Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
CAPITULO VI
CORRIENTE, RESISTENCIA Y FUERZA ELECTROMOTRIZ
1.
INTRODUCCIÓN.
271
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Al encender una lámpara, una radio, una computadora, etc. se establece una diferencia de potencial entre los terminales de entrada de estos dispositivos, lo cual produce un flujo de carga eléctrica o corriente a través de los circuitos eléctricos y electrónicos que componen estos equipos permitiendo de esta forma el funcionamiento normal de de los mismos.
Fundamentalmente los circuitos eléctricos y electrónicos son un medio que permite el transporte de energía de un lugar a otro. Al trasladarse los portadores de carga a través del circuito se transfiere energía potencial de la fuente (batería o generador) hacia otros dispositivos en el que la energía o se almacena o se convierte en otra forma de energía tal como ocurre en un bombillo de luz en donde la energía eléctrica se transforma en energía luminosa, o en una plancha eléctrica en donde la energía se transforma en calor, o se transforma en sonido como ocurre en la radio. Desde el punto de vista tecnológico los circuitos son partes importantes de una gran cantidad de dispositivos ya que permiten transportar energía sin el movimiento de piezas móviles. Los circuitos eléctricos se encuentran en el corazón de las linternas de mano, los reproductores de discos, los equipos de transmisión de radio y televisión, en los sistemas de distribución domiciliaria e industrial de energía eléctrica.
En este capítulo nos dedicaremos a mostrar las propiedades, principios y leyes que gobiernan al flujo de carga o corriente eléctrica, su relación con la densidad de corriente estableciendo la ley de Ohm y su aplicación, evaluando su aplicación a los diferentes tipos de conductores para finalmente estudiar el efecto de la temperatura sobre los conductores. As mismo estudiaremos la forma como las baterías transfieren energía y corriente a un circuito. Para este análisis utilizaremos la noción de corriente eléctrica, diferencia de potencial, resistencia y fuerza electromotriz.
2.
CORRIENTE ELECTRICA.
2.1.
Flujo de carga en conductores
Si ocurre un flujo de carga en un material conductor, las condiciones dentro de la sustancia ya no son de las de equilibrio electrostático. Es decir, en condiciones electrodinámicas el campo eléctrico en el interior del conductor es diferente de cero, dicho campo es el que permite mantener el flujo de carga. Es sabido que en los átomos de los materiales conductores existen los electrones de valencia, electrones que por estar muy separados del núcleo tienen la libertar de moverse a través de la red cristalina. Su movimiento se debe a la interacción de los electrones libres con los demás electrones de los átomos y con los iones formados producto de la separación de los electrones de valencia. Cuando se aplica una diferencia de potencial ΔV, a un conductor se produce un → campo eléctrico " E , el cual produce una fuerza eléctrica sobre los electrones libres los mismos que comienzan a moverse a través del conductor dando lugar a un flujo de electricidad o corriente eléctrica. Es importante precisar que como el número de electrones libres es equilibrado por igual número de cargas positivas en los iones metálicos del conductor, en general dicho conductor en conjunto es eléctricamente neutro y no existe carga neta. Sin embargo, las cargas positivas en los iones metálicos están fijas en la estructura cristalina, no pudiendo moverse como lo hacen los electrones. Entonces cuando se establece la diferencia de potencial en el conductor, son los electrones libres los que constituyen el flujo de carga, mientras que los iones positivos se mantienen fijos, no ejerciendo influencia, salvo la de mantener la neutralidad eléctrica global. En general el flujo de carga a través de un material conductor no es constante en el tiempo; pero cuando lo es (en dirección y sentido), decimos que se ha establecido una corriente contínua (CC) o también corriente directa (CD), en caso contrario se habla de una corriente alterna (CA). 2.2.
Corriente eléctrica
272
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Las corrientes eléctricas en general se deben al cambio de posición con respecto al tiempo de cualquier tipo de carga eléctrica (movimiento de portadores de carga). En la actualidad se distinguen las siguientes formas de corriente eléctrica.
2.2.1.
Corriente de conducción.
Llamase corriente de conducción al movimiento de los electrones de valencia en un material metálico (electrones libres) véase la figura 6.1a, o al movimiento de electrones de conducción y de huecos de conducción en un semiconductor (Figura 6.1b) o también al movimiento de los iones positivos o negativos en una solución electrolítica (figura 6.1c9
"
" (a)
(b)
" (c) Figura 6.1.
