 act.; oxidation rate of dichloroethene isomers, 768 act.; oxygen in moon rocks, 387 act.; ozone levels in Antarctica, 21 act.; polarity and chromatograms, 269 act.; redox reactions and space shuttle launch, 691 act.; turbidity and Tyndall effect, 478 act. d-block elements, 185, 916 de Broglie equation, 150 de Broglie, Louis, 149 Decane, 751 table Decomposition reactions, 292, 292 prob., 566 act. Deep sea diving, gas pressure and, 408 act. Dehydration reactions, 803 Delocalized electrons, 225 Democritus, 103, 103 table, 416 Denaturation, 829 Denatured alcohol, 793 Density, 36–37; calculate, 37; date coins by, 60 act.; of gases, 403, 456, 457 act.; identification of unknowns by, 37, 38 prob., 39 act.; of liquids, 31 act., 415; as physical property, 73; of solids, 420; units of, 36 Dental amalgams, 228 table Deoxyribonucleic acid. See DNA (deoxyribonucleic acid) Deoxyribose sugar, 841 Dependent variables, 14, 56 Deposition, 429 Derived units, 35–36, 44 Desalination, 730 Descriptive chemistry, 196 act. Dessicants, 354 Detergents, 13 act., 419, 924 Deuterium, 904 Diamonds, 423, 928 Diatomic molecules, 241 Dichloroethene, 768 act. Dietary salt, 908 Diffusion, 404, 405 Dilute solutions, 485, 486 prob. Dimensional analysis, 44–46, 46 prob., 956, 956 prob. Dinitrogen pentoxide, 565 act. Dipeptides, 828 Dipole-dipole forces, 269, 411, 412–413 Direct relationships, 961 Disaccharides, 833 Dispersion forces, 269, 411, 412 Dispersion medium, 477 table Dissociation energy, 247 Dissociation equations, strong bases, 648, 648 table Index 1035
Index Distillation
Entropy
Distillation, 82 Distilled water: electrical conductivity of, 205 act.; evaporation of, 432 act. Diving, gas pressure and, 408 act. Division operations, 54 DNA (deoxyribonucleic acid), 841–842, 842 act., 843 Dobson, G. M. B., 6 Dobson units (DU), 6 d orbitals, 154 Dose of radiation, 889–890 Dose-response curve, 59 Double covalent bonds, 245, 246 Double helix, DNA, 841 Double-replacement reactions, 296– 297, 297 prob., 297 table Down’s cells, 729 Drake, Edwin, 749 Dry cells, 718–720; alkaline batteries, 719; primary batteries, 720; secondary batteries, 720; silver batteries, 719; zinc-carbon, 718–719 Dry ice, 428 Drywall, 914 Ductility, 226 DVDs, 924
E Earth: atmosphere of, 5, 901; elements in core of, 919; elements in crust of, 84, 901; elements in oceans of, 901; entropy and geologic changes on, 545 Effusion, 404–405, 405 prob. Egyptian cubits, 46 prob. Einstein, Albert, 143, 417, 877 Elastic collisions, 403 Electrical conductivity: of acids and bases, 635; of ionic compounds, 214– 215; of metals, 180, 226; of strong acids, 645; of various compounds, 205 act.; of weak acids, 645, 648 table Electric charge, observe, 101 act. Electrochemical cell potentials, 711– 717, 734 act.; calculate, 713–714, 715 prob., 717; cell notation, 713; half-cell potentials, 712, 712 table; of standard hydrogen electrode, 711 Electrochemical cells, 707 act., 709, 709–711; alkaline batteries, 719; chemistry of, 710–711; dry cells, 718–720; electrochemical cell potentials, 711–714, 715 prob., 716–717; electrolysis and, 728–732; half-cells, 710; lead-acid batteries, 720–721; lithium batteries, 721–722; primary and secondary batteries, 720; silver batteries, 719 1036 Index
Electrochemistry: batteries, 717, 718– 723; biofuel cells, 724 act.; corrosion, 724–727; electrochemical cell potentials, 711–714, 715 prob., 716–717; electrochemical cells, 707 act., 709; electrolysis, 728–732; lemon battery, 707 act.; redox reactions in, 708–709; voltaic cell chemistry, 710–711 Electrolysis, 86, 728–732; aluminum production, 730–731; desalination by, 730; electroplating and, 732; of molten NaCl, 729; ore purification and, 731–732 Electrolytes, 215; colligative properties of aqueous solutions and, 498–499; strong, 498; weak, 498 Electrolytic cells, 728; aluminum production and, 730–731; electrolysis of brine and, 730; electrolysis of molten NaCl and, 729; electroplating and, 732; purification of ores and, 731–732 Electromagnetic radiation, 137–139, 140 prob., 861 table, 863–864 Electromagnetic (EM) spectrum, 138–139 Electromagnetic wave relationship, 137, 150 Electromotive force (emf), 710 Electron affinity, 265 Electron capture, 868, 868 table Electron configuration notation, 158– 159; first period elements, 158 table; second period elements, 158 table; third period elements, 159 table Electron configurations, 156–162; aufbau principle and, 156–157, 157 table; electron configuration notation, 158–159; electron-dot structures, 161, 162 prob.; exceptions to predicted, 160; ground state, 156; Hund’s rule and, 157; Noble-gas notation, 159; orbital diagrams of, 158; Pauli exclusion principle and, 157; periodic table trends, 182–185, 186 prob.; valence electrons, 161 Electron-dot structures, 161, 161 table, 162 prob., 207. See also Lewis structures Electronegativity, 194, 265; bond character and, 266, 266 table; bond polarity and, 266, 267; periodic table trends, 194, 265; redox and, 684 Electronegativity scale, 194, 212, 265 Electron mediator, 724 act. Electrons, 108; charge of, 108–109; discovery of, 107–109; energy levels and, 146–148; location of around nucleus, 152; mass of, 108–109, 119, 969 table;
photoelectric effect and, 142; properties of, 114 table; quantum mechanical model of atom and, 150–152; valence, 161 Electron sea model, 225 Electroplating, 732 Electrostatic force, 865 Elements, 10, 84–85, 87; abundance of various, 84; in atmosphere, 901; atomic number of, 115, 116 prob., 118 prob.; chemical symbols for, 84; color key, 968 table; in Earth’s atmosphere, 901; in Earth’s core, 919; in Earth’s crust, 84, 901; in Earth’s oceans, 901; emission spectra of, 164 act.; in the human body, 195; isotopes, 117; law of definite proportions, 87–88; law of multiple proportions, 89–90; periodic table of. See Periodic table; physical states of, 84; properties of, 180 act., 196 act., 971–974 table; representative, 177, 196 act. Elimination reactions, 802 Emeralds, 912 Emission spectra, 164 act. Empirical formulas, 344; from mass data, 349–350 prob.; from percent composition, 344, 345 prob., 347 Endothermic reactions, 216, 247, 528, 528 table End point (titration), 663 Energy, 516–522; bond dissociation, 247; change during solution formation, 475 act., 492; changes of state and, 530–530, 531 act., 532 prob.; chemical cold pack and, 515 act.; chemical potential, 517; flow of as heat, 518. See also Heat; kinetic, 402, 403, 516–517, 710; lattice, 216–217; law of conservation of, 517; potential, 516–517; quantized, 141–143, 146; solar, 522; units of, 518, 518 prob., 518 table; uses of, 516; voltaic cells and, 710–711 Energy levels, 153 Energy sublevels, 153–154 English units, 32 Enthalpy (H), 527; calculate changes in (Hess’s law), 534–536, 536 prob.; calorimetry measurement of, 550 act.; changes of state and, 530–533, 531 act., 532 prob.; thermochemical equations and, 529 Enthalpy (heat) of combustion (∆H comb), 529, 529 table Enthalpy (heat) of reaction (∆H rxn), 527–528 Entropy (S), 543; Earth’s geologic processes and, 545; predict changes in,
Index Environmental chemist 544–545; reaction spontaneity and, 546–547, 548 prob.; second law of thermodynamics and, 543 Environmental chemist, 7 Environmental chemistry, 11 table Enzymes, 826, 829–830. See also Catalysts; Proteins; affect on reaction rate, 571; chirality and, 767, 768; temperature and, 850 act. Enzyme-substrate complex, 830 Equations: algebraic, 954–955, 955 prob.; atomic number, 115; average rate of reaction, 562; boiling point elevation, 500; Boyle’s law, 443; cell potential, 714; Charles’s law, 445; chemical. See Chemical equations; Dalton’s law of partial pressures, 409; density, 37; dilution, 485; Einstein’s (E=mc 2), 877; electromagnetic wave relationship, 137, 150; energy of a photon, 143; energy of a quantum, 142; error, 48; Gay-Lussac’s law, 447; general rate law, 575; Gibbs free energy, 515 act., 546; Graham’s law of effusion, 404; Henry’s law, 496; ideal gas law, 454; induced transmutation, 876 prob.; ionic, 301; ion-product of water, 650; law of conservation of mass, 77; mass number, 117; molality, 487; molarity, 482; mole fraction, 488; neutralization, 659–660; nuclear, 123, 869, 869 prob.; overall, 307; percent by mass, 87, 481; percent by mass from the chemical formula, 342; percent by volume, 482; percent error, 48; percent yield, 386; pH, 652; pH and pOH, relationship between, 652; pOH, 652; quantum, energy of, 142; radiation, intensity and distance of, 890; radioactive element, remaining amount of, 871; rate law, 574; skeleton, 284; slope of a line, 57, 962; specific heat, 520; summation, 540; symbols used in, 283 table; thermochemical, 529–533; word, 284 Equilibrium. See Chemical equilibrium; Solubility equilibrium Equilibrium concentrations, calculate, 612, 613 prob. Equilibrium constant (K eq), 599–600, 604, 605 prob. Equilibrium constant expressions, 599–600; calculate concentrations from, 612, 613 prob.; for heterogeneous equilibrium, 602, 603 prob.; for homogeneous equilibrium, 600, 601 prob.; Le Châtelier’s principle and, 606–611; solubility product constant expressions. See Solubility product constant expressions
Example Problems Equivalence point, 661 Error, 48 Essential elements, 383 Essential oils, 770 Esterification, 806 table Esters, 787 table, 799, 799 table, 800 act. Ethanal, 796 Ethanamide, 800 Ethane, 750, 751 table, 793 Ethanol, 432 act., 792–793, 816 act. Ethene, 759 table, 762, 803 Ether functional group, 787 table Ethers, 787 table, 794, 794 table Ethylamine, 795 Ethyl group, 753 table Ethyne (acetylene), 762 act., 763, 763, 764 Evaporation, 426–427, 432 act., 816 act. Everyday Chemistry: baking soda and baking powder and cooking, 669; chocolate, manufacture of, 431; garlic and pain receptors, 815; history in a glass of water, 355; killer fashion, 229 Example Problems: algebraic equations, 955 prob.; alkanes, naming, 754–755 prob.; alkenes, naming, 761 prob.; aromatic compounds, naming, 773 prob.; atomic mass, 121 prob.; atomic number, 116 prob., 118 prob.; atomic radii trends, 189 prob.; atom-to-mass conversions, 330 prob.; average rate of reaction, 562 prob.; balancing equations, 287 prob.; boiling point elevation, 503 prob.; Boyle’s law, 443 prob.; branched-chain alkanes, naming, 754–755 prob.; cell potential, calculate, 715 prob.; Charles’s law (gas temperature and volume relationship), 446 prob.; chemical equations, interpret, 370 prob.; combined gas law, 450 prob.; combustion reactions, energy released by, 532 prob.; concentration from equilibrium constant expression, 613 prob.; conservation of mass, 78 prob.; conversion factors, 46 prob.; cycloalkanes, naming, 756–757 prob.; density and volume to find mass, 38 prob.; dimensional analysis, 956 prob.; electron configuration and the periodic table, 186 prob.; electron-dot structure, 162 prob.; empirical formula from mass data, 349–350 prob.; empirical formula from percent composition, 345 prob.; energy of a photon, 143 prob.; energy units, convert, 518 prob.; equilibrium constant expression for heterogeneous equilibrium, 603 prob.; equilibrium constant expression for homogeneous
equilibrium, 601 prob.; equilibrium constants, value of, 605 prob.; formula for polyatomic compound, 222 prob.; formulas for ionic compound, 220 prob.; freezing point depression, 503 prob.; gas stoichiometry, 461 prob.; Gay-Lussac’s law, 448 prob.; Graham’s law of effusion, 405 prob.; half-reaction method, 695 prob.; heat absorbed, calculate, 521 prob.; hydrates, determine formula for, 353 prob.; ideal gas law, 455 prob.; induced transmutation equations, 876 prob.; instantaneous reaction rates, 579 prob.; ionic equations and precipitation reactions, 302 prob.; ionic equations for aqueous solutions forming gases, 306 prob.; ionic equations for aqueous solutions forming water, 304 prob.; ion product constant, 651 prob.; ion product constant Q sp, 619 prob.; Lewis structure for covalent compound with multiple bonds, 256 prob.; Lewis structure for covalent compound with single bond, 255 prob.; Lewis structures, 244 prob.; limiting reactant, determine, 382–383 prob.; mass number, 118 prob.; massto-atom conversions, 330 prob.; massto-mass stoichiometric conversion, 377 prob.; mass-to-mole conversions, 329 prob.; mass-to-mole conversions for compounds, 337 prob.; mass to moles to particles conversions, 338–339 prob.; molality, 487 prob.; molarity, 483 prob.; molarity from titration data, 664 prob.; molar solubility, 616 prob.; molar volume, 453 prob.; molecular formula from percent composition, 348–349 prob.; molecular shape, 264 prob.; mole relationship from a chemical formula, 334 prob.; mole-to-mass conversion, 328 prob.; mole-to-mass conversions for compounds, 336 prob.; mole-tomass stoichiometric conversion, 376 prob.; mole-to-mole stoichiometric conversion, 375 prob.; net ionic redox equation, balance, 692; nuclear equations, balancing, 869 prob.; oxidation number, determine, 687 prob.; oxidation-number method, 690 prob.; particles, convert to moles, 324 prob.; percent by mass, 481; percent error, 49 prob.; percent yield, 386 prob.; pH, calculate, 653 prob., 654 prob.; pOH, calculate, 654 prob.; radioactive element, remaining amount of, 872 prob.; reaction spontaneity, 548 prob.; redox reactions, identify, 685 prob.; scientific Index 1037
Index Excess reactants
Gas laws
notation, 41 prob., 43 prob.; significant figures, 51 prob., 53 prob., 54 prob.; significant figures and, 951 prob., 953 prob.; single-replacement reactions, 295 prob.; standard enthalpy (heat) of formation, 540 prob.; unit conversion, 958 prob.; wavelength of EM wave, 140 prob. Excess reactants, 379, 384 Exothermic reactions, 216, 247; activation energy and, 565; enthalpy and, 527, 528 table Expanded octets, 259 Experimental data, percent composition from, 341–342, 342 act. Experiments, 14. See also CHEMLABs; MiniLabs; Problem-Solving Labs; laboratory safety and, 18, 19 table Exponents, 40–41 Extensive properties, 73 Extrapolation, 57, 963