2.2.2.
(a) Corriente de conducción producida por el movimiento de electrones libres, (b) Corriente de
conducción producida por el movimiento de electrones y de huecos en un semiconductor (c) Corriente de conducción en soluciones electrolíticas
Corriente de convección
Se denomina corriente de convección al movimiento de un cuerpo eléctricamente cargado, un ejemplo lo constituye el movimiento alrededor de su órbita del cuerpo llamado tierra el cual se encuentra cargada negativamente, otro ejemplo sería el movimiento alrededor de su eje de un anillo o un disco previamente cargados.
2.2.3.
Corriente de polarización.
273
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Se denomina corriente de polarización al movimiento de los dipolos eléctricos en un material dieléctrico cuando sobre este se aplica un campo externo
2.2.4.
Corriente de desplazamiento.
Este tipo de corriente es postulado en el estudio de campos electromagnéticos en el vacío.
2.
Corriente eléctrica de conducción.
Debido a que la inmensa mayoría de aplicaciones tecnológicas implican el uso de corrientes de conducción, en esta sección nos dedicaremos al estudio de la corriente eléctrica de conducción en materiales conductores. Bajo condiciones electrostáticas el campo eléctrico en el interior es cero, por tanto no existe corriente. No obstante, esto no significa que todas las cargas dentro del conductor estén en reposo. En un metal cualquiera como el cobre, la plata, el aluminio, algunos electrones como los de valencia tienen la libertad de moverse dentro del material conductor. Estos electrones libres se mueven en forma aleatoria en todas las direcciones, en forma análoga como las moléculas de un gas pero con una rapidez mucho mayor. No obstante, los electrones libres no escapan del material conductor porque son atraídos hacia los iones positivos del conductor.
→ Consideremos ahora lo que ocurre si se establece un campo eléctrico " E constante dentro del conductor. Los → → electrones libres se encuentran ahora sometidos a una fuerza eléctrica constante " F = qe E . Si estos electrones estuvieran moviéndose en el vacío, la fuerza le produciría una aceleración uniforme en la dirección de dicha fuerza de tal manera que después de cierto tiempo los electrones tendrían una gran rapidez. Sin embargo, el movimiento de estos electrones dentro del conductor no el libre sino que ellos interactúan con los demás electronos y los iones fijos. En cada una de estas colisiones aparece un cambio en la orientación del movimiento de los electrones resultando un movimiento al azar. El efecto neto del campo aplicado es que además del movimiento aleatorio de los electrones hay un movimiento muy lento a de deriva como grupo, en la dirección de la fuerza tal como se muestra en la figura 6.2. Este desplazamiento se describe en términos de la velocidad de deriva "→ v d de los portadores de carga. Por lo tanto, existe una corriente neta dentro del conductor.
" Figura 6.2. Trayectoria típica de un electrón dentro de un conductor al cual se le aplica un campo eléctrico. Aunque el movimiento aleatorio de los electrones tiene una rapidez promedio muy grande, aproximadamente 106 m/s, la rapidez promedio de deriva es pequeña (10-4 m/s). En vista de que los electrones se desplazan tan lentamente, podríamos preguntarnos por qué la luz aparece tan rápido cuando accionamos un interruptor. La razón es que el campo eléctrico se establece en el conductor con una rapidez próxima a la de la luz, y los electrones dentro del conductor comienzan a trasladarse prácticamente al mismo tiempo. En los diferentes materiales portadores de corriente, las cargas de las partículas móviles pueden ser positivas o negativas. Así por ejemplo en los metales los portadores de carga son los electrones (negativos), mientras que en un gas ionizado (plasma) y en las soluciones iónicas los portadores de carga pueden ser positivos o negativos. En el caso de los semiconductores los portadores de carga son los electrones y el movimiento de vacantes (huecos) que no es más sino lugares donde faltan electrones y que actúan como cargas positivas. En la figura
274
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
6.3 se muestra segmentos de materiales en los cuales se observa el movimiento de diferentes portadores de carga. En la figura 6.3a, los portadores son positivos, en este caso la fuerza eléctrica tiene la misma dirección que el campo y la velocidad de deriva es de izquierda a derecha En la figura 6.3b, los portadores móviles son negativos, en este caso la fuerza tiene sentido opuesto al campo eléctrico y la velocidad de deriva es de derecha a izquierda.
"
"
Figura 6.3. (a) Movimiento de portadores de carga positiva a través de un conductor, (b) movimiento de portadores de carga negativa (electrones en un conductor.