F Fahrenheit scale, 34 Families, periodic table. See Groups Faraday, Michael, 770 Fasteners, arrange, 173 act. Fats. See Lipids Fatty acids, 767, 835–836, 837 f-Block elements, 185, 916 Femtochemistry, 581 Fermentation, 847–848; alcoholic, 847; lactic acid, 848 Fermi, Enrico, 882 Fermionic condensate, 417 Ferromagnetism, 916 Fertilizers, 250, 388, 462 Fiber-optic cable, 930 Filtration, 82 Fire extinguishers, ideal gas law and, 456, 457 act. Firefly, bioluminescence, 309 Fireworks, 913 First period elements: electron configuration notation, 158 table; orbital diagrams, 158 table Fission, 111 Flame retardant fabric, 935 Flame tests, 92 act., 144 act., 907, 923 Flat-screen televisions, 925 Flavor chemist, 267 Fleming, Alexander, 18 Flexible-fuel vehicles (FFV), 549 Fluidity, 416 Fluids, 416 Fluoridation, 622 act., 942 Fluoride, 180 1038 Index
Fluorine: analytical tests for, 941; atomic properties, 941; common reactions involving, 940; electron configuration and orbital diagram, 158 table; electron-dot structure, 161 table; electronegativity of, 194, 265; isotopes, 120; physical properties, 940 Fluoroapatite, 622 act. Fog, 428 Foldables: acid-base chemistry, 633 act.; atoms, 101 act.; biomolecules, 825 act.; bond character, 239 act.; chemical reactions, 281 act.; concentration of solutions, 475 act.; electrochemical cells, 707 act.; electron configuration, 135 act.; equilibrium, changes affecting, 593 act.; functional groups, 785 act.; gas laws, 441 act.; Gibbs free energy equation, 515 act.; hydrocarbon compounds, 743 act.; hydrocarbons, 743 act.; ionic compounds, 205 act.; mole conversion factors, 319 act.; periodic trends, 173 act.; properties and changes, 69 act.; reaction rates, 559 act.; redox equations, balance, 679 act.; scientific method, 3 act.; states of matter, 401 act.; stoichiometric calculations, 367 act.; types of graphs, 31 act.; types of radiation, 859 act. Food: from fermentation, 847; homogenization, 490; measure calories in, 550 act.; preservation of, 571; test for simple sugars in, 825 act. Food scientist, 219 f orbitals, 154 Forces: balanced, 597; dipole-dipole, 269, 411, 412–413; dispersion, 269, 411, 412; intermolecular, 411–414 Forensic accelerant detection, 91 Forensics CHEMLABs: density, dating coins by, 60 act.; hydrocarbon burner gases, identify, 776 act.; identify the damaging dumper, 698 act.; water source, determine, 24 act. Forensics, luminol and, 697 Formaldehyde, 796, 797 Formic acid, 634 Formulas. See Chemical formulas; Structural formulas Formula unit, 218 Fossil fuels: natural gas, 416, 745, 747; petroleum, 747–748 Fractional distillation, 747–748 Fractionation, 747–748 Fractions, 964, 965–966 Francium, 84, 180 act., 194, 265, 906, 907 Franklin, Rosalind, 637
Free energy (G system), 546–547; calculate, 547, 548 prob.; sign of, 547, 547 table Freezing, 428 Freezing point, 428 Freezing point depression, 501–502, 502 act., 503 prob. Frequency, 137 Fructose, 832, 833 Fuel cells, 722–723, 905 Fuel rods, nuclear reactor, 880–882 Functional groups, 785 act., 786, 787 table; amide group, 800; carbonyl group, 796; carboxyl group, 798; hydroxyl group, 792 Fused-ring systems, 772 Fusion, molar enthalpy (heat) of (∆H fus), 530 Fusion nuclear reactions, 883–884 Fusion (phase change), 425–426, See also Melting
G Gadolinium, 921 Galactose, 832, 833 Gallium, 922, 923, 924 Galvanization, 727 Gamma radiation, 124, 861, 861 table, 862, 863, 888 table Gamma rays, 124, 863, 864 Garlic, 815 Gases, 72, 402–410; compression and expansion of, 72 act., 404; Dalton’s law of partial pressures and, 408, 409 prob., 410; density of, 403; diffusion and effusion of, 404–405; formation of in aqueous solutions, 281 act., 304–305, 306 prob.; gas laws. See Gas laws; identify an unknown, 466 act.; kinetic-molecular theory and, 402– 403; molar volume of, 452, 453 prob.; pressure and volume relationship (Boyle’s law), 442–443, 443 prob., 444 act.; real v. ideal, 457–459; solubility of, 495–496, 497 prob.; temperature and volume relationship, 441 act. Gas grills, 375, 461 Gas laws, 442–451; Boyle’s law (pressure and volume relationship), 442–443, 443 prob., 444 act.; Charles’s law (temperature and volume), 441 act., 444–445, 446 prob.; combined gas law, 449, 450 prob., 454; Gay-Lussac’s law (temperature and pressure relationship), 447, 448 prob.; ideal gas law, 454, 455 prob., 456; summary of, 451 table; temperature scales and, 451
Index Gasoline octane rating system Gasoline octane rating system, 748–749 Gas particles, 403; kinetic energy of, 403; motion of, 403; size of, 403 Gas pressure, 406–410; air pressure and, 406–407; Boyle’s law (pressure and volume relationship), 442–443, 443 prob., 444 act.; Charles’s law (temperature and volume), 441 act., 444–445, 446 prob.; combined gas law, 449, 450 prob., 454; Dalton’s law of partial pressures and, 408, 409 prob., 410; deep sea diving and, 408 act.; Gay-Lussac’s law (temperature and pressure relationship), 447, 448 prob.; ideal gas law, 454, 455 prob., 456 Gas stoichiometry, 460–464; industrial applications of, 464; volume-mass problems, 462, 462–463 prob.; volumevolume problems, 460–461, 461 prob. Gay-Lussac’s law, 447, 448 prob., 451 table Geckos, grip of, 271 Geiger counters, 885 Gemstones, 912 Geometric isomers, 766 Germanium, 181, 926–927, 930 Germanium tetrachloride, 930 GFP (green fluorescent protein), 309 Gibbs free energy (G system), 515 act., 546–547, 548 prob. Gibbs, J. Willard, 546 Glass, 929 Glucose, 532, 532 prob., 832, 833 Glutamic acid, 827 table Glutamine, 827 table Glycerol, 31 act., 793 Glycine, 827 table, 828 Glycogen, 834. See also Polysaccharides Goiter, 943 Gold, 228 table, 920 Gold foil experiment, Rutherford’s, 110, 111–112, 113, 862 Gold leaf, 920 Graduated cylinder, layers of liquids in, 31 act. Graham’s law of effusion, 404–405, 405 prob. Graham, Thomas, 404 Grams (g), 34 Graphite, 423 Graphite golf shafts, 928 Graphs, 55–58; bar, 56; circle, 55; interpreting, 57–58; line, 56–57, 959–963 Gravimetric analysis, 341 Gravitation, law of universal, 16 Great Smog (London), 291 Greek philosophers, ideas on structure of matter, 102–103, 103 table
Heterogeneous mixtures Green fluorescent protein (GFP), 309 Ground state, 146 Ground-state electron configuration, 143 prob. Ground-state electron configurations, 156–160; aufbau principle and, 156–157, 157 table; electron configuration notation, 158–159; exceptions to predicted, 160; Hund’s rule and, 157; noble-gas notation, 159; orbital diagrams of, 158; Pauli exclusion principle and, 157; problem-solving strategy, 160 Group 1 elements (Alkali metals), 182 table, 182–184, 192, 207 table, 208, 208 table, 906, 906–909; (representative elements), 177 Group 2 elements (Alkaline earth metals), 182, 183, 184, 207 table, 208, 208 table, 218 table, 219 table, 910–915 Group 13 elements (Boron group), 184, 207 table, 208, 208 table, 219 table, 922–925 Group 14 elements (Carbon group), 184, 207 table, 219 table, 243, 926–931 Group 15 elements (Nitrogen group), 184, 207 table, 209, 209 table, 218 table, 243, 932–935 Group 16 elements (Oxygen group), 184, 207 table, 209 table, 218 table, 243, 936–939 Group 17 elements (Halogens), 184, 207 table, 209, 209 table, 218 table, 243, 940–943 Group 18 elements (Noble gases), 180, 184, 185 table, 192, 207 table, 944–945 Groups (families), periodic table, 177; atomic radii trends, 188, 189 prob.; electron configuration and position on periodic table, 183; ionic radii trends, 191 Grove, William, 722 Guanine (G), 841 Gypsum, 490, 491, 914
H Haber-Bosch process, 290 Hahn, Otto, 111 Half-cells, 710 Half-life, 870–871, 871 table Half-reaction method, 693–694, 694 table, 695 prob. Half-reactions, 693 Halides, 214 Hall, Charles Martin, 730 Hall-Héroult process, 730–731
Halocarbons, 787 table, 787–789; alkyl halides, 787; aryl halides, 788; functional group, 787, 787 table; naming, 788; properties of, 789; substitution reactions forming, 790; uses of, 789 Halogenated hydrocarbons, 940 Halogenation, 790 Halogen functional group, 787 table, 787–788 Halogen light bulbs, 942 Halogens, 180 Halogens (Group 17 elements), 184, 207 table, 209, 209 table, 218 table, 243, 940–943 Halogens, 940–943; analytical tests for, 941; applications of, 942–943; atomic properties, 941; common reactions involving, 940; covalent bonding in, 243; physical properties of, 940; predict reactivity of, 294 act.; single-replacement reactions involving, 294, 294 act. Halothane, 790, 791 Hardness, as physical property, 73 Hard water, 24 act. HD DVDs, 924 Heart stress test, 925 Heat (q), 518. See also Thermochemistry; absorption of by chemical reactions. See Endothermic reactions; calorimetry and, 523–524, 525 prob., 550 act.; release of by chemical reactions. See Exothermic reactions; specific heat, 519–520, 521 prob., 522, 526 act.; thermochemical systems and, 523–524; units of, 518, 518 prob. Heating and cooling specialist, 527 Heating curves, 531 act. Heat of combustion (∆H comb), 529, 529 table Heat of reaction (∆H rxn), 527–528 Heat of solution, 475 act., 492 Heat-pack reaction, 527, 542 Heat-treated steel, 227 act. Heavy hydrogen (deuterium), 904 Heisenberg uncertainty principle, 151 Helium, 158 table, 159, 183, 185 table, 192, 944, 945 Hemoglobin, 623, 830 Henry’s law, 495–496, 497 prob. Heptane, 751, 751 table Héroult, Paul L. T., 730 Hertz (Hz), 137 Hess’s law, 534–536, 536 prob. Heterogeneous catalysts, 573 Heterogeneous equilibrium, 602, 603 prob. Heterogeneous mixtures, 81, 87, Index 1039
Index Hexagonal unit cells 476–478; colloids, 477, 477 table; separating components of, 82–83; suspensions, 476 Hexagonal unit cells, 421 table, 422 act. Hexane, 751 table HFCs (hydrofluorocarbons), 788 Hill, Julian, 18 HIV, 389 Homogeneous catalysts, 573 Homogeneous equilibrium, 600, 601 prob. Homogeneous mixtures, 81, 82–83, 87, 478–479 Homogenization, 490 Homologous series, 751 Hope Diamond, 40 HOPG, atomic distances in, 113 act. Hormones, 831, 839 Household items, acidity of, 633 act. How It Works: bioluminescence, 309; flexible-fuel vehicles (FFV), 549; gecko grip, 271; mass spectrometer, 125; methane digester, 775; pacemaker, 733 Hubble Space Telescope, 912 Human body, elements in, 84, 195 Human immunodeficiency virus (HIV), 389 Hund’s rule, 157 Hybridization, 262 Hybrid orbitals, 262 Hydrates, 351–354; formulas for, 351 table, 352, 353 prob., 356 act.; naming, 351; uses for, 354 Hydration (solvation in water), 489 Hydration reactions, 804, 804 table Hydrocarbons, 291, 745–749. See also specific types; alkanes. see Alkanes; alkenes. See Alkenes; alkynes, 763–764; aromatic. See Aromatic compounds; burner gas analysis, 776 act.; chirality of, 767; Foldable, 743 act.; halogenated, 940; isomers of, 765–766, 768–769; models of, 743 act., 746; refinement of petroleum, 747–748; saturated, 746; substituted. See Substituted hydrocarbons; unsaturated, 746 Hydrofluorocarbons (HFCs), 788 Hydrogen, 904–905; abundance of, 84; atomic properties, 153–155, 158 table, 904; Bohr model of, 146–148, 147 table; emission spectrum, 144, 145, 147–148, 150 act.; in human body, 195; isotopes of, 904; physical properties, 904; single-replacement reactions involving, 293; in stars, 905 Hydrogenated fats, 805 Hydrogenation, 767, 836 1040
Index
Ionization energy Hydrogenation reactions, 804 table, 804–805, 805 act. Hydrogen bonds, 411, 413–414 Hydrogen carbonate, 221 table Hydrogen cyanide, 647 Hydrogen fluoride, 244, 244 prob., 639 Hydrogen fuel cells, 905 Hydrogen peroxide, 89 Hydrometers, 37 Hydronium ions, 636, 652; calculate concentration of from pH, 655 prob.; calculate concentrations from, 651, 651 prob.; calculate pH from concentration of, 653 prob., 654 prob. Hydroxide ions, 221 table, 636, 652; calculate concentration of from pH, 655 prob.; calculate concentrations from, 651, 651 prob.; calculate pOH from concentration of, 654 prob. Hydroxyl group, 787 table, 792, 816 act. Hyperbaric oxygen therapy, 465 Hyperthermia, 583 Hypochlorite, 221 table Hypothermia, 583 Hypotheses, 13
I Ice, 420, 425–426 Ideal gas constant (R), 454, 969 table Ideal gases, real versus, 457–459 Ideal gas law, 454, 455 prob., 456; density and, 456; derive other laws from, 458; exceptions to, 458–459; fire extinguishers and, 457 act.; molar mass and, 456 Immiscible, 479 Independent variables, 14, 56 Indicators, acid-base, 658, 663, 664 Indium, 922, 923, 925 Indium-tin oxide, 925 Induced fit, 830 Induced transmutation, 875, 882; equations representing, 876 prob.; transuranium elements, 876 Industrial chemistry, 11 table, 341, 464 Infrared (Paschen) series, 147, 148, 150 act. Inhibitors, 571 Initial rates, method of, 576, 577 prob. Inner transition metals, 180, 185, 916, 917 Inorganic chemistry, 11 table Insoluble, 479 Instantaneous reaction rates, 578–579, 579 prob. Insulin, 831 Intensive properties, 73, 77
Intermediates, 580 Intermolecular forces, 411–414; covalent compounds and, 269–270; dipole-dipole, 411, 412–413; dispersion, 411, 412; evaporation and, 432 act.; grip of a gecko and, 271; hydrogen bonds, 411, 413–414 International Union of Pure and Applied Chemistry (IUPAC), naming conventions. See Naming conventions Interpolation, 57, 963 Interstitial alloys, 228 In the Field: archaeologist, 891; arson investigator, 91; art restorer, 23; crime-scene investigator, 697; environmental chemist, 505; molecular paleontologist, 849 Intramolecular forces, comparison of, 411 table Inverse relationships, 961 Iodate, 221 table Iodine, 86, 940, 941, 943 Iodine-131, 887 Iodine deficiency, 943 Ion concentration: from K sp, 617 prob., 618–619; from pH, 655, 655 prob. Ionic bonds, 210; electronegativity and, 266; energy in, 216–217, 217 table Ionic compounds, 210–215; in aqueous solutions, 300; binary, 210; formation of, 211–212, 212 prob., 216, 230 act.; formulas for, 218–219, 220 prob., 221, 221 prob., 222 prob.; lattice energies of, 216–217, 217 table; melting point of, 242 act.; milestones in understanding, 212–213; naming, 222, 223–224; oxidation number of, 219; physical properties, 212, 214–215, 230 act.; physical structure, 212–214; polyatomic. See Polyatomic ions; solvation of aqueous solutions of, 490; study organizer, 205 act. Ionic crystals, 215 Ionic equations, 301, 302 prob., 304 prob.; complete, 301; for reactions forming gases, 304–305, 306 prob.; for reactions forming water, 303, 304 prob.; net, 301 Ionic liquids, 229 Ionic radii, periodic table trends, 189– 191, 189–191 Ionic solids, 422, 422 table, 423 Ionization constants. See Acid ionization constant; base ionization constant Ionization energy, 191–194; chemical bonds and, 207; periodic table trends, 193
Index Ionizing radiation
Lithium batteries
Ionizing radiation, 885, 886; biological effects of, 888–890; medical uses of, 886–887 Ion product constant (Q sp), 618–619, 619 prob. Ion product constant for water, 650– 651, 651 prob. Ions, 189; anion formation, 209; cation formation, 207; formula for monatomic, 218–219; ionic radii periodic table trends, 189–191; metal, 208; monatomic. See Monatomic ions; naming, 222–223; oxidation number of, 219; polyatomic, 221, 222 prob.; pseudo-noble gas configuration, 208; stability of, 240; transition metal, 208 Iron: in acid mine waste, 920; Earth’s core and, 919; as paint pigment, 919; redox reactions oxidizing, 693 table; rust formation, 74, 77, 679 act. Iron oxide. See Rusting Isobutane, 752 Isomers, 765; cis-, 766; geometric, 766; optical, 768–769; stereoisomers, 766; structural, 765; trans-, 766; trans-fatty acid, 767 Isopropyl alcohol, 432 act. Isopropyl group, 753 table Isotopes, 117, 118 prob.. See also Radioactivity; abundance of, 117, 120; atomic mass and, 117, 118 act., 119–120, 121 prob., 126 act.; mass of, 117; modeling, 120 act.; notation for, 117; radioactive. See Radioisotopes IUPAC naming conventions. See Naming conventions
J James Webb Space Telescope (JWST), 912 Jin, Deborah S., 417 Joule (J), 142, 518
K Kekule, Friedrich August, 771 Kelvin (K), 35, 451 Kelvin scale, 35, 451 Ketones, 787 table, 797, 797 table Kilns, 461 Kilocalorie (kcal), 518 Kilogram (kg), 34 Kilometer (km), 33 Kinetic energy (KE), 516–517; kineticmolecular theory and, 402, 403, 517; voltaic cells and, 710 Kinetic-molecular theory, 402–403; assumptions of, 403; compression and
expansion of gases and, 404; density of gases and, 403; diffusion and effusion of gases and, 404–405; liquids and, 415 Knocking, 748 Krypton, 185 table, 944, 945 Kwolek, Stephanie, 491
L Lab activities. See CHEMLABs; Data Analysis Labs; Launch Labs; MiniLabs; Problem-Solving Labs Laboratory safety, 18, 19 table Lactic acid fermentation, 848 Lactose, 833 Lanthanide series, 180, 185, 916 Large Hadron Collider, 111 Laser scissors, 163 Lattice energy, 216–217, 217 table Launch Labs: arrange items, 173 act.; atomic structure, 135 act.; chemical change, evidence of, 281 act.; chemical change, observe, 69 act.; chemical cold pack, 515 act.; chemical reaction, observe, 367 act.; covalent bonding (super ball properties), 239 act.; electrical conductivity of solutions, 205 act.; electric charge, observe, 101 act.; equilibrium point, 593 act.; hydrocarbons, model, 743 act.; lemon battery, 707 act.; liquids, layering of (density), 31; liquids, properties of, 401 act.; mole conversion factors, 319 act.; nuclear chain reactions, 859 act.; reaction rates, speeding, 559 act.; rust formation, 679 act.; slime, make, 785 act.; solution formation, energy change and, 475 act.; sugars, test for simple, 825 act.; temperature and gas volume (Charles’s Law), 441 act.; viscosity of liquids, 401 act.; Where is it? (conservation of matter), 3 act. Lavoisier, Antoine, 79, 174, 174 table, 184, 290 Law, 16 Law of chemical equilibrium, 599–600 Law of conservation of energy, 517 Law of conservation of mass, 77, 78 prob., 79; balancing equations and, 285, 288; Dalton’s experimental evidence of, 105; molar mass and, 335; stoichiometry and, 368 Law of definite proportions, 87–88 Law of multiple proportions, 89–90 Law of octaves, 175 Law of universal gravitation, 16 Lawrencium, 921 LCD panels, 925
Lead, 229, 926–927, 930; poisoning, 229 Lead-acid storage batteries, 720–721, 930 Lead shot, 228 table Le Châtelier, Henri-Louis, 607 Le Châtelier’s principle, 607; chemical equilibrium and, 606–611; common ion effect and, 620–621; ion-product of water and, 650, 650 prob.; molar solubility and, 624 act. Lecithin, 431 Lemon battery, 707 act. Length, 33, 33 table LEO GER, 681 Lewis, G. N., 161, 212, 641 Lewis model, 641–643, 642 table Lewis structures, 242, 244 prob., 253– 260. See also Electron-dot structures; covalent compound with multiple bond, 256 prob.; covalent compound with single bond, 255 prob.; modeling, 272 act.; octet rule exceptions and, 258–259, 260 prob.; polyatomic ions, 256, 257 prob.; resonance and, 258 Light: continuous spectrum of, 138; dual nature of, 143; electromagnetic spectrum, 138–139; particle nature of, 141–143; speed of (c), 137; visible spectrum of, 139; wave nature of, 137–139, 140 prob., 143 “Like dissolves like”, 489 Limestone, 635, 643 Limiting reactants, 379–381; calculating product with, 380–381, 382–383 prob.; determining, 380 Linear molecular shape, 261, 263 table Line graphs, 56–57, 58, 959–963 Line, slope of, 57, 962 Line spectra. See Emission spectra Lipid bilayer, 838 Lipids, 13 act., 830, 835–839; fatty acids, 835–836, 837; phospholipids, 838; saponification of, 837, 837 act.; steroids, 839; triglycerides, 836–837; waxes, 838 Liquids, 71, 415–419; adhesion and cohesion of, 419; attractive forces in, 417; capillary action, 419; compression of, 415; density of, 31 act., 415; evaporation of, 426–427, 432 act.; fluidity of, 416; properties of, compare, 401 act.; shape and size of particles in, 417; surface tension, 418–419; viscosity of, 401 act., 417, 418 Liter (L), 35 Lithium, 136, 158 table, 161 table, 177, 226 table, 906, 907, 913 Lithium batteries, 721–722, 908 Index 1041
Index Litmus paper
Molal boiling point elevation constant
Litmus paper, 633 act., 635, 658 Logarithms, 966–967 London forces. See Dispersion forces London, Fritz, 412 Lowry, Thomas, 638 LP (liquefied propane) gas, 750 Luciferin, 309 Luminol, 697 Lunar missions, oxygen in moon rocks, 387 act. Lyman (ultraviolet) series, 147, 148, 150 act. Lysine, 827 table
M Magnesium, 159 table, 177, 910–911, 912, 913 Magnesium oxide, 210, 217 table Magnetic resonance imaging, 921 Malleability, 226 Manganese, 918, 920 Manhattan Project, 882 Manometers, 407 Mass, 9–10; determine from density and volume, 38 prob.; identify an unknown by, 50 act.; law of conservation of, 77, 78 prob., 79, 105; massto-atom conversions, 329–330, 330 prob.; mass-to-mole conversions, 329 prob.; mass-to-mole conversions for compounds, 337, 337 prob.; mass-tomoles-to-particles conversions, 338, 338–339 prob.; molar. See Molar mass; mole-to-mass conversions, 328 prob.; SI base unit for, 33 table, 34; volumemass gas stoichiometry, 462, 462–463 prob.; weight v., 9–10 Mass defect, 877 Mass number, 117, 118 prob. Mass spectrometry, 125, 327 Mass-to-mass stoichiometric conversions, 374, 377, 377 prob. Material Safety Data Sheets (MSDS), 59 Materials scientist. See Careers in Chemistry; In the Field Math Handbook, 946–967; algebraic equations, 954–955, 955 prob.; antilogarithms, 967; dimensional analysis, 956 prob.; fractions, 964, 965–966; line graphs, 959–963; logarithms, 966–967; percents, 965; ratios, 964; scientific notation, 946–948; significant figures, 949–950, 951 prob.; square and cube roots, 949; unit conversion, 957–958, 958 prob. Matter: categories of, 87; characteristics of, 9–10; chemical changes in, 69 act., 1042 Index
77; chemical properties of, 74; Greek philosophers’ theories of, 102–103; mixtures of. See Mixtures; physical changes in, 76–77; physical properties of, 73; properties of, observe, 74–75; pure substances. See Pure substances; states of. See States of matter; study of chemistry and, 4 Maxwell, James, 402 Measurement, 295; accuracy of, 47–48; precision of, 47–48; significant figures and, 50–51; units of, 32–37 Medicinal chemist, 342 Meitner, Lise, 111 Melting, 425–426, 530 Melting point, 77, 426 Melting points: of alkanes, 758; bond type and, 242 act.; of covalent compounds, 270; of metals, 226, 226 table; as physical property, 73 Mendeleev, Dmitri, 85, 175, 176 table, 184 Mercury, 73 table, 226 Mercury(II) oxide, 79 Metabolism, 844–848; anabolism, 844–845; ATP and, 845; catabolism, 844–845; cellular respiration, 846; fermentation, 847–848; photosynthesis, 846 Metal alloys, 227–228 Metal carbonates, 635 Metal ions: formation of, 208; monatomic, 218, 219, 219 table Metallic bonds, 225 Metallic hydroxids, 648 Metallic solids, 422, 422 table, 423 Metalloids, 181, 196 act. Metallurgist, 423 Metals, 177. See also Alkali metals; Alkaline earth metals; Inner transition metals; Transition metals; acidbase reactions and, 635; activities of, 310 act.; boiling points, 226, 226 table; bonding in, 225; ductility of, 177, 226; durability of, 226; electrical conductivity of, 177, 226; fireworks and, 913; hardness and strength of, 226; malleability of, 177, 226; melting points, 226, 226 table; periodic table position, 177; properties of, 177, 196 act., 226, 226 table; purification of by electrolysis, 731–732; reactivity of, 293–294, 310 act.; single-replacement reactions involving, 293–294; specific heat of, 526 act.; thermal conductivity of, 226 Meteorologist, 447 Meter (m), 33, 33 table Methanal, 796
Methane, 243, 244, 245, 291, 745, 747, 750, 751, 751 table Methane digester, 775 Methanol, 793, 816 act. Method of initial rates, 576, 577 prob. Methylbenzene, 772 Methyl chloroform, 20 Methyl group, 753 table Methyl red, 662 Meyer, Lothar, 175, 176 table, 184 Microbes, electric current from, 724 act. Microchips, 919 Microwaves, 137, 140 prob. Midgley, Thomas Jr., 7 Milligrams (mg), 34 Millikan, Robert, 109 Milliliters (ml), 33 table, 36 Millimeter (mm), 33, 33 table Mineralogists, 214 Minerals, 383; classification of, 214; crystal lattice structure, 214 Mineral supplements, 220 MiniLabs. See also CHEMLABs; Data Analysis Labs; Problem-Solving Labs; acid strengths, compare, 648 act.; bond type and melting point, 242 act.; chemical equilibrium, stress and, 611 act.; corrosion, 726 act.; crystal unit cells, model, 422 act.; density of unknown objects, 39 act.; esters, recognize, 800 act.; ethyne, synthesize and observe, 762 act.; flame test, 144 act.; freezing point depression, 502 act.; halogens, predict reactivity of, 294 act.; heat-treated steel, properties of, 227 act.; isotopes, model, 120 act.; molar volume and mass (fire extinguisher), 457 act.; observation skills, develop, 13 act.; paper chromatography, 82 act.; percent composition of chewing gum, 342 act.; periodic trends, model, 193 act.; precipitateforming reaction, observe, 301 act.; radioactive decay, model, 873 act.; reaction rate and temperature, 571 act.; saponification (soap making), 837 act.; specific heat, 526 act.; stoichiometry of baking soda decomposition, 378 act.; tarnish removal (redox reaction), 683 act. Miscible, 479 Mixtures, 80–83, 87; heterogeneous, 81, 476–478; homogeneous, 81, 478–479; separate components of, 80, 82 act., 82–83 Mobile phase, chromatography, 83 Model, 10, 15 Molal boiling point elevation constant (K b), 500, 500 table, 976 table
Index Molal freezing point elevation constant Molal freezing point elevation constant (K f), 502, 502 table, 976 table Molality (m), 480 table, 487, 487 prob. Molar calculations, history in a glass of water and, 355 Molar enthalpy (heat) of condensation, 530 Molar enthalpy (heat) of fusion, 530 Molar enthalpy (heat) of vaporization, 530, 531 act. Molarity (M), 480 table, 482, 483 prob.; from titration, 663, 664 prob., 670 act. Molar mass, 326–332; atom-to-mass conversions, 331 prob.; of compounds, 335, 335 prob.; effusion rate and, 404, 405 prob.; ideal gas law and, 456; mass-to-atom conversions, 329–330, 330 prob.; mass-to-mole conversions, 329 prob.; mole-to-mass conversions, 327–328, 328 prob.; nuclear model of mass and, 326 act. Molar solubility, 615–617, 616 prob., 621, 624 act. Molar solutions, preparation of, 484, 485, 486 prob. Molar volume, 452, 453 prob., 969 table Mole (mol), 321–324; chemical formulas and, 333–334, 334–335 prob.; conversion factors, 319 act.; convert particles to, 323, 323 prob., 324 prob.; convert to particles, 322; as counting unit, 319 act., 320; mass-to-mole conversions, 329 prob.; mass-to-mole conversions for compounds, 337, 337 prob.; mass to moles to particles conversions, 338, 338–339 prob.; molar mass and, 326–332; mole-to-mass conversions, 327–328, 327–328, 328 prob.; mole-to-mass conversions for compounds, 336, 336 prob. Molecular compounds: in aqueous solutions, 299; formation of, 241; formulas from names of, 251; Lewis structures for, 253–260, 255 prob., 256 prob., 257 prob., 258 prob., 260 prob.; naming, 248–251, 249 prob., 252; shape of (VSEPR model), 261–262, 263 table, 264 prob., 272 act.; solvation of aqueous solutions of, 491 Molecular formulas, 253, 346–347; of organic compounds, 746; from percent composition, 346–347, 348–349 prob. Molecular manufacturing, 107 Molecular paleontologist, 849 Molecular shape, 261–262, 263 table, 264 prob., 267–268 Molecular solids, 422, 422 table
Nylon Molecules, 241; diatomic, 241; shape of, 261–262, 263 table, 264 prob., 267–268 Mole fraction, 480 table, 488, 488 prob. Mole ratios, 371–372, 390 act. Mole-to-mass stoichiometric conversions, 374, 376, 376 prob. Mole-to-mole stoichiometric conversions, 373–374, 375 prob. Monatomic ions, 218; formulas for, 218–219; oxidation number of, 219 Monoclinic unit cells, 421 table, 422 act. Monomers, 810 Monoprotic acids, 640, 641 table Monosaccharides, 825 act., 832–833 Montreal Protocol, 20 Moon rocks, oxygen in, 387 act. Moseley, Henry, 115, 176, 176 table, 184 Mothballs, 428 Motor oil, viscosity of, 417, 418 Multidrug therapy, 389 Multiple covalent bonds, 245–246 Multiplication, 54, 54 prob.