Definimos la dirección de la corriente que en adelante se representa por I, como aquella en la que existe un flujo de carga positiva. Es decir, consideramos a la corriente como un flujo de cargas positivas, incluso en aquellos casos en que sabemos que los portadores son los electrones. Por tanto la corriente tendrá un sentido hacia la derecha en ambos figuras 6.2a y 6.2b. Esta asunción se conoce como corriente convencional. Para determinar el valor de la corriente asumamos que un conjunto de portadores de carga positiva se mueven de izquierda a derecha tal como se muestra en las figuras 6.4a y 6.4b en la misma dirección que la corriente. Definimos la corriente eléctrica I como la cantidad de carga móvil total que pasa por una sección transversal fija normal al conductor, por unidad de tiempo. De acuerdo con esta definición, si en un intervalo de tiempo Δt por la sección transversal A atraviesa una cantidad de carga Δq, la corriente eléctrica será.
"
I=
Δq Δt
(6.1)
Para las corrientes que varían con el tiempo la intensidad de la corriente en el instante t se define como el límite de " ∆ q / ∆ t, cuando el intervalo de tiempo Δt tiende a cero, esto es "
I = lim
Δt → 0
Δq dq = Δt dt
"
(6.2)
" (a)
Figura 6.4.
(b)
Movimiento de portadores de carga positivos a través de la sección transversal de un conductor
Para el caso de corrientes continuas o directas, la ecuación (6,2) se escribe
q
∫ dq = ∫ Idt ⇒ q = I ∫ dt ⇒ I = t "
(6.3)
De estas ecuaciones podemos ver que la intensidad de corriente es una magnitud escalar que tiene como unidad en el sistema internacional al Amperio definido com0 un Coulomb sobre un segundo, es decir
"
1Amperio =
1coulomb 1C ⇒ 1A = 1segundo 1s
275
Física General III
3.
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
→
Densidad de corriente (! j ).
En cada parte de la sección transversal de un material conductor puede atravesar diferente número de → cargas elementales en un mismo tiempo, por ello es necesario definir la densidad de corriente " j , la misma que expresa la intensidad o concentración del flujo de carga en un punto de un medio conductor. La densidad de corriente es una magnitud vectorial que tiene la misma dirección que el flujo de carga en un punto dado. Su magnitud se determina tomado el límite el flujo de carga o corriente, ΔI por unidad de área ΔA, orientada perpendicularmente a la dirección del flujo de carga como se muestra en la figura 6.5, esto es
"
j = lim
ΔA→ 0
ΔI dI = ΔA dA
(6.4)
" Figura 6.5
Densidad de corriente para un flujo de carga no uniforme
Para el caso de un conductor dentro del cual el flujo de cargas libres es la misma en todos los puntos como se → muestra en la figura 6.6, la densidad de corriente " j , es la misma en todo el conductor. La relación entre la densidad de corriente y la intensidad de corriente se obtiene integrando la ecuación (6.4) sobre el área → transversal sombreada y considerando a " j constante. De tal manera que "
dI = jdA ⇒ I = ∫ jdA = jA
j= "
I A⊥
(6.5)
" Figura 6.6.
Diagrama para mostrar la relación Corriente y densidad de corriente para flujos de carga uniformes
Para determinar la densidad de corriente cuando esta varía de un punto a otro dentro de la sustancia conductora como ocurre en un tubo de descarga gaseosa o un transistor de radio, consideremos un conductor de forma irregular como se muestra en la figura 6.7, por el que circula una corriente total I de tal manera que la magnitud → y dirección del flujo de carga o corriente y por tanto la densidad de corriente " j cambian continuamente de un punto a otro.
276
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
" Figura 6.7. Diagrama que permite evaluar la relación general entre la intensidad de corriente y l densidad de corriente en general
→ Para determinar una relación entre la corriente I y la densidad de corriente " j , tomemos un área cualquiera de forma irregular A y dividámoslo en elementos de área dA, entonces el vector unitario normal → " n perpendicular a → dA forma un ángulo θ con la densidad de corriente " j en dicho punto. Entonces la corriente eléctrica a troves del área correspondiente será
dI = jdA⊥ = j cos θ dA "
(6.6)
Usando la definición de producto escalar la ecuación anterior se puede escribir.