N Naming conventions: acids, 250–251, 250–251, 252; alcohols, 793; aldehydes, 796; alkenes, 760, 761 prob.; alkynes, 764; amides, 800; amines, 795; aromatic compounds, 772–773, 773 prob.; binary molecular compounds, 248–250, 249 prob., 252; branchedchain alkanes, 752–753, 754–755 prob.; carboxylic acids, 798; cycloalkanes, 756, 756–757 prob.; esters, 799; halocarbons, 788; hydrates, 351; ionic compounds, 223–224; ions, 222–223; ketones, 797; oxyanions, 222 table, 222–223; straight-chain alkanes, 751 Nanoparticles, 216 act. Nanotechnology, 107 Nanotubes, 928 Naphthalene, 772 National Oceanic and Atmospheric Administration (NOAA), 20, 21 act. Natural gas, 416, 745, 747 Negatively charged ions. See Anions Neon, 143, 158 table, 161 table, 185 table, 944, 945 Net ionic equations, 301, 302 prob., 304 prob. Net ionic redox equations, balancing, 691, 692 prob. Network solids, 270 Neutralization equations, 659–660 Neutralization reactions, 659–660 Neutral solutions, 636
Neutron activation analysis, 886, 891 Neutrons, 113, 114 table, 119, 969 table Neutron-to-proton ratio, nuclear stability and, 865, 866 Newlands, John, 175, 176 table Newton, Sir Isaac, 16 NiCad batteries, 720 Nickel, 919 Night-vision lenses, 930 Nitrate, 221 table Nitrite, 221 table Nitrogen, 158 table, 161 table, 195, 932, 933, 934 Nitrogen cryotherapy, 934 Nitrogen-fixation, 462, 934 Nitrogenous bases, 841, 843 Noble gases (Group 18), 180, 183, 184, 185 table, 207, 944–945 Noble-gas notation, 159 Nonane, 751 table Nonmetals, 180; ions of, 209; periodic table position, 177; properties of, 196 act. Nonpolar covalent bonds, 266 Nonpolar molecules, 267–268, 269 Nuclear atomic model, 112–113, 136 Nuclear chain reactions. See Chain reactions Nuclear equations, 123, 869, 869 prob. Nuclear fission, 878–880; chain reactions and, 879–880; nuclear reactors and, 880–882 Nuclear fusion, 883–884 Nuclear power plants, 878, 880–882 Nuclear reactions, 122; balanced equations representing, 863, 869, 869 prob.; chain reactions, 859 act., 879– 880; chemical reactions vs., 860 table; induced transmutation, 875–876, 876 prob.; mass defect and binding energy, 877–878; milestones in understanding, 882–883; nuclear fission, 878–880; nuclear fusion, 883–884; radioactive decay series, 870; thermonuclear reactions, 883 Nuclear reactors, 878, 880–882 Nuclear stability, 124, 865–866 Nuclear waste, storage of, 882 Nucleic acids, 636, 840–843; DNA, 841–842, 842 act.; RNA, 843 Nucleons, 865 Nucleotides, 840 Nucleus (atomic), 112; discovery of, 112; nuclear model of mass and, 326 act.; size of, 112 Nutritional calories, 518 Nylon, 18, 594, 811
Index 1043
Index Observation
Phase changes
O Observation, 13, 13 act. Oceans: elements in, 901; sequestration of carbon dioxide in, 505 Octahedral molecular shape, 261, 263 table Octane, 751, 751 table Octane rating system, 748–749 Octet rule, 193, 240; exceptions to, 258–259, 260 prob. Odor, 73, 283 Oil drop experiment, Milikan’s, 109 Oil of wintergreen, 800 act. Oleic acid, 835 Optical isomers, 768–769 Optical rotation, 769 Orbital diagrams, 158, 158 table, 159 table Orbitals, 152, 154, 262 Order of operations, algebraic, 954–955, 955 prob. Ores, 731–732 Organic chemistry, 11 table, 745 Organic compounds, 744–745. See also Hydrocarbons; carbon-carbon bonds in, 746; models of, 746; reactions forming. See Organic reactions Organic reactions: addition reactions, 804–805; condensation reactions, 801; dehydration reactions, 803; dehydrogenation reaction, 803; elimination reactions, 802; oxidation reduction reactions, 806–807; products of, predict, 807–808; substitution reactions, 790–791 Organosilicon oxide, 239 act. Orthorhombic unit cell, 421 table, 422 act. Osmosis, 504 Osmotic pressure, 504 Overall equations, 307 Oxalic acid, 798 Oxidation, 681 Oxidation number, 219, 682; determine, 686, 686 table, 687 prob.; monatomic ion formulas and, 219; in redox reactions, 688; of various elements, 688 table Oxidation-number method, 689, 689 table, 690 prob. Oxidation reduction reactions, 680. See also Redox reactions Oxidizing agent, 683 Oxyacids, 250–251, 252 Oxyanions, 222, 223 Oxygen: abundance of, 84; analytical
1044
Index
tests for, 937; atomic properties, 937; common reactions involving, 936– 937; diatomic, 241; electron configuration and orbital diagram, 158 table; electron-dot structure, 161 table; in human body, 195, 623; photosynthesis and, 846, 912, 938; physical properties, 73 table, 936 Oxygen group (group 16), 184, 207 table, 209 table, 218 table, 243, 936–939 Ozone, 5, 6, 21 act., 938 Ozone depletion, 20–21 Ozone hole, 7, 20–21, 21 act. Ozone layer, 5–8, 938; chlorofluorocarbons (CFCs) and, 7–8, 20; formation of ozone in, 6; thinning of, 7, 20, 21 act.
P PA-457 anti-HIV drug, 389 Pacemakers, 733 Pain receptors, temperature and, 815 Painting restoration, 23 Paint pigments, 919 Paleontologist, 849 Papain, 829 Paper chromatography, 82 act., 83, 269 act. Paraffin, 270 Paramagnetism, 916, 917 Parent chain, 752 Partial pressure, Dalton’s law of, 408, 409 prob., 410 Particle accelerators, 875 Particle model of light, 141–143 Particles: convert moles to, 322, 323 prob.; convert to moles, 323, 324 prob.; counting, 320–321; mass-tomoles-to-particles conversions, 338, 338–339 prob.; representative, 321 Pascal (Pa), 407 Paschen (infrared) series, 147, 148, 150 act. Pasteur, Louis, 767 Pauli exclusion principle, 157 Pauling, Linus, 194, 771 Paulings, 194 Pauli, Wolfgang, 157 p-Block elements, 184 Penetrating power, 864; of alpha particles, 862; of beta particles, 863; of X rays, 864 Penicillin, 18 Pennies: dating by density, 60 act.; model isotopes with, 120 act. Pentane, 751, 751 table Peptide bond, 827–828
Peptides, 828 Percent by mass concentration ratio, 87–88, 480 table Percent by volume concentration ratio, 480 table, 482, 482 prob. Percent composition, 341–342; from chemical formula, 342, 343 prob.; empirical formula from, 344, 345 prob.; from experimental data, 341–342, 342 act.; molecular formula from, 346–347, 348–349 prob. Percent error, 48–49, 49 prob. Percents, 965; as conversion factors, 44 Percent yield, 386, 386 prob., 388 Perchlorate, 221 table Perfumes, 770 Periodic law, 176 Periodic table of the elements, 85, 173 act., 174–177, 178–179, 180–181; atomic radii trends, 187–188, 189 prob.; blocks on, 183–185; boxes on, 177; electron configuration of elements and, 182–185, 186 prob.; electronegativity trends, 194, 265; groups (families), 177; history of development of, 174–177, 176 table, 184–185; ionic radii trends, 189–191; ionization energy trends, 193; model periodic trends, 193 act.; model trends, 173 act.; nonmetals, 180; periods (rows), 177, 182; predict element properties from, 180 act. Periods, periodic table, 85, 177; atomic radii trends, 188, 189 prob.; electron configuration, 182 table; ionic radii trends, 190; ionization energies, 192 table; valence electrons and, 182 Permaganate, 221 table Perspiration, 426 Petroleum, 747–749, 790 Petroleum technician, 748 PET scans, 888 Pewter, 228 table pH, 652, 653; acid ionization constant (K a) from, 656, 657 prob.; of familiar substances, 652; of household items, 633 act.; ion concentration from, 655, 655 prob.; from ion concentrations, 653 prob., 654 prob.; measurement of, 633 act., 635, 658 Pharmacist, 381 Pharmacy technician, 483 Phase changes, 76–77, 425–430; boiling, 427; condensation, 428; deposition, 429; evaporation, 426–427, 432 act.; freezing, 428; melting, 425–426; phase diagrams and, 429–430; six possible transitions, 425; sublimation, 428;
Index Phase diagrams thermochemical equations for, 530– 531, 531 act.; vaporization, 426–427 Phase diagrams, 429–430 Phenanthrene, 772 Phenolthphalein, 658, 662 Phenylalanine, 827 table, 828 pH meters, 637, 658 Phosphate ion structure, 257 prob. Phosphates, 250 Phospholipases, 838 Phospholipids, 838 Phosphoric acid, 634 Phosphors, 180, 886 Phosphorus, 159 table, 932, 933, 934 Phosphorus trihydride, 264 prob. Photocopies, 939 Photoelectric effect, 142–143 Photoelectrons. See Electrons Photons, 143, 143 prob. Photosynthesis, 846, 912, 938 Photovoltaic cells, 142, 522 pH paper, 633 act., 635, 658 pH scale, 636 Physical changes, 76–77 Physical chemistry, 11 table Physical constants, 969 table Physical properties, 73; of common substances, 73 table; extensive, 73; intensive, 73, 77; mineral identification by, 73; observe, 74–75 Pi bond, 245–246 Pie charts, 55 Planck, Max, 141–142 Planck’s constant, 142, 969 table Plants: hydrogen cyanide in, 647; nitrogen-fixation, 462, 934; photosynthesis, 846, 912, 938; waxes, 838 Plasma, 71, 417 Plastics, 789, 802, 810–811, 814 Plastic viscosity, 431 Platinum, 918 Plum pudding model, 110 pOH, 652, 653, 654 prob. Polar covalent bonds, 266, 267–268 Polarized light, 769 Polar molecules, 267–268; chromatograms and, 269 act.; ideal gas law and, 459; shape of, 267–268; solubility of, 268 Polonium, 882, 936, 937 Polyacrylonitrile, 812 table Polyatomic ions, 221, 970 table; common, 221 table; formulas for, 221, 222 prob.; Lewis structures, 256, 257 prob.; naming, 222–223 Polycarbonate, 809 Polycyclic aromatic hydrocarbons (PAHs), 807
Practice Problems Polyethylene, 762, 810, 811 Polyethylene terephthalate (PET), 810, 812 table Polymer chemist, 813 Polymer chemistry, 11 table Polymerization reactions, 810–811 Polymers, 809–814; antimicrobial properties of, 216 act.; common, 812 table; milestones in understanding, 810–811; properties of, 813; reactions forming, 810–811; recycling of, 814; synthetic, 809 Polymethyl methacrylate, 812 table Polypeptides, 828 Polyphenols, 662 Polypropylene, 812 table Polyprotic acids, 640–641, 641 table Polysaccharides, 833–834 Polyurethane, 812 table Polyvinyl chloride (PVC), 812 table Polyvinylidene chloride, 812 table Popcorn, 466 act. p orbitals, 154 Positive ions. See Cations Positron, 868 Positron emission, 868, 868 table, 888 Positron emission transaxial tomography (PET), 888 Potassium, 86, 117, 136, 906, 907 Potential energy, 516–517 Potter, 682 Pottery kilns, 461 Practice Problems: acid-metal reactions, 635 prob.; acids, naming, 251 prob.; aromatic compounds, naming, 773 prob.; atomic mass, 121 prob.; atomic number, 116 prob., 118 prob.; atomic radii trends, 189 prob.; atoms-tomass conversions, 331 prob.; average reaction rates, 563 prob.; balanced chemical equations, interpret, 371 prob.; binary molecular compounds, naming, 249 prob.; Boyle’s law (pressure and volume relationship), 443 prob.; branched-chain alkanes, naming, 755 prob.; branched-chain alkenes, naming, 761 prob.; calorimetry data, 525 prob.; Charles’s law, 446 prob.; chemical equations, write, 287 prob.; chemical reactions, classify, 291 prob.; combined gas law, 450 prob.; conjugate acid-base pairs, 640 prob.; cycloalkanes, naming, 757 prob.; decomposition reactions, 292 prob.; dilute stock solutions, 486 prob.; double-replacement reactions, 297 prob.; electron configuration and the periodic table, 186 prob.; electron-
dot structures, 162 prob.; empirical formula from mass data, 350 prob.; empirical formula from percent composition, 346 prob.; energy released by reaction, 532 prob.; energy units, convert, 519 prob.; equilibrium concentrations, 613 prob.; equilibrium constant expressions, 601 prob., 603 prob.; equilibrium constants, value of, 605 prob.; expanded octets, 260 prob.; formulas from names of molecular compounds, 251 prob.; freezing and boiling point depressions, 503 prob.; gas-forming reactions, 306 prob.; Gay-Lussac’s law, 448 prob.; Graham’s law of effusion, 405 prob.; groundstate electron configuration, 160 prob.; half-cell potentials, 716 prob.; half-reaction method, 695 prob.; halocarbons, naming, 788 prob.; Henry’s law, 497 prob.; Hess’s law, 537 prob.; hydrate, determine formula for, 353 prob.; ideal gas law, 455 prob.; induced transmutation, 876 prob.; instantaneous reaction rates, 579 prob.; ion concentrations, 617 prob.; ion concentrations from pH, 655 prob.; ionic compound formation, 212 prob.; ionic compounds, formulas for, 221 prob., 222 prob.; ionic compounds, naming, 223 prob.; ionization constant of water, 651 prob.; ionization equations and base ionization constants, 649 prob.; isotopes, amount of remaining, 872 prob.; law of conservation of mass, 78 prob.; law of definite proportions, 88 prob.; Lewis structures, 244 prob., 255 prob., 256 prob., 257 prob., 258 prob., 260 prob.; limiting reactant, determine, 383 prob.; mass number, 118 prob.; mass-to-mass stoichiometry, 377 prob.; mass-tomole conversions, 329 prob.; massto-mole conversions for compounds, 337 prob.; mass-to-moles-to-particles conversions, 339 prob.; molality, 487 prob.; molarity, 483 prob.; molarity from titration data, 664 prob.; molar mass and, 335 prob.; molar solubility, 616 prob.; molar solutions, 484 prob.; molar volume, 453 prob.; molecular shape, 264 prob.; mole fraction, 488 prob.; mole ratios, 372 prob.; mole relationships from a chemical formula, 335 prob.; moles, convert to particles, 323 prob.; mole-to-mass conversions, 328 prob.; mole-to-mass conversions for compounds, 336 Index 1045