!! = j .ndA
(6.7)
!! I = ∫∫ j .ndA
(6.8)
" dI Integrando la ecuación (6.7), resulta "
A
Esta es una relación entre la intensidad de corriente total y la densidad de corriente en el caso más general 4.
Densidad de corriente en función de la velocidad de deriva de los portadores de carga.
→ Para determinar una relación entre la densidad de corriente " j y la velocidad de deriva de los → portadores de carga " v d, consideremos un tubo de corriente de área transversal dA y de longitud dx análogo al tubo de flujo utilizado en mecánica de fluidos como se muestra en la figura 6.8a. Debido a que las líneas de corriente son paralelas a la superficie lateral del tubo de corriente, no existirá flujo de corriente a través de la superficie lateral del tubo.
"
" (a)
(b)
Figura 6.8. (a) Tubo de corriente utilizado para evaluar la relación entre la densidad de corriente y la densidad de portadores móviles, (b) tubo de corriente en un conductor recto.
277
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
En un intervalo de tiempo dt, toda carga dentro de la sustancia se moverá una distancia dx = vddt, donde vd es la velocidad de deriva o arrastre de los portadores de carga móviles. En este intervalo de tiempo por el área dA fluirá una carga total expresada por "
dq = ρ q dVvol = ρ q (dxdA)
(6.9)
Donde, ρq la densidad de carga volumétrica y dVvol el volumen del tubo de corriente. Remplazando el valor de dx = vddt en la ecuación (6.9) se obtiene
dq = ( ρ q vd dA)dt "
(6.10)
O sea la carga por unidad de tiempo viene expresada por la ecuación
dq = ρ q vd dA " dt
(6.11)
Pero dq/dt es la intensidad de corriente total en el tubo diferencial, entonces tenemos
dI = ρ q vd dA "
Por otro lado la corriente y la densidad de corriente se encuentran relacionadas por la ecuación entonces la ecuación (6.12), se escribe
j = ρ q vd "
(6.12)
d" I = jd A,
(6.13)
Debido a que la densidad de corriente y la velocidad de deriva tienen la misma dirección, la ecuación (6.13) se puede escribir vectorialmente en la forma "
! ! j = ρ q vd
(6.14)
→ La ecuación (6.14), expresa que la densidad de corriente " j es igual al producto de la densidad de carga volumétrica por la velocidad de deriva de los portadores de carga → " v d. Si existe n partículas cargadas móviles por unidad de volumen. La densidad de carga por unidad de volumen se expresa en la forma
ρ q = nq0 "
(6.15)
Donde n es el número de partículas por unidad de volumen y q0 es la carga de cada una de ellas. Por lo tanto la densidad de corriente puede escribirse en la forma
! ! j = nq0 vd "
(6.16)
Si los portadores de carga son los electrones como en el caso de las metales, su carga es q" 0 = − e , entonces la densidad de corriente está dada por la ecuación "
! ! j = −n e vd
(6.17)
Para el caso de soluciones electrolíticas en donde los portadores de carga son los iones positivos y negativos o en el caso de los semiconductores en donde los portadores de carga son los electrones y las vacancias (huecos), la densidad de corriente se determina sumando la densidad de corriente para cada tipo de portador de carga, es decir "
! ! j = ∑ ni qi vd ,i 278
(6.18)
Física General III
3.
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
LEY DE OHM MICROSCÓPICA: Conductividad eléctrica.
Debemos señalar primeramente que en los conductores los portadores de carga no se encuentran en completa libertada para moverse, es decir su movimiento es aleatorio tal como se muestra en la figura 6.9a, esta trayectoria que describe los portadores se debe a la interacción con los demás electrones y con los iones fijos de la red cristalina véase figura 6.9b. Durante estas interacciones (colisiones) los electrones pierden gran cantidad → de energía cinética que la adquirió cuando se aplicó el campo eléctrico " E , campo que le produce una fuerza → → eléctrica " F = − e E .