Index Precipitates prob.; mole-to-mass stoichiometry, 376 prob.; mole-to-mole stoichiometry, 375 prob.; nuclear equations, balancing, 869 prob.; oxidation number, 687 prob.; oxidation-number method, 690 prob., 692 prob.; oxidation-reduction reactions, 685 prob.; partial pressure of a gas, 409 prob.; particles, convert to moles, 324 prob.; percent by mass, 481 prob.; percent by volume, 482 prob.; percent composition, 344 prob.; percent yield, 387 prob.; pH, acid dissociation constant from, 657 prob.; pH from [H +], 653 prob.; photon, energy of, 143 prob.; pOH and pH from [OH -], 654 prob.; precipitate-forming reactions, 302 prob.; precipitates, predicting, 619 prob.; rate laws, 577 prob.; reaction spontaneity, 545 prob., 548 prob.; resonance structures, 258 prob.; salt hydrolysis, 665 prob.; single-replacement reactions, 295 prob.; skeleton equations, 284 prob.; specific heat, 521 prob.; standard enthalpies of formation, 541 prob.; volume-mass gas stoichiometry, 463 prob.; volume-volume problems, 461 prob.; water-forming reactions, 304 prob.; wavelength, 140 prob. Precipitates, 296; determine with K sp, 618, 619 prob.; reactions in aqueous solutions forming, 300, 301 act., 302 prob. Precipitation, 428 Precision, 47–48, 50 Pressure, 406; chemical equilibrium and, 608–609; combined gas law and, 449, 450 prob.; extreme and ideal gas law, 458, 466 act.; gas temperature and (Gay-Lussac’s law), 447, 448 prob.; gas volume and (Boyle’s law), 442–443, 443 prob., 444 act.; partial pressure of a gas, 408, 409 prob., 410; popcorn popping and, 466 act.; solubility of gases and (Henry’s law), 495–496, 497 prob.; units of, 407, 407 table Primary batteries, 720 Principle energy levels, 153, 154 Principle quantum numbers (n), 153 Problem-Solving Labs: Bohr model of the atom, 150 act.; Boyle’s law and breathing, 444 act.; decomposition rate, variation in, 566 act.; DNA replication, 842 act.; elements, predict properties of by periodic table position, 180 act.; fluoride ions and prevention of tooth decay, 622 act.; francium, predict properties of, 180 1046 Index
Rate constant act.; gas, release of compressed, 72 act.; identify an unknown by mass and volume, 50 act.; molar enthalpy (heat) of vaporization, 531 act.; molar mass, Avogadro’s number, and atomic nucleus, 326 act.; pH of blood, 668 act.; radiation exposure, distance and, 890 act.; rate of decomposition of dinitrogen pentoxide, 566 act. Problem-Solving Strategies: groundstate electron configuration, 160; halogens, predict reactivity of, 294 act.; ideal gas law, derive other laws from, 458; ionic compound naming flowchart, 224; Lewis structures, 254; mass defect and binding energy, 878; molarity from titration, 663; molar solubility, streamlining calculation of, 621; potential of voltaic cell, 717; redox equations, balance, 696; rounding numbers, 52; significant figures, recognizing, 51; stoichiometry, 374 Products, 77, 283; addition of and chemical equilibrium, 608; calculating when reactant is limiting, 380–381, 382–383 prob.; identifying, 92 act.; predicting, 298, 298 table; removal of and chemical equilibrium, 608 Propane, 750, 751, 751 table; chemical equation for, 370 prob.; gas grills and, 375 Propanol, 816 act. Propene, 759 table Propyl group, 753 table Proteins, 826–831; amino acid building blocks, 826–827; denaturation of, 829; enzymes, 826, 829–830; peptide bonds in, 827–828; polypeptides, 828; protein hormones, 831; structural proteins, 831; three-dimensional structure, 829; transport proteins, 830 Protium, 904 Protons, 113, 114 table, 119, 969 table Prussian blue, 916 Pseudo-noble gas configurations, 208 PTFE (nonstick coating), 811 Pure covalent bond, 266 Pure research, 17 Pure substances, 70, 87. See also Substances; compounds. See Compounds; elements. See Elements; mixtures of. See Mixtures; physical properties of, 73 Putrescine, 795
Q Qualitative data, 13 Quantitative data, 13 Quantized energy, 141–143, 146 Quantum, 141–142 Quantum mechanical model of atom, 149–152 Quantum number (n), 147 Quarks, 111, 114
R Rad, 889 Radiation, 122; alpha, 123, 124 table, 861, 861 table, 862, 888 table; average annual exposure to, 890 table; beta, 123, 124 table, 861, 861 table, 862, 863, 888 table; biological effects of, 888–890, 889 table; detection of, 885– 886; discovery of, 860–861; distance and, 889 act., 890; dose of, 889–890; gamma, 124, 861, 861 table, 862, 863, 888 table; intensity of and distance, 889 act., 890; ionizing, 885; medical uses of, 886–887; neutron activation analysis, 891; scientific uses of, 886; types of, 123–124, 859 act., 861 table, 861–864 Radiation-detection tools, 885–886 Radiation therapist, 887 Radiation therapy, 887 Radioactive decay, 122, 861; model, 873 act.; nuclear stability and, 865–866; radiochemical dating and, 873–874; rate of, 870–871, 872 prob., 873–874; transmutation, 865; types of, 866–868, 868 table Radioactive decay series, 870 Radioactivity, 122. See also Radiation; detection of, 885–886; discovery of, 860–861, 915 Radiocarbon dating. See Carbon dating Radiochemical dating, 873–874 Radioisotopes, 861; half-life of, 870–871, 871 table; medical uses of, 887–888; radioactive decay of. See Radioactive decay; radiochemical dating and, 873–874 Radiotracers, 887 Radium, 882, 910–911, 915 Radium-226, 862 Radon, 944 Radon gas, 915 Rainbows, 138 Rare Earth elements. See f-Block elements Rate constant (k), 574
Index Rate-determining steps Rate-determining steps, 581–582 Rate laws, 574–576 Rates, reaction. See Reaction rates Ratios, 964 Reactants, 77, 283; addition of and chemical equilibrium, 607; calculate product when limited, 380–381, 382–383 prob. Reaction mechanisms, 580–582; complex reactions, 580; intermediates, 580; rate-determining steps, 581–582 Reaction order, 575–577; determination of, 576, 577 prob.; first-order reaction rate laws and, 575; other-order reaction rate laws and, 575–576 Reaction rate laws. See Rate laws Reaction rates, 561–567; activation energy and, 564–566; average rate of, 560–562, 562 prob.; catalysts and, 571–573; collision theory and, 563, 564; concentration and, 569, 584 act.; decomposition of dinitrogen pentoxide, 565 act.; factors affecting, 559 act.; inhibitors and, 571; instantaneous, 578–579, 579 prob.; ratedetermining steps, 581–582; rate laws, 574–576; reactivity of reactants and, 566–567; speeding, 559 act.; spontaneity and, 542–545, 566–567; surface area and, 569–570; temperature and, 570, 571 act. Reaction spontaneity (∆G), 542–545; Earth’s geologic processes and, 545; entropy and, 544–545, 545 prob.; free energy and, 548 prob.; Gibbs free energy and, 546–547; reaction rate and, 566–567 Real-World Chemistry: algal blooms and phosphates, 250; ammoniated cattle feed, 601; book preservation and, 661; cathode ray, 108; chrome and chromium, 328; clay roofing tiles, 302; enzymes (papain), 829; food preservation, 571; fuel cells, 722; gas grills, 375, 461; Gay-Lussac’s law and pressure cookers, 448; hydrogen cyanide, 647; iron oxidation, 685; kilns, 461; liquid density measurement, 37; mineral identification, 73; mineral supplements, 220; perspiration, 426; photoelectric effect, 142; polycyclic aromatic hydrocarbons (PAHs), 807; reef aquariums, 287; saltwater fish and freezing point depression, 503; scuba diving and helium, 192; solar energy, 142; solar fusion, 883; specific heat, 521; sunscreen, protection from
Sigma bonds UV radiation, 5; trans-fatty acids, 767; zinc-plating, 295 Reaumur scale, 451 Recycling, 814 Redox equations, balancing, 679 act., 689–696; half-reaction method, 693–693, 695 prob.; net ionic redox equations, 691, 692 prob.; oxidationnumber method, 689, 689 table, 690 prob.; problem-solving flow-chart, 696 Redox reactions, 680–688, 806–807; bioluminescence, 693; in electrochemistry, 707 act., 708–709, 711; electronegativity and, 684; electron transfer and, 680–682; forensics and, 697, 698 act.; identify, 685 prob.; oxidation, 681; oxidation number, 219, 682, 686, 686 table, 687 prob., 688; oxidizing agents, 683; reducing agents, 683; reduction, 681; reversal of (electrolysis), 728; rust formation, 679 act.; space shuttle launch and, 691 act.; summary of, 683 table; tarnish removal, 683 act. Reduction, 681 Reduction agent, 683 Reduction potential, 711 Reef aquariums, 287 Refrigerators, CFCs and, 7–8 Rem, 889 Replacement reactions, 293–294, 296– 297; double-replacement, 296–297; single-replacement, 293–294, 295 prob. Representative elements, 177, 184, 196 act. Representative particles, 321; convert moles to, 322; convert to moles, 323, 323 prob., 324 prob.; mass to moles to particles conversions, 338, 338–339 prob. Research: applied, 17; pure, 17 Research chemist, 185 Resonance, 258 Reversible reactions, 595 Rhombohedral unit cells, 421 table, 422 act. RNA (ribonucleic acid), 843 Roentgen, Wilhelm, 860, 889 Rubber, 762 Rubidium, 906, 907 Rusting, 74, 77, 724–727; observe, 726 act.; prevent, 685, 725–727; redox reactions in, 679 act., 724–725; as spontaneous process, 542–543 Rutherford, Ernest, 110, 111–112, 112– 113, 862, 875 Rutherfordium, 185
S Saccharin, 810 Sacrificial anodes, 726 Safety, lab, 18, 19 table Safety matches, 934 Salicylaldehyde, 796 table, 797 Salt bridges, 709 Salt hydrolysis, 665 Saltwater fish, 503 Saponification, 837, 837 act. Saturated fats, 805 Saturated fatty acids, 835–836 Saturated hydrocarbons, 746 Saturated solutions, 493 s-Block elements, 184 Scandium, 185 Scanning tunneling microscope (STM), 107, 213 Schrodinger wave equation, 152 Science writer, 604 Scientific investigations. See also CHEMLABs; Data Analysis Labs; MiniLabs; Problem-Solving Labs; accidental discoveries and, 18; applied research, 17; pure research, 17; safety and, 18; scientific method and, 12–16 Scientific law, 16 Scientific methods, 12–16; conclusion, 15; experiments, 14–15; hypothesis, 13; observation, 13, 13 act.; scientific law and, 16; theory and, 16 Scientific notation, 40–43, 946–948; addition and subtraction and, 41 prob., 42, 948; multiplication and division and, 43, 43 prob., 948 Scintillation counter, 886 Scuba diving, helium and, 192 Seaborg, Glenn, 921 Second (s), 33 Secondary batteries, 720 Second ionization energy, 192 Second law of thermodynamics, 543, 546 Second period elements, 158 table, 161 table Seed crystal, 495 Selenium, 936, 937, 939 Semimetals. See Metalloids Sensitive teeth, 914 Serine, 827 table Sex hormones, 839 Shape-memory alloys, 213 Ships, corrosion of hulls of, 725–726 Side chains, amino acid, 827 Sigma bonds, 244, 245
Index 1047
Index Significant figures Significant figures, 50–51, 51 prob., 949–950, 951 prob.; adding and subtracting, 53, 53 prob., 952, 953 prob.; atomic mass values and, 328; multiplication and division and, 54, 54 prob., 952; rounding numbers and, 52, 952 Silicates, 214 Silicon, 84, 159 table, 181, 926–927, 929 Silicon computer chips, 929 Silicon dioxide, 929 Silver, 226 table, 920 Silver batteries, 719 Silver nitrate flame test, 92 act. Simple sugars. See Monosaccharides Single covalent bonds, 242–244 Single-replacement reactions, 293–294, 295 prob.; metal replaces hydrogen, 293; metal replaces metal, 293–294, 310 act.; nonmetal replaces nonmetal, 294, 294 act. SI units, 32–37, 958 table Skeleton equations, 284 Slime, 785 act. Slope, line, 57, 962 Soap, 419, 634, 837 act. Sodium, 136, 159, 159 table, 177, 906, 907, 908, 913 Sodium bicarbonate, 308 Sodium carbonate, 378 act. Sodium chloride, 70, 73 table, 85, 205 act., 210, 211 table, 213, 729 Sodium hypochlorite, 683 Sodium perborate, 924 Sodium/potassium ATPase, 909 Sodium-potassium pump, 909 Soft water, 24 act. Solar energy, 142, 354, 522 Solar fusion, 883 Solidification, 76. See also Freezing Solids, 71, 420–424; amorphous, 424; crystalline, 420–423, 422 act., 422 table; density of, 39 act., 420; molecular, 422 Solubility, 479, 493–497; factors affecting, 492–494, 506 act.; of gases, 495–496, 497 prob.; guidelines for, 975 table; of polar molecules, 268; saturated solutions and, 493; supersaturated solutions and, 494–495; temperature and, 493–494, 494 table; unsaturated solutions and, 493 Solubility product constant (K sp), 614–619, 969 table; compare, 624 act.; ion concentrations from, 617, 617 prob., 618–619; ion product constant (Q sp) and, 618–619, 619 prob.; molar solubility from, 615–617, 616 prob.; predicting precipitates, 618 1048 Index
Strong electrolytes Solubility product constant expressions, 614–619; ion concentrations from, 617, 618–619, 619 prob.; molar solubility from, 616 prob., 616–617; predicting precipitates, 618, 619 prob.; writing, 614–615 Soluble, 479 Solutes, 299 Solution concentration. See Concentration Solution formation. See Solvation Solutions, 81, 478–479; acidic. See Acidic solutions; aqueous. See Aqueous solutions; basic. See Basic solutions; boiling point elevation, 500–501, 503 prob.; concentration, 475 act., 480–488; dilution of, 485, 486 prob.; electrolytes and colligative properties, 498–499; formation (solvation), 489–492; freezing point depression, 501–502, 502 act., 503 prob.; heat of solution, 475 act., 492; milestones in understanding, 490–491; molar. See Molar solutions; neutral, 636; osmotic pressure and, 504; saturated, 493; solubility and. See Solubility; supersaturated, 494–495; types of, 81 table, 479 table; unsaturated, 493; vapor pressure lowering and, 499–500 Solution systems, 81, 81 table Solvation, 489–492; aqueous solutions of ionic compounds, 490; aqueous solutions of molecular compounds, 491; factors affecting, 492–494, 506 act.; heat of solution, 475 act., 492; “like dissolves like”, 489 Solvents, 299 s orbitals, 154 Space-filling molecular model, 253, 746 Space shuttle, 691 act., 722 Space telescopes, 912 Spandex, 811 Species, 693 Specific heat, 519–520, 522, 976 table; calorimetry and, 523–524, 525 prob., 526 act.; heat absorbed, calculate, 520, 521 prob.; heat released, calculate, 520; solar energy and, 522; of various substances, 520 table Specific rate constant (k), 574 Spectator ions, 301 Spectroscopist, 139 Speed of light (c), 137, 969 table Spontaneous processes, 542. See also Reaction spontaneity (∆G) Spontaneity, reaction rate and. See Reaction spontaneity (∆G)
Square root, 949 Stainless steel, 228 table Standard enthalpy (heat) of formation, 537–541, 538 table, 540 prob. Standard hydrogen electrode, 711 Standardized Test Practice, 28–29, 66–67, 98–99, 132–133, 170–171, 202–203, 236–237, 278–279, 316–317, 364–365, 398–399, 438–439, 472–473, 512–513, 556–557, 590–591, 630–631, 676–677, 704–705, 740–741, 782–783, 822–823, 856–857, 898–899 Standard reduction potentials, 712; applications of, 716; calculate, 713– 714, 715 prob.; determine, 712, 712 table; measure, 734 act. Standard temperature and pressure (STP), 452 Starch, 834 States of matter, 71–72; gases, 72, 72 act., 402–410; liquids, 71, 401 act., 415–419; milestones in understanding, 416–417; phase changes, 76–77, 425–430; solids, 71, 420–424; summarize information on, 401 act. Stationary phase, chromatography, 83 Stearic acid, 835 Steel, 227, 227 act. Stereoisomers, 766. See also Optical isomers Sterling silver, 228 table Steroids, 839 Steroid toxins, 839 Stock solutions, dilution of, 485, 486 prob. Stoichiometry, 368–378; actual yield and, 385; baking soda decomposition, 378 act.; interpret chemical equations, 370 prob.; mass-to-mass conversions, 377, 377 prob.; mole ratios and, 371–372, 390 act.; mole-to-mass conversions, 376, 376 prob.; moleto-mole conversions, 373–374, 375 prob.; particle and mole relationships and, 368–369; percent yield and, 386, 386 prob., 388; problem-solving flow chart, 374; product, calculate when reactant is limiting, 380–381, 382–383 prob.; reactions involving gases. See Gas stoichiometry; theoretical yield and, 385; titration and. See Titration Storage batteries, 720 Straight-chain alkanes, 750–751 Stratosphere, 5 Straussman, Fritz, 111 Strong acids, 644, 656 Strong bases, 648, 656 Strong electrolytes, 498
Index Strong nuclear force Strong nuclear force, 865 Strontium, 186 prob., 910–911, 913, 914 Strontium-90, 870, 871 table Strontium carbonate, 913 Strontium chloride, 914 Structural formulas, 253, 253, 746, 751 Structural isomers, 765 Structural proteins, 831 Subatomic particles, 114 table, 119 table Sublimation, 83, 428 Suboctets, 259 Substances, 5, 70 Substituent groups, 752 Substituted cycloalkanes, naming, 756, 756–757 prob. Substituted hydrocarbons: alcohols, 792–793; aldehydes, 796–797; amides, 800; amines, 795; carboxylic acids, 798; chemical reactions involving. See Organic reactions; crosslinks (make slime), 785 act.; esters, 799, 800 act.; ethers, 794; functional groups, 785 act., 786, 787 table; halocarbons, 787–791; ketones, 797 Substitutional alloys, 228 Substitution reactions, 790–791 Substrates, 830 Subtraction: scientific notation and, 42; significant figures and, 53 Sucrose, 73 table, 88, 205 act., 833 Sulfur, 159 table, 195, 936–937, 939 Sulfuric acid, manufacture of, 388, 939 Sunburn, 5 Sunlight, continuous spectrum of, 138 Sunscreen, 5 Sun, solar fusion in, 883 Superacids, 637 Super ball, properties of, 239 act. Supercritical mass, 880 Supersaturated solutions, 494–495 Surface area: reaction rate and, 569– 570; solvation and, 492 Surface tension, 418–419 Surfactants, 419 Surroundings (thermochemical), 526 Suspensions, 476 Synthesis reactions, 289 System (thermochemical), 526 Systeme International d’Unites. See SI units
T Table salt. See Sodium chloride Tap water, hard and soft, 24 act. Tarnish removal, 683, 683 act. Tartaric acid, 767
Tyndall effect Taste, 262 Taste buds, 262 Television, 108 Tellurium, 936, 937 Temperature, 403; change in as evidence of chemical reaction, 282; chemical equilibrium and, 609–610, 611 act.; combined gas law and, 449, 450 prob.; enzyme action and, 850 act.; evaporation rate and, 432 act.; extreme and ideal gas law, 458; gas pressure and (Gay-Lussac’s law), 447, 448 prob.; gas volume and (Charles’s Law), 441 act., 444–445, 446 prob.; pain receptors and, 815; reaction rate and, 570, 571 act., 583; solubility and, 493–494, 494 table; viscosity and, 418 Temperature inversion, 428 Temperature scales, 34–35; convert between, 34, 35; gas laws and, 451 Tetraethyl lead, 930 Tetragonal unit cell, 421 table, 422 act. Tetrahedral molecular shape, 261, 263 table Thallium, 922, 923, 925 Theoretical chemistry, 11 table Theoretical yield, 385 Theory, 16 Thermal conductivity, 226 Thermochemical equations, 529–533; for changes of state, 530–531, 531 act.; Hess’s law, 534–536, 536 prob.; standard enthalpy (heat) of formation, 537–541, 540 prob.; writing, 529 Thermochemical universe, 526, 546 Thermochemistry, 523–528; combustion reactions, 532 prob., 533; enthalpy and enthalpy changes, 526–528; enthalpy (heat) of reaction, 527–528; Hess’s law, 534–536, 536 prob.; molar enthalpy (heat) of fusion, 530–531; molar enthalpy (heat) of vaporization, 530; phase changes and, 530–531; surroundings, 526; systems, 526; thermochemical equations, 529–533 Thermocouples, 34 Thermodynamics, second law of, 543 Thermoluminescent dosimeter (TLD), 885 Thermonuclear reactions, 883 Thermoplastic polymers, 813 Thermosetting polymers, 813 Third ionization energy, 192 Third period elements, 159 table Thixotropic substances, 476 Thomson, J. J., 108–109, 110, 212 Thomson, William (Lord Kelvin), 35 Thorium, 921
Three Mile Island, 880, 883 Thymine (T), 841 Time, 33 Tin, 226 table, 926–927, 930 Tinplate, 930 Titanium, 180, 181, 228, 918, 919 Titrant, 661 Titration, 660–663; acid-base indicators and, 662, 663; end point of, 663; molarity from, 663, 664 prob., 670 act.; steps in, 661 Tokamak reactor, 884 Tolerances, 49 Toluene, 774 Tools, zinc plating of, 295 Tooth decay, fluoride and, 622 act. Torricelli, Evangelista, 406 Touch sensors, 920 Toxicologist, 59 Toxicology, 59 Trace elements, 195 Transactinide elements, 185 Trans-fatty acids, 767 trans- isomers, 766 Transition elements, 177, 916–921; analytical tests for, 917; applications of, 918–921; atomic properties, 917; common reactions involving, 916; inner transition metals, 180; locations of strategic, 918; physical properties of, 916; transition metals, 180 Transition metal ions, 208, 219, 219 table Transition metals, 180, 185 Transition state, 564 Transmutation, 865, 875 Transport proteins, 830 Transuranium elements, 876 Triclinic unit cells, 421 table Triglycerides, 836–837, 837 act.; phospholipids, 838; saponification of, 838, 838 act. Trigonal bipyramidal molecular shape, 263 table Trigonal planar molecular shape, 261, 263 table Trigonal pyramid molecular shape, 261, 263 table Triple covalent bonds, 245, 246 Triple point, 429 Tritium, 904 Troposphere, 5 Tungsten, 226, 918 Turbidity, 478 act. Tyndall effect, 478, 478 act.
Index 1049
Index Ultraviolet radiation
U Ultraviolet radiation: overexposure to, damage from, 5; ozone layer and, 5, 6 Ultraviolet (Lyman) series, 147, 150 act. Unbalanced forces, 597 Unit cell, 421, 421 table, 422 act. Units, 32–37; base SI, 33–35; converting between, 957–958, 958 prob.; derived SI, 35–37; English, 32 Universe (thermochemical), 526, 546 Unsaturated fatty acids, 835–836 Unsaturated hydrocarbons, 746 Unsaturated solutions, 493 Ununquadium, 185 Uranium-235, 878–879, 880 Uranium-238, 863, 880 Urea, 800 UV-B radiation, 5
V Valence electrons, 161; chemical bonds and, 207; periodic table trends, 182– 185, 186 prob. Valence Shell Electron Pair Repulsion (VSEPR) theory. See VSEPR model Valine, 827 table van der Waals forces, 269–270, 271 Vapor, 72 Vaporization, 426–427; molar enthalpy (heat) of vaporization, 530, 531 act. See also Boiling, Evaporation Vapor pressure, 427 Vapor pressure lowering, 499–500 Variables, 14; controlling, 14–15; dependent, 14, 56; independent, 14 Venom, 838 Vinegar-baking soda volcano, 669 Viscosity, 401 act., 417, 418 Visible (Balmer) series, 147, 148, 150 act. Visible spectroscopy, 917 Visible spectrum, 138–139 Vitalism, 744 Vitamins, 383 Vocabulary margin features: alloy, 227; anhydrous, 352; aromatic, 771; atom, 103; attain, 243; aufbau, 157; bond, 794; buffer, 667; capacity, 721; cis-, 766; class, 799; combustion, 290; completion, 599; complex, 845; compound, 300; concentrated, 485; concentration, 561; concept, 113; conceptualize, 845; conduct, 215; conductor, 180; conform, 642; conjugate, 639; convert, 595; correspond, 711; demonstrate, 547; deposit, 747; derive, 372; disac-
1050
Index
Zinc plating charide, 833; element, 85; eliminate, 751; environment, 75; evolve, 5; force, 419; formula, 284; gases, 403; generate, 878; homologous, 751; indicators, 663; initial, 576; investigate, 566; meter, 33; method, 694; mixture, 81; mole, 321, 456; monosaccharide, 833; neutral, 113; orient, 412; overlap, 244; ozone, 5; percent, 48; period, 159; periodic, 176; phenomenon, 141; polysaccharide, 833; potential, 714; pressure, 495; product, 381; radiation, 863; random, 544; ratio, 333, 462; recover, 21; reduce, 730; reduction, 681; resonance, 258; saturated, 494; species, 693; specific, 119; stoichiometry, 369; stress, 607; structure, 184; sum, 42; system, 543; trans-, 766; transfer, 219; trigonal planar, 262; unstable, 867; weight, 10 Volt, 710 Volta, Alessandro, 709 Voltaic cell potentials. See Electrochemical cell potentials Voltaic cells, 709–711; chemistry of, 710–711; electrochemical cell potentials, 711–714, 715 prob., 716–717, 734 act.; half-cells, 710 Voltaic pile, 709 Volume: chemical equilibrium and, 608–609; combined gas law and, 449, 450 prob.; determine mass of object from, 38 prob.; gas pressure and (Boyle’s law), 442–443, 443 prob., 444 act.; gas stoichiometry and, 460–461, 461 prob., 462, 462–463 prob.; gas temperature and (Charles’ Law), 441 act., 444–445, 446 prob.; identify an unknown by, 50 act.; SI units for, 35–36 Volumetric analysis, 341 VSEPR model, 261–262, 263 table, 264 prob., 272 act.
W Warfarin, 59 Water: adhesion and cohesion of, 419; amphoteric nature of, 639; boiling of, 427, 969 table; capillary action, 419; changes of state and, 76, 425–428; chemical properties, 75; condensation of, 428; covalent bonds in, 240, 243; density of solid, 420; electrical conductivity of, 205 act.; electrolysis of, 86; evaporation of, 426–427, 432 act.; formation of in aqueous solutions, 303, 304 prob.; freezing, 428, 969 table; hard
v. soft, 24 act.; history in a glass of, 355; hydration reactions forming, 804; hydrogen bonds in, 413–414; ion product constant for (K w), 650–651, 651 prob.; law of multiple proportions and, 89; layering of in graduated cylinder, 31 act.; Lewis structure, 243; melting of, 425–426; phase diagram, 429, 430; physical properties, 73 table, 75; polarity of, 267–268; as pure substance, 70; sigma bonds in, 244, 245; solutions of. See Aqueous solutions; surface tension of, 419; thermochemistry, 530–531, 531 act.; turbidity and Tyndall effect, 478 act.; vaporization of, 426 Watson, James, 637, 841–842 Wavelength, 137, 140 prob. Wave mechanical model of the atom. See Quantum mechanical model of atom Wave model of light, 137–139; atomic emission spectrum and, 144–145; dual nature of light and, 143 Waves, 137–138; amplitude of, 137; electromagnetic wave relationship, 137; frequency of, 137; wavelength of, 137, 140 prob. Waxes, 838 Weak acids, 645, 648 table Weak bases, 649 Weak electrolytes, 498 Weather balloons, 449 Weather patterns, density of air masses and, 37 Weight, 9–10 Willstater, Richard, 912 Wohler, Friedrich, 744 Word equations, 284
X Xenon, 944, 945 X-ray crystallography, 212 X rays, 137, 864, 914 Xylene, 772, 774
Z Zewail, Ahmed, 581 Zinc, 208, 920 Zinc-carbon dry cells, 718–719 Zinc plating, 295