"
" (a)
(b)
Figura 6.9 (a) Trayectoria aleatoria del movimiento de un portador de carga dentro de un conductor, (b) la interacción de electrones con los iones de la red da lugar a que los iones vibren alrededor de su posición de equilibrio y los electrones se muevan en trayectorias aleatorias según la orientación del campo eléctrico
La conversión de energía eléctrica en energía cinética de los electrones y la posterior conversión en energía térmica (calentamiento del conductor) podrían representarse como pérdidas debidas a fuerzas de fricción sobre las cargas móviles. Estas fuerzas de fricción pueden asemejarse a las que aparecen en el movimiento de un sólido en el interior de un fluido, siendo dichas fuerzas proporcionales a la velocidad de deriva de los electrones → " v d, entonces se tiene
! ! ' f = bv r d "
(6.19)
Debido a que la fuerza eléctrica y la fuerza fraccional tienen signos opuestos, después de cierto tiempo esta se equilibran dando lugar a un movimiento uniforme con una velocidad terminal o límite obtenida a partir de "
! ! !! Fe + f r' = 0 ⇒ eE − bvd
! e ! vd = E b "
(6.20)
Donde b es una constante de proporcionalidad y depende del material del cual está hecho el conductor. Por otro lado denominamos movilidad de los electrones ("μe) al cociente e/b, es decir μ " e = e /b, con lo cual escribimos la ecuación (6.20) en la forma
! ! v = µ E d e " 279
(6.21)
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Puesto la densidad de corriente es proporcional a la velocidad de deriva de los electrones, al remplazar la ecuación (6,21) en (6.16), resulta
! ! j = ne µ E e "
(6.22)
La ecuación (6.22) indica que la densidad de corriente es proporcional al campo eléctrico siendo la constante de proporcionalidad n " eμe y se le denomina conductividad eléctrica (σ) y a su recíproco que se le llama resistividad eléctrica del material. Es decir
σ= "
1 = neµe ρ
(6.23)
Debe señalarse además que tanto la conductividad así como la resistividad son propiedades que dependen del material conductor y no dependen del tamaño ni de la geometría del conductor. Al remplazar la conductividad eléctrica en la ecuación (6,22), obtenemos
! ! 1 ! j =σE = E ρ "
(6.24)
Es a la ecuación (6.24) que se le conoce como ley de Ohm microscópica. Según esta ecuación la resistividad eléctrica puede expresarse como
ρ= "
E j
(6.25)
De donde se obtiene que las unidades de la de la resistividad es (V.m/A). Esta ecuación además indica que cuanto mayor es la resistividad más grande es el campo eléctrico necesario para generar una densidad de corriente. Como veremos más adelante el cociente (V/A) se llama ohm (Ω), por tanto las unidades de la resistividad en el SI es el (Ω.m). La tabla 6.1 muestra algunos valores de resistividades de materiales. De ella se observa que los metales y sus aleaciones presentan resistividades más pequeñas, por ello es que estos materiales son mejores conductores de la electricidad. Por otro lado los aisladores tienen su resistividad mucho mayor que los conductores, siendo el factor del orden de 1022. Debe señalarse además que el recíproco de la resistividad es la conductividad cuyas unidades son (Ω.m)-1según esta cantidad, los elementos cuya conductividad es alta son buenos conductores de la electricidad. Debe señalarse además que los semiconductores tienen resistividades intermedias entre los metales y los aislantes. Estos materiales tienen una gran importancia en el diseño de dispositivos electrónicos en virtud de la manera en que la temperatura y el añadido de impurezas modifican sus propiedades eléctricas. Un material que cumple con la ley de Ohm se denomina óhmico. En estos materiales, y a una temperatura dada, la resistividad permanece constante, es decir, no depende del campo eléctrico. Sin embargo existen otros materiales como los semiconductores cuyo comportamiento es no lineal denominados no óhmicos, en estos materiales, la densidad de corriente depende del campo eléctrico.
Tabla I. Resistividad, conductividad y coeficiente de temperatura de algunos materiales MATERIAL
RESISTIVIDAD ρ (Ω.m)
CONDUCTIVIDAD σ (Ω.m)-1
COEFICIENTE DE TEMPERA. α (°C)-1
Elementos Plata
1,47.10-8
6,29.107
0,0038
Cobre
1,72.10-8
5,81.107
0,00393
Oro
2,44.10-8
4,09.107
0,004
280
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Aluminio
2,75.10-8
3,55.107
0.0039
Tungsteno
3,25.10-8
1,80.107
0,0045
Hierro
10,00.10-8
1,00.107
0,0050
Plomo
22,00.10-8
6,29.107
0,0043
Mercurio
95,00.10-8
0,1.107
0,00088
Aleaciones Manganina
44.10-8
0,23.107
1,00.10-5
Constantán
49.10-8
0,23.107
0,00001
Nicromo
100.10-8
0,1.107
0,0004
Carbono puro (grafito)
3,5.10-5
2,9.104
-0,0005
Germanio puro
0,60
2,2
-0,048
Silicio puro
2300
1,6.10-3
-0,075
1010 – 1014
10-10 – 10-144
Azufre
1015
10-15
Cuarzo
75.1016
1,73.10-18
Aisladores Vidrio
Mica
6.3.1
1011 - 1015
11.