Photo Credits Cover SPL/Photo Researchers; iv (t)courtesy of Thandi Buthelezi, (tc)courtesy of Laurel Dingrando, (bc)courtesy of Nicholas Hainen, (b)courtesy of Dinah Zike; 2 (t)Ted Kinsman/ Science Photo Library/Photo Researchers, (c)Beateworks Inc./Alamy, (b)Daniel Sambraus/ Photo Researchers, (bkgd)BL Images Ltd/Alamy; 3 Tom Pantages; 4 (l)STScI/NASA/CORBIS, (r)Atlantide Phototravel/CORBIS; 5 CORBIS; 6 David Hay Jones/Science Photo Library/Photo Researchers; 7 NASA/Photo Researchers; 9 David Young-Wolff/PhotoEdit; 10 (l)AFP/Getty Images, (r)NASA Ames Research Center/Photo Researchers; 13 Art Vandalay/Getty Images; 14 (t)Matt Meadows, (b)Martyn F. Chillmaid/Science Photo Library/Photo Researchers; 15 Chuck Bryan/epa/CORBIS; 17 Hank Morgan/Science Photo Library/Photo Researchers; 18 (l)Charles D. Winters/Photo Researchers, (r)Dr Jeremy Burgess/Science Photo Library/Photo Researchers; 19 Matt Meadows; 21 NASA/Science Photo Library/Photo Researchers; 22 (l)Philippe Psaila/Science Photo Library/Photo Researchers, (r)Eye Of Science/Science Photo Library/Photo Researchers; 23 (tl)The Andy Warhol Foundation, Inc./Art Resource, NY, (tr)courtesy of Sharon Miller/NASA; 26 STScI/NASA/CORBIS; 30 Photri/T.Sanders; 31 Matt Meadows; 32 (l)Rhoda Peacher, (r)Janet Horton Photography; 34 Robert Rathe; 37 (t)Matt Meadows, (b)B. Runk/S. Schoenberger/Grant Heilman Photography; 40 The Hope Diamond/ Smithsonian Institution, Washington DC/The Bridgeman Art Library; 42 Ed Young/CORBIS; 44 CORBIS; 49 Chris Gibson/Alamy; 52 Matt Meadows; 59 Jonathan Nourok/PhotoEdit; 68 Magnus Hjorleifsson/Getty Images; 70 (l)Luca Trovato/Getty Images, (r)Thomas Raupach/Peter Arnold, Inc.; 71 (t)Michael Newman/PhotoEdit, (b)Colin Young-Wolff/PhotoEdit; 72 (t)Richard T. Nowitz/CORBIS, (b)Spencer Grant/PhotoEdit; 73 (l)Sydney James/Getty Images, (r)Scientifica/ Visuals Unlimited; 74 (l)Gibson Stock Photography, (r)Richard Megna, Fundamental Photography, NYC; 75 British Antarctic Survey/Science Photo Library/Photo Researchers; 76 (l)Ilianski/Alamy, (r)Design Pics Inc./Alamy; 77 (t)Alan Schein/zefa/CORBIS, (b)Astrid & Hannsfrieder Michler/Science Photo Library/Photo Researchers; 79 (l r)Richard Megna, Fundamental Photography, NYC; 80 (l)Custom Medical Stock Photo, (r)Envision/CORBIS; 81 Robert Fournier/ Visuals Unlimited; 82 Martyn F. Chillmaid/Photo Researchers; 83 Tony Freeman/PhotoEdit; 84 (l)Barry Mason/Alamy, (c)Tony Freeman/PhotoEdit, (r)AP Photo/Breakthrough Films & Televisions Inc., Randy Brooke; 85 Science Museum/SSPL/The Image Works; 86 (tl)Andrew Lambert Photography/Photo Researchers, (tr)Charles D. Winters/Photo Researchers, (b)Larry Stepanowicz/Fundamental Photography, NYC; 90 Matt Meadows/Peter Arnold, Inc.; 91 Robert Corry; 100 (inset)Colin Cuthbert/Photo Researchers, (bkgd)CORBIS; 101 Tom Pantages; 102 (l)PhotoLink/Getty Images, (t)Andre Jenny/Alamy, (r)Digital Vision/PunchStock, (b)Sean Daveys/ Australian Picture Library/CORBIS; 103 (t)Science Photo Library/Photo Researchers, (b)The Art Archive/Museo Nazionale Palazzo Altemps Rome/Dagli Ort; 104 (t)Rischgitz/Getty Images, (b)Wellcome Library, London; 106 (l)Stockdisc/PunchStock, (r)European Space Agency/Science Photo Library/Photo Researchers; 107 Philippe Plailly/Science Photo Library/Photo Researchers; 110 SSPL/The Image Works; 111 (l)Bettmann/CORBIS, (r)CERN/Photo Researchers; 113 Research Group of Professor C. J. Zhong/SUNY-Binghamton/Supported by NSF; 117 Dan Peha/ viestiphoto.com; 120 Eitan Simanor/Alamy; 122 (l r)Image Source/Getty Images; 125 Mauro Fermariello/Science Photo Library/Photo Researchers; 126 Janet Horton Photography; 134 Roger Ressmeyer/CORBIS; 135 Matt Meadows; 136 137 Richard Megna, Fundamental Photography, NYC; 138 David Parker/Science Photo Library/Photo Researchers; 141 CORBIS; 142 Andrew Fox/CORBIS; 145 (t b)Richard Megna, Fundamental Photography, NYC; 149 John D. Norman/CORBIS; 153 Alberto Biscaro/Masterfile; 164 Matt Meadows; 172 Jim Sugar/Science Faction/Getty Images; 173 Tom Pantages; 175 Science Photo Library/Photo Researchers; 177 Courtesy of Dell Inc.; 181 Miyoko Oyashiki/CORBIS Sygma; 185 Lawrence Berkley National Laboratory; 192 Brandon D. Cole/CORBIS; 195 3D4Medicalcom/Getty Images; 204 CORBIS; 205 Matt Meadows; 206 David Nardini/Getty Images; 208 Richard Megna, Fundamental Photography, NYC; 210 (l)Andrew Lambert Photography/Photo Researchers, (r)Charles D. Winters/Photo Researchers; 212 Colin Woods/Alamy; 213 (t)Manfred Kage/Peter Arnold, Inc., (c)Cat Gwynn/CORBIS, (b)Philippe Plailly/Science Photo Library/Photo Researchers; 214 (l r)Traudel Sachs/Phototake, (c)Mark A. Schneider/Photo Researchers; 220 Richard Megna, Fundamental Photography, NYC; 228 Greg Huglin/SuperStock; 229 Macduff Everton/CORBIS; 230 Matt Meadows; 238 BIOS Gilson FranÁois/Peter Arnold, Inc.; 239 Matt Meadows; 240 Charles Krebs/Getty Images; 244 Visual Arts Library (London)/Alamy; 247 Charles O’Rear/ CORBIS; 257 Suzanne Long/Alamy; 261 Matt Meadows; 268 Tony Craddock/Photo Researchers; 270 Scientifica/Visuals Unlimited; 271 (t)Peter Weber/Getty Images, (tcl)Perennou Nuridsany/ Photo Researchers, (cr)Susumu Nishinaga/Photo Researchers, (b bcl)Prof. Kellar Autumn, Lewis & Clark College; 272 Matt Meadows; 280 (t)Robert Clay/Alamy, (b)Terry W. Eggers/CORBIS, (bkgd)Woodfall Wild Images/Alamy; 281 Matt Meadows; 282 Charles D. Winters/Photo Researchers; 283 (l)Mihaela Ninic/Alamy, (c)Phototake Inc./Alamy, (b)VStock/Alamy; 284 Charles D. Winters/Photo Researchers; 287 Marilyn Genter/The Image Works; 290 (t)Josh Westrich/zefa/CORBIS, (bl)Jeff Vanuga/CORBIS, (br)Mary Evans Picture Library/The Image Works; 291 (l)Bettmann/CORBIS, (r)David Tipling/Alamy; 292 Courtesy of Mercedes-Benz Canada; 293 (l)Charles D. Winters/Photo Researchers, (r)Yoav Levy/Phototake; 295 Donald Pye/Alamy; 296 Andrew Lambert Photography/Photo Researchers; 299 Tom Pantages; 300 303 Matt Meadows; 305 Charles D. Winters/Photo Researchers; 309 (l)Darwin Dale/Photo Researchers, (r)Eye of Science/Photo Researchers, (bkgd)E.R. Degginger/Animals Animals Earth Scenes; 310 Matt Meadows; 318 (t)Tom Pantages, (b)CORBIS, (bkgd)Tom Stack/Tom Stack & Associates; 319 320 321 Matt Meadows, 322 CORBIS; 325 326 327 Matt Meadows; 328 Jeff Greenberg/PhotoEdit; 335 Matt Meadows; 341 (l)Comstock Images/Alamy, (r)GECO UK/Photo Researchers; 346 Tony Freeman/PhotoEdit; 351 Alfred Pasieka/Photo Researchers; 352 354 356 Matt Meadows; 366 Clive Schaupmeyer/AGStockUSA/Science Photo Library/Photo Researchers; 368 Charles D. Winters/Photo Researchers; 371 Division of Chemical Education, Inc., American Chemical Society; 373 Richard Megna/Fundamental Photography, NYC; 375 Rhonda Peacher Photography; 379 Aaron Haupt; 380 Chris McElcheran/Masterfile; 384 385 Matt Meadows; 388 Gunter Marx Photography/CORBIS; 389 3D4Medicalcom/Getty Images; 390 Matt Meadows; 400 Richard W. Ramette; 401 Matt Meadows; 402 (l)Steve McCutcheon/Visuals Unlimited, (c)Lester V. Bergman/CORBIS, (b)Dirk Wiersma/Photo Researchers; 406 H. Turvey/ Photo Researchers; 410 Tom Pantages; 415 Richard Megna/Fundamental Photography, NYC; 416 (t)Gabe Palmer/Alamy, (b)SSPL/The Image Works; 417 (l)Kent Wood/Photo Researchers, (r)Geoffrey Wheeler/Submission from National Institute of Standards and Technology; 418 Pier Munstermanu/Foto Nature/Minden Pictures; 419 Richard Megna, Fundamental Photography, NYC; 420 Daryl Benson/Masterfile; 421 (tl)Charles D. Winters/Science Photo Library/Photo
Researchers, (tc bl br)Mark A. Schneider/Visuals Unlimited, (tr)Jeff J. Daly, Fundamental Photography, NYC, (bcl)Carl Frank/Science Photo Library/Photo Researchers, (bcr)Roberto De Gugliemo/Science Photo Library/Photo Researchers; 422 Ross Frid/Visuals Unlimited; 423 Deborah Davis/PhotoEdit; 424 Wally Eberhart/Visuals Unlimited; 426 CORBIS; 428 (t)Richard Megna, Fundamental Photography, NYC, (b)Alissa Crandall/CORBIS; 431 Peter Scholey/Getty Images; 432 Matt Meadows; 440 (t)Patrick Ward/CORBIS, (b)Elizabeth Opalenik/CORBIS, (bkgd)CORBIS; 441 Matt Meadows; 448 Marie-Louise Avery/Alamy; 449 Roger Ressmeyer/ CORBIS; 454 unlike by STOCK4B; 456 Cordelia Malloy/Science Photo Library; 457 Matt Meadows; 458 (l)Pasquale Sorrentino/Science Photo Library/Photo Researchers, (r)Paul Broadbent/Alamy Images; 459 (l)Barry Runk/Grant Heilman Photography, (r)Lee Pengelly/ Alamy Images; 461 Thomas R. Fletcher/www.proseandphotos.com; 462 Denny Eilers/Grant Heilman Photography; 464 Janet Horton Photography; 465 Jason Cohn/Reuters/CORBIS; 466 Matt Meadows; 474 (t)David Papazian/Beateworks/CORBIS, (b)Peter Bowater/Alamy, (bkgd)Tom Feiler/Masterfile; 475 Matt Meadows; 476 Tom Pantages; 478 Matt Meadows/Peter Arnold, Inc.; 480 Tom Pantages; 482 AP Photo/L.G. Patterson; 484 Matt Meadows; 485 Richard Megna, Fundamental Photography, NYC; 489 Matt Meadows; 490 (l)Hulton-Deutsch Collection/ CORBIS, (r)SuperStock; 491 (t)Richard Megna/Fundamental Photography, NYC, (b)courtesy of DuPont; 492 (t b)Tiercel Photographics, (c)Rhonda Peacher Photography; 493 Andrew Lambert Photography/Science Photo Library; 494 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 495 Theo Allofs/Visuals Unlimited; 496 (t)Marilyn Genter/The Image Works, (bl)Rachel Epstein/PhotoEdit, (br)CORBIS; 498 FP, Fundamental Photography, NYC; 501 (l)AP Photo/Gerry Broome, (r)Tom Pantages; 505 Courtesy of Dr. Christopher L. Sabine, National Oceanic and Atmospheric Administration; 506 Tom Pantages; 508 Leonard Lessin/Peter Arnold, Inc.; 511 Courtesy NODC; 514 Purestock/Getty Images; 515 Matt Meadows; 516 (l)Agence Zoom/Getty Images, (r)Donald Miralle/Getty Images; 517 Alan Sirulnikoff/Photo Researchers; 519 (l)Stephen Chernin/Getty Images, (r)Bob Krist/CORBIS; 521 Matt Meadows; 522 Eurelios/ Phototake; 524 Tom Pantages; 526 Matt Meadows; 527 Tim Fuller; 528 Phil Degginger/Alamy; 533 Janet Horton Photography; 534 (l)CORBIS, (r)Mark A. Schneider/Visuals Unlimited; 537 Will & Deni McIntyre/Photo Researchers; 539 Jeff Maloney/Getty Images; 542 Ton Koene/Visuals Unlimited; 544 Dinodia Photo Library/PixtureQuest; 545 Matt Meadows; 546 Jon Arnold Images/Alamy; 549 (t)AP Photo, (b)Joshua Matz/Grant Heilman Photography; 550 Matt Meadows; 552 Wesley Hitt/Alamy; 554 Frank Cezus/Getty Images; 554 Marc Muench/Getty Images; 558 (inset)PhotriMicroStock/J.Greenberg, (bkgd)Transtock Inc/Alamy; 559 Matt Meadows; 560 (l)Motoring Picture Library/Alamy, (cl)The Car Photo Library, (cr)John Terence Turner/Taxi/Getty Images, (r)Getty Images; 563 Masterfile Corporation; 567 Charles D. Winters/ Photo Researchers; 568 Tom Pantages; 569 Richard Megna, Fundamental Photography, NYC; 570 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 571 Tom Pantages; 572 (l)Arco Images/Alamy, (r)SuperStock; 574 (l)Mark Thomas/Science Photo Library/Photo Researchers, (r)Dr Jurgen Scriba/Science Photo Library/Photo Researchers; 581 Stephen Wilkes/ Getty Images; 584 Matt Meadows; 592 Stock Connection Distribution/Alamy; 593 Matt Meadows; 594 Randall Hyman Photography; 597 Tim Fuller; 598 Oote Boe/Alamy; 600 Martyn Chillmaid /Photolibrary; 601 Dr. A. Leger/ISM/Phototake; 603 Plowes ProteaPix; 606 Shalom Ormsby/Blend Images/Getty Images; 608 Getty Images; 610 Richard Megna, Fundamental Photography, NYC; 612 Tim Brakemeier/dpa/CORBIS; 614 (l)James L. Amos/CORBIS, (r)199698 AccuSoft Inc., All right/Robert Harding World Imagery/CORBIS; 615 Yoav Levy/Phototake; 618 620 Tom Pantages; 623 Mount Everest from the South. AlpineAscents.com Collection; 624 Matt Meadows; 625 David Taylor/Photo Researchers; 627 Matt Meadows; 629 MarieLouise Avery/Alamy; 632 (t b)Tim Fuller, (bkgd)Jane Faircloth/TRANSPARENCIES, Inc.; 633 Matt Meadows; 634 (l)Pat O’Hara/CORBIS, (r)W. Wayne Lockwood, M.D./CORBIS; 635 (l cl r)Tom Pantages, (cr)Eric Fowke/PhotoEdit; 636 With kind permission of the University of Edinburgh/ The Bridgeman Art Library; 637 (tl)courtesy of the Archives, California Institue of Technology, (r)Kazuyoshi Nomachi/CORBIS, (bl)Pasieka/Science Photo Library/Photo Researchers; 638 Spencer Grant/PhotoEdit; 639 Ciaran Griffin/Getty Images; 643 Jim Wark/Peter Arnold, Inc.; 644 645 Matt Meadows; 646 Louise Lister/Getty Images; 652 (t)Ingram Publishing/Alamy, (cl)Sue Wilson/Alamy, (cr)foodfolio/Alamy, (bl)Eric Fowke/PhotoEdit, (br)Janet Horton Photography; 654 Peter Dean/Grant Heilman Photography; 656 Matt Meadows; 658 (l)Matt Meadows, (r)Andrew Lambert Photography/Science Photo Library/Photo Researchers; 659 660 661 662 663 664 665 Matt Meadows; 666 Sisse Brimberg/Getty Images; 668 Dr. Dennis Kunkel/Visuals Unlimited; 669 (l)Charles D. Winters/Photo Researchers, (r)CORBIS; 672 673 674 Matt Meadows; 678 (inset)Tom Pantages, (bkgd)Jeff Daly/Fundamental Photography, NYC; 679 Tom Pantages; 680 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 681 Tom Pantages; 682 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 685 Dean Conger/CORBIS; 686 John Cancalosi/Peter Arnold, Inc.; 689 L. S. Stepanowicz/Visuals Unlimited; 693 E. R. Degginger/Photo Researchers; 694 Tom Pantages; 697 (t)Mikael Karlsson/Alamy, (b)Adrian Neumann/
[email protected]; 700 Tom Pantages; 701 (t)Peticolas/Megna, Fundamental Photography, NYC, (cl)Tony Freeman/PhotoEdit, (cr)Ian Pilbeam/Alamy; 702 Tom Pantages; 703 (t)Richard Megna, Fundamental Photography, NYC, (bl br)Yuliya Andrianova/ Echo Ceramics; 706 (l)Tom Pantages, (tr) bobo/Alamy, (br)Khalid Ghani/NHPA, (bkgd)Michael Durham/Nature Picture Library; 707 Matt Meadows; 709 Royal Institution/SSPL/The Image Works; 710 (t)Rafael Macia/Photo Researchers, (b)Chuck Franklin/Alamy; 719 (l)Tom Pantages, (r)Sami Sarkis/Alamy; 721 Stockbyte Platinum/Alamy; 722 (tl)Paul Silverman, Fundamental Photography, NYC, (tr)Paul Rapson/Science Photo Library/Photo Researchers, (r)Ferruccio/ Alamy; 723 Pasquale Sorrentino/Photo Researchers; 724 Ilianski/Alamy; 725 Roger Ressmeyer/ CORBIS; 726 Geoff Butler; 730 Tom Pantages; 731 Jeff Greenberg/PhotoEdit; 733 Tom Pantages; 742 Steve Starr/CORBIS; 743 Andrew Lambert Photography/Science Photo Library/ Photo Researchers; 744 Panorama Media (Beijing)Ltd./Alamy; 745 A. T. Willett/Alamy; 748 Keith Dannemiller/Alamy; 749 Rachel Epstein/PhotoEdit; 752 (l)Michael Newman/PhotoEdit, (r)Janet Horton Photography; 757 Robin Nelson/PhotoEdit; 762 Michael Newman/PhotoEdit; 764 Paul A. Souders/CORBIS; 767 (l)Masterfile, (r)Beth Galton/Getty Images; 770 R H Productions/Getty Images; 772 (tl)Paul Silverman, Fundamental Photography, NYC, (tr)CORBIS, (bl)Colin Garratt, Milepost 92½/CORBIS, (br)SSPL/The Image Works; 774 PicturePress/Getty Images; 775 Peter Titmuss/Alamy; 776 Matt Meadows; 784 (inset)Science Pictures Ltd/Science Photo Library/Photo Researchers, (bkgd)Waina Cheng/Photolibrary; 785 786 Matt Meadows; 787 David Hoffman Photo Library/Alamy; 789 DK Limited/CORBIS; 790 Keith Wood/Getty Images; 791 Paul Almasy/CORBIS; 797 Bill Aron/PhotoEdit; 798 Norm Thomas/Photo Researchers; 799 (l)Masterfile, (r)J.Garcia/photocuisine/CORBIS; 802 Cordelia Molloy/Photo Researchers; 803 Chuck Franklin/Alamy; 807 (t)NASA/ESA/STScI/Science Photo Library/Photo
Credits 1051
Credits Researchers, (b)CORBIS; 809 Alan L. Detrick/Science Photo Library/Photo Researchers; 810 (t)Myrleen Ferguson Cate/PhotoEdit, (bl)SSPL/The Image Works, (br)Victor De Schwanberg/ Science Photo Library/Photo Researchers; 811 (l)Bettmann/CORBIS, (r)Danita Delimont/Alamy; 812 (t)Siede Preis/Photodisc Green/Getty Images, (tc)David Young-Wolff/PhotoEdit, (b)CORBIS, (bc)Dorling Kindersley/Getty Images; 813 David R. Frazier Photolibrary, Inc.; 815 Neil Emmerson/Robert Harding World Imagery/Getty Images; 816 Matt Meadows; 824 (t)Eye Of Science/Science Photo Library/Photo Researchers, (c)Dr. Kessel & Dr. Kardon/Tissues & Organs/ Visuals Unlimited, (b)Steve Gschmeissner/Photo Researchers, (bkgd)AK PhotoLibrary/Alamy; 825 Matt Meadows; 826 (l) John Conrad/CORBIS, (r)Ron Niebrugge/Alamy; 829 Janet Horton Photography; 831 (l)CORBIS, (r)Medical-on-Line/Alamy; 833 IndexStock; 834 (l)Foodcollection. com/Alamy, (r)Brand X Pictures/Alamy; 835 D. Hurst/Alamy; 836 Michael Newman/PhotoEdit; 838 Pat O’Hara/CORBIS; 839 Joe Mc Donald/Animals Animals/Earth Scenes; 846 (t)CORBIS, (b)AP Photo/Joe Cavaretta; 847 (t)David Young-Wolff/PhotoEdit, (b)Alex Farnsworth/The Image Works; 848 Wally McNamee/CORBIS; 849 (t)epa/CORBIS, (b)Mary Schweitzer; 855 CORBIS; 858 (t)ADEAR/RDF/Visuals Unlimited, (c)ISM/Phototake, (b)Science Photo Library/Photo Researchers, (bkgd)John Terence Turner/Taxi/Getty Images; 859 Comstock Images/Alamy; 860 (l)alwaysstock, LLC/Alamy, (r)Lee C. Coombs/Phototake; 861 C. Powell, P. Fowler & D. Perkins/ Photo Researchers; 864 Reuters/CORBIS; 874 Pixtal/SuperStock; 880 vario images GmbH & Co.KG/Alamy; 881 Savintsev Fyodor/ITAR-TASS/CORBIS; 882 (t)Catherine Pouedras/Science Photo Library/Photo Researchers, (bl)Bettmann/CORBIS, (br)John Hopkins Medical Institute/ AIP/Photo Researchers; 883 (t)epa/CORBIS, (b)D. Ducros/Photo Researchers; 884 (t)EFDA-JET/ Photo Researchers; 886 Martin Bond/Science Photo Library/Photo Researchers; 887 Custom Medical Stock Photo/cmsp.com; 888 (tl)ISM/Phototake, (tr)WDCN/Univ. College London/Photo Researchers, (b)Mediscan; 891 Johan Reinhard; 901 CORBIS; 904 (l)SPL/Photo Researchers, (r)Matt Meadows; 905 (t)European Southern Observatory/Photo Researchers, (b)Melanie Stetson Freeman/The Christian Science Monitor via Getty Images; 906 Richard Megna/ Fundamental Photography, NYC; 907 (l)David Taylor/Science Photo Library/Photo Researchers, (c cl)Jerry Mason/Science Photo Library/Photo Researchers, (cr r)Tom Pantages, (t)NASA/epa/
1052 Credits
CORBIS, (b)Michael Dalton, Fundamental Photography, NYC; 909 Geoffrey Wheeler; 910 Charles D. Winters/Photo Researchers; 911 (l)Andrew Lambert/Photo Researchers, (r)Fundamental Photography, NYC; 912 (l)Mark A. Schneider/Photo Researchers, (r)courtesy of Northrop Grumman Space Technology; 913 (t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/ CORBIS; 914 (t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers; 915 (l)Fred Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS; 916 Cordelia Molloy/Science Photo Library/Photo Researchers; 917 Martyn F. Chillmaid/Photo Researchers; 918 Colin Walton/Alamy; 919 (t)Roger Harris/Photo Researchers, (c)Tom Pantages, (b)Kalicoba/Alamy; 920 (t)The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)Theodore Clutter/Photo Researchers; 921 (t)ISM/Phototake, (b)Fritz Goro/Time & Life Pictures/Getty Images; 924 (t)Tom Pantages, (tc)Greg Stott/Masterfile, (b)Toshiba Corporation images, (bc)Eye of Science/Photo Researchers; 925 (t)Judith Collins/Alamy, (b)Collection CNRI/Phototake; 926 Andrew Lambert Photography/Science Photo Library/Photo Researchers; 927 David Taylor/Photo Researchers; 928 (tl)Chemical Design/Science Photo Library/Photo Researchers, (tr)Johner Images/Getty Images, (b)Dr Tim Evans/Science Photo Library/Photo Researchers; 929 Phil Schermeister/ CORBIS; 930 (t)Martin Dohrn/naturepl.com, (c)Goodshoot-Jupiterimages France/Alamy, (b)Allan H Shoemake/Taxi/Getty Images; 931 Chinch Gryniewicz, Ecoscene/CORBIS; 933 Tom Pantages; 934 (t)Wally Eberhart/Visuals Unlimited, (c)Dr P. Marazzi/Photo Researchers, (b)Al Francekevich/CORBIS; 935 (t,bl)Michael Newman/PhotoEdit, (br)Janet Horton; 937 Chuck Place Photography; 938 (t)Scientifica/Visuals Unlimited, (b)Glow Images/Alamy; 939 Leslie Garland Picture Library/Alamy; 940 Larry Stepanowicz/Visuals Unlimited; 941 Andrew Lambert Photography/Science Photo Library/Photo Researchers; 942 Michael Newman/PhotoEdit; 944 (l)Charles D. Winters/Photo Researchers, (r)Ted Kinsman/Science Photo Library/Photo Researchers; 945 (t)epa/CORBIS, (bl)Phototake Inc./Alamy, (br)Wolfgang Kaehler/CORBIS; 946 (l)Chris Bjornberg/Photo Researchers, (r)Daniele Pellegrini/Photo Researchers; 947 (t)Julian Baum/Science Photo Library/Photo Researchers, (b)CORBIS; 952 Matt Meadows; 956 ABN Stock Images/Alamy; 958 Matt Meadows; 959 Bill Aron/PhotoEdit; 964 Matt Meadows; 965 Elena Rooraid/PhotoEdit; 967 Geoff Butler
Chemistry nline
glencoe.com
Access your Student Edition on the Internet so you don't need to bring your textbook home every night. You can link to features and get additional practice with these online study tools.
Check out the following features on your Online Learning Center: Study Tools
• Interactive Tables • Interactive Time Line • Interactive Figures
Study to Go Multilingual Science Glossary
Extensions Periodic Table Links Career Links Math Handbook Prescreened Web Links
Section Self-Check Quizzes Chapter Tests Standardized Test Practice Vocabulary PuzzleMaker Personal Tutor Online Student Edition
WebQuest Projects Science Fair Ideas Internet ChemLabs
For Teachers Teacher Bulletin Board Teaching Today, and much more!
About the Photo: When a piece of sodium metal is dropped into a flask of bromine gas, the vigorous reaction produces heat and sparks of light.
Safety Symbols These safety symbols are used in laboratory and investigations in this book to indicate possible hazards. Learn the meaning of each symbol and refer to this page often. Remember to wash your hands thoroughly after completing lab procedures.
SAFETY SYMBOLS
HAZARD
EXAMPLES
PRECAUTION
REMEDY
Special disposal procedures need to be followed.
certain chemicals, living organisms
Do not dispose of these materials in the sink or trash can.
Dispose of wastes as directed by your teacher.
Organisms or other biological materials that might be harmful to humans
bacteria, fungi, blood, unpreserved tissues, plant materials
Avoid skin contact with these materials. Wear mask or gloves.
Notify your teacher if you suspect contact with material. Wash hands thoroughly.
Objects that can burn skin by being too cold or too hot
boiling liquids, hot plates, dry ice, liquid nitrogen
Use proper protection when handling.
Go to your teacher for first aid.
Use of tools or glassware that can easily puncture or slice skin
razor blades, pins, scalpels, pointed tools, dissecting probes, broken glass
Practice common-sense behavior and follow guidelines for use of the tool.
Go to your teacher for first aid.
Possible danger to respiratory tract from fumes
ammonia, acetone, nail polish remover, heated sulfur, moth balls
Make sure there is good ventilation. Never smell fumes directly. Wear a mask.
Leave foul area and notify your teacher immediately.
Possible danger from electrical shock or burn
improper grounding, liquid spills, short circuits, exposed wires
Double-check setup with teacher. Check condition of wires and apparatus.
Do not attempt to fix electrical problems. Notify your teacher immediately.
Substances that can irritate the skin or mucous membranes of the respiratory tract
pollen, moth balls, steel Wear dust mask and wool, fiberglass, potassium gloves. Practice extra care permanganate when handling these materials.
Chemicals that can react with and destroy tissue and other materials
bleaches such as hydrogen peroxide; acids such as sulfuric acid, hydrochloric acid; bases such as ammonia, sodium hydroxide
Wear goggles, gloves, and an apron.
Immediately flush the affected area with water and notify your teacher.
TOXIC
Substance may be poisonous if touched, inhaled, or swallowed.
mercury, many metal compounds, iodine, poinsettia plant parts
Follow your teacher’s instructions.
Always wash hands thoroughly after use. Go to your teacher for first aid.
FLAMMABLE
Open flame may ignite flammable chemicals, loose clothing, or hair.
alcohol, kerosene, potassium permanganate, hair, clothing
Avoid open flames and heat when using flammable chemicals.
Notify your teacher immediately. Use fire safety equipment if applicable.
OPEN FLAME
Open flame in use, may cause fire.
hair, clothing, paper, synthetic materials
Tie back hair and loose clothing. Follow teacher's instructions on lighting and extinguishing flames.
Always wash hands thoroughly after use. Go to your teacher for first aid.
DISPOSAL BIOLOGICAL
EXTREME TEMPERATURE SHARP OBJECT FUME
ELECTRICAL IRRITANT
CHEMICAL
Eye Safety Proper eye protection should be worn at all times by anyone performing or observing science activities.
Clothing Protection
Animal Safety
This symbol appears when substances could stain or burn clothing.
This symbol appears when safety of animals and students must be ensured.
Go to your teacher for first aid.
Radioactivity
Handwashing
This symbol appears when radioactive materials are used.
After the lab, wash hands with soap and water before removing goggles
PERIODIC TABLE OF THE ELEMENTS 1
1
Hydrogen 1
Atomic number
1
Symbol
H
2
H
2
3
4
5
6
7
Lithium 3
Liquid
State of matter
Solid Synthetic
1.008
Atomic mass
1.008
Gas
Hydrogen
Element
Beryllium 4
Li
Be
6.941
9.012
Sodium 11
Magnesium 12
Na
Mg
22.990
24.305
Potassium 19
Calcium 20
3 Scandium 21
4 Titanium 22
5 Vanadium 23
6
7
Chromium 24
Manganese 25
8 Iron 26
9 Cobalt 27
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
39.098
40.078
44.956
47.867
50.942
51.996
54.938
55.847
58.933
Rubidium 37
Strontium 38
Yttrium 39
Zirconium 40
Niobium 41
Ruthenium 44
Rhodium 45
Molybdenum Technetium 43 42
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
85.468
87.62
88.906
91.224
92.906
95.94
(98)
101.07
102.906
Cesium 55
Barium 56
Lanthanum 57
Hafnium 72
Tantalum 73
Tungsten 74
Rhenium 75
Osmium 76
Iridium 77
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
132.905
137.327
138.905
178.49
180.948
183.84
186.207
190.23
192.217
Francium 87
Radium 88
Actinium 89
Rutherfordium 104
Dubnium 105
Seaborgium 106
Bohrium 107
Hassium 108
Meitnerium 109
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Mt
(223)
(226)
(227)
(261)
(262)
(266)
(264)
(277)
(268)
The number in parentheses is the mass number of the longest lived isotope for that element.
Lanthanide series
Actinide series
Cerium 58
Praseodymium Neodymium 59 60
Promethium 61
Samarium 62
Europium 63
Ce
Pr
Nd
Pm
Sm
Eu
140.115
140.908
144.242
(145)
150.36
151.965
Thorium 90
Protactinium 91
Uranium 92
Neptunium 93
Plutonium 94
Americium 95
Th
Pa
U
Np
Pu
Am
232.038
231.036
238.029
(237)
(244)
(243)
Metal 18
Metalloid Nonmetal Recently observed
13
11
Nickel 28
Copper 29
15
16
17
He 4.003
Boron 5
10
14
Helium 2
12 Zinc 30
Carbon 6
Nitrogen 7
Oxygen 8
Fluorine 9
Neon 10
B
C
N
O
F
Ne
10.811
12.011
14.007
15.999
18.998
20.180
Aluminum 13
Silicon 14
Phosphorus 15
Sulfur 16
Chlorine 17
Argon 18
Al
Si
P
S
Cl
Ar
26.982
28.086
30.974
32.066
35.453
39.948
Gallium 31
Germanium 32
Arsenic 33
Selenium 34
Bromine 35
Krypton 36
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
58.693
63.546
65.39
69.723
72.61
74.922
78.96
79.904
83.80
Palladium 46
Silver 47
Cadmium 48
Indium 49
Tin 50
Antimony 51
Tellurium 52
Iodine 53
Xenon 54
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
106.42
107.868
112.411
114.82
118.710
121.757
127.60
126.904
131.290
Platinum 78
Gold 79
Mercury 80
Thallium 81
Lead 82
Bismuth 83
Polonium 84
Astatine 85
Radon 86
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
195.08
196.967
200.59
204.383
207.2
208.980
208.982
209.987
222.018
Darmstadtium Roentgenium 111 110
Ds
Rg
(281)
(272)
Ununbium 112
* Uub
(285)
Ununtrium Ununquadium Ununpentium Ununhexium 113 114 115 116
* Uut
* Uuq
* Uup
* Uuh
(284)
(289)
(288)
(291)
Ununoctium 118
* Uuo
(294)
names and symbols for elements 112, 113, 114, 115, 116, and 118 are temporary. Final names will be *The selected when the elements’ discoveries are verified.
Gadolinium 64
Terbium 65
Dysprosium 66
Holmium 67
Erbium 68
Thulium 69
Ytterbium 70
Lutetium 71
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
157.25
158.925
162.50
164.930
167.259
168.934
173.04
174.967
Curium 96
Berkelium 97
Californium 98
Einsteinium 99
Fermium 100
Mendelevium 101
Nobelium 102
Lawrencium 103
Cm
Bk
Cf
Es
Fm
Md
No
Lr
(247)
(247)
(251)
(252)
(257)
(258)
(259)
(262)