– 10-15
Resistividad y la temperatura.
La resistividad de un material conductor casi siempre aumenta con la temperatura como se muestra en la figura 6.9a. Esto se debe a que cuando se eleva la temperatura de un conductor, los iones del conductor viran con mayor amplitud aumentando de esta manera la probabilidad de que un electrón en movimiento colisione con un ión. En consecuencia disminuye la velocidad de deriva del portador dentro del conductor, disminuyendo de este modo la corriente. Si el rango de variación de temperaturas es hasta 100°C, la resistividad del material puede escribirse en la forma.
"
ρ (T ) = ρ0 [1 + α (T − T0 )]
(6.26)
Donde ρ0 es la resistividad a una temperatura de referencia T0 con frecuencia tomada a 0°C 0 a 20°C y ρ(T) es la resistividad a cualquier temperatura T. El factor α se denomina coeficiente de temperatura de la resistividad su valor para algunos materiales está dado en la Tabla I . De dicha tabla se observa que para el caso del grafito y los semiconductores la resistividad disminuye al aumentar la temperatura por tanto el coeficiente de temperatura de la resistividad de estos materiales es negativa. En el caso de los semiconductores esta propiedad nos permite diseñar los termistores.
281
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
" Figura 6.10 Variación de la resistividad con la temperatura: (a) Para un metal (la resistividad aumenta con el incremento de temperatura, (b) En un semiconductor la resistividad disminuye al aumenta T
6.3.2
Superconductividad.
Ciertos materiales tales como óxidos metálicos y algunas otras aleaciones presentan un fenómeno denominado superconductividad. Este fenómeno consiste en que al disminuir la temperatura de estos materiales, al principio la resistividad disminuye uniformemente. Sin embargo cuando se alcanza cierta temperatura denominada temperatura crítica TC aparece una transición de fase y la resistividad desciende abruptamente a cero, como se muestra en la figura 6.11a. Es decir, si en estos materiales superconductores se establece una corriente eléctrica ella se mantiene sin la necesidad de un campo eléctrico. Este fenómeno fue descubierto por Heike Kamelingh Onnes en 1911 quien observo que cuando la temperatura del mercurio disminuyó a valores del orden de lo 4,2K, su resistividad disminuía súbitamente a cero. Durante 70 años se ka alcanzado temperaturas críticas del orden de los 20K. Este es un indicador que solo había superconductividad cuando estos materiales se enfriaban en helio líquido (costoso) o hidrógeno líquido (explosivo). Posteriormente, Muller y Bednortz descubrieron que el óxido de bario, lantano y cobre se convertían en superconductores a temperaturas de los 40K. Posteriormente en los años 1987 se obtuvo un óxido complejo de itrio, cobre y bario con superconductividades a temperaturas de los 77K. En la actualidad se ha encontrado sustancias conductoras a temperaturas de los 160K, existiendo la posibilidad de encontrar superconductores a temperatura ambiente. Si esta hipótesis se lograra cumplir aparecería una enorme modernización con implicancias tecnológicas muy grandes. Una de las aplicaciones importantes es la fabricación de imanes superconductores, en los que los campos magnéticos son diez veces mayores a los campos magnéticos producidos por los mejores electroimanes. En la actualidad los imanes superconductores son usados para obtener imágenes por resonancia magnética en el campo de la medicina. En la figura 6.11b se muestra una de las aplicaciones de la superconductividad.
"
" (a)
Figura 6.11.
4.
(b)
(a) Variación de la resistencia con la temperatura para el mercurio, se observa que para temperaturas inferiores a TC = 4,2K, la resistencia cae súbitamente a cero; (b) Imán permanente pequeño levitando por encima de un disco superconductor deYBa2Cu3O7 a una temperatura de 77K
RESISTENCIA ELECTRICA
4.1.
Ley de Ohm macroscópica.
282
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Para obtener una forma más usual de la ley de Ohm para aplicaciones prácticas consideremos un segmento recto de alambre de longitud L y sección transversal A, como se muestra en la figura 6.12, entre cuyos extremos se ha aplicado una diferencia de potencial " ∆ V = Vb − Va , la misma que produce un campo → eléctrico " E y una corriente I.
!
Figura 6.12. Conductor de longitud L y sección A uniforme al que se le aplica una diferencia de potencial ΔV, la misma → que produce un campo " E y como tal una corriente I
→ Asumiendo que el campo " E en el interior es diferente de cero y a la vez uniforme, entonces la diferencia de potencial entre los extremos b y a será
"
a !! ΔV = − ∫ E.ds = EL b
(6.26)
Despejando el campo eléctrico se tiene
"
E=
ΔV L
(6.27)
Remplazando la ecuación (6.27) en la ecuación (6.24), la densidad de corriente puede escribirse en la forma
"
j =σ(
ΔV ) L
(6.28)
Teniendo en cuenta que la densidad de corriente es la intensidad de corriente por unidad de área perpendicular, esto es "j = I /A, la ecuación (6.28) se transforma en
I σ (ΔV ) ΔV = = A L ρl "
"
ΔV = ρ
L I A
(6.29)
Es a la cantidad ρ " (l /A), que se le conoce como Resistencia (R), del material, entonces
L A
"
(6.30)
= RI
(6.31)
R=ρ
Al remplazar la ecuación (6.30) en (6.29), se obtiene " ΔV
La expresión dada por la ecuación (6.31), se le conoce como ley de Ohm macroscópica, pero es importante comprender que el verdadero contenido de la ley de Ohm es la proporcionalidad directa (en el caso de ciertos materiales) entre la diferencia " ∆ V con respecto a la intensidad de corriente I o de la densidad de corriente j con
283
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
respecto al campo eléctrico E. La ecuación (6.31) define la resistencia R de cualquier conductor, ya sea que obedezca la ley de Ohm o no, pero cuando R es constante el correcto llamar ley de Ohm a esta relación Aun cuando la ecuación (6.31) muestra una relación entre la resistencia, la diferencia de potencial y la intensidad de corriente, debe precisarse que la resistencia R de cualquier material conductor es totalmente independiente de la diferencia de potencial aplicada y de la intensidad de corriente, siendo más bien dependiente de la geometría del conductor y de la naturaleza del material, así por ejemplo si el conductor es recto de longitud l y sección transversal constante la resistencia R es proporcional a la longitud l e inversamente proporcional al área de la sección transversal A, siendo la constante de proporcionalidad la resistividad ρ En general, la resistencia R, de cualquier material de forma arbitraria se determina usando la relación
"
ΔV R= = I
!!
!!
.ds ∫ E!.ds = ∫ E! ! ! ∫∫ j .ndA ∫∫ σ E.ndA A
(6.32)
A
De acuerdo con la ecuación (6.32), la unidad de la resistencia R en el sistema internacional de unidades es el ohmio, representada por la letra omega del alfabeto griego (Ω). Entonces "
1Ω =
1V 1A
(6.33)
Para el caso de los resistores que obedecen la ley de Ohm, su gráfica intensidad de corriente en función de la diferencia de potencial es una línea recta como se muestra en la figura 6.13a. En el caso de dispositivos que no cumplen con la ley de Ohm, la relación intensidad de corriente y diferencia de potencial puede no ser una proporción directa, y puede ser diferente con respecto a los sentidos de la corriente. La figura 6.13b, muestra la curva característica para un diodo de vacio utilizado para convertir corriente alterna de alto voltaje en corriente contínua, Con potenciales positivos en el ánodo con respecto al cátodo, la corriente I es aproximadamente proporcional a (" ∆ V )3/2 ; mientras que con potenciales negativos la corriente es extremadamente pequeña. El comportamiento d los diodos semiconductores (figura 6.8c) es algo diferente.
" (a)
(b)
(c)
Figura 6.13. Relación intensidad de corriente: (a) Resistencia óhmica, (b) Diodo de vacío y (c) Diodo semiconductor
4.2.
Variación de la resistencia con la temperatura.
Se ha visto en la sección 2.7 que la resistividad de un conductor varía de manera lineal con la temperatura de acuerdo con la ecuación
"
ρ (T ) = ρ0 [1 + α (T − T0 )]
Por otro lado debido a que la resistencia es proporcional a la resistividad, entonces, se puede escribir la resistencia del conductor en función de la temperatura, esto es
284
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
6.34)
R(T ) = R0 [1 + α (T − T0 )]
4.3.
Estudio de la resistencia eléctrica..
Un dispositivo utilizado en circuitos de modo que tenga un valor específico de resistencia entre sus extremos se llama resistor. Se pueden adquirir en el mercado resistores cuyos valores van desde 0,01Ω hasta 107Ω. Los resistores individuales utilizados en instalaciones electrónicas tienen la forma de cilindros pequeños de algunos milímetros de diámetro y de longitud, con alambres que sobresalen de sus extremos, en los cuales se ha plasmado bandas de colores tal como se muestra en la figura 6.14a y la figura 6.14b se muestra un conjunto de resistores con bandas de diversos colores.
"
"
Figura 6.14. (a) Resistencia óhmica usada en circuitos, (b) Conjunto de resistencias de diversos valores Cada una de estas resistencias está marcado con un código estándar de tres o cuatro bandas de color cerca de uno de los extremos como se muestra en la figura 6.15a, de acuerdo con el esquema que se muestra en la tabla II. La primeras dos bandas (a partir del extremo más próximo) son dígitos, y la tercera es un multiplicador de potencia de diez. Su representación en el lenguaje de circuitos es la mostrada en la figura 6.15b, para una resistencia fija y la figura 6.15c para una resistencia variable. Otra característica importante de un resistor es la energía eléctrica que puede disipar sin sufrir daño, esto es la potencia de trabajo.
" Figura 6.15.
"
(a)
(b)
(b)
(a) Resistencia mostrando las bandas de colores e indicando la forma como se determina su valor mediante el código de colores, (b) representación de una resistencia fija y (c) representación de una resistencia variable en un circuito.
Tabla II. Código de colores para resistencias
285
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
" En la figura 6.16a, se muestra las componentes básicas de un resistor y en la figura 6.16b su instalación en circuitos eléctricos y electrónicos
"
" (a)
(b)
Figura 6.16. (a) Componentes de una resistencia y (b) Instalación de resistencias en un circuito Debe indicarse además que los resistores mostrados en las graficas anteriores no son el único tipo de resistencia que se usa en instalaciones eléctricas y electrónicas. En general también se usan resistencias variables o con los potenciómetros, los mismos que se muestran en la figura 6.17,
" Figura 6.17. Fotografía de varios potenciómetros (resistencias variables)
286
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Una de las resistencia variables muy utilizado en el laboratorio es el Reóstato (Rh), el cual tiene un control deslizante, y tres conectores (uno en la parte superior y dos en la parte inferior) como se muestra en la figura 6.18a, cuando el reóstato es conectado con la parte superior a un circuito y la parte inferior al otro extremo del circuito, la resistencia se puede variar mediante el movimiento del control deslizante, controlando de este modo el flujo de corriente a través del reóstato representada por la línea de color rojo en la fotografía. La figura 6.18b muestra la representación en el lenguaje circuital del reóstato.
"
"
Figura 6.18. (a) Fotografía de un reóstato y (b) representación esquemática de un reóstato. Por otro lado existen resistencias variables cuya resistencia varía con la variación de temperatura (termistores) representados en la figura 6.14b y aquellos que varían con la incidencia de la luz (celda fotoconductora) representada en la figura 6.14b
"
"
Figura 6.19. (a) Fotografía de varios termistores y (b) Fotografía de una celda fotoconductora 7.
FUERZA ELECTROMOTRIZ Y CIRCUITOS.
Para que un conductor tenga una corriente constante, dicho conductor debe ser parte de un circuito. Esto es necesario debido a que cuando se establece una diferencia de potencial " ∆ V, entre sus extremos, aparecerá un → campo eléctrico " E en el interior el mismo que producirá una fuerza eléctrica sobre los portadores de carga → → originándose una corriente eléctrica (flujo de portadores de carga) con una densidad de corriente " J = σ E como se muestra en la figura 6.20a. Sin embargo, si el conductor no es parte de un circuito la diferencia de potencial aplicada ocasionará que en un tiempo muy pequeño se acumule carga positiva en lado del conductor y en el otro se acumule una carga negativa como se ve en la figura 6.20b, dichas carga dan origen a un campo propio de → → sentido opuesto " E i, el cual cancela al campo aplicado " E a, llegando después de dicho tiempo el campo neto en el interior igual a cero y como tal la corriente eléctrica también será nula, como se muestra en la figura 6.20 b
287
Física General III
"
Corriente, resistencia y fuerza electromotriz
!
Optaciano Vásquez García
!
Figura 6.20. (a) El campo originado por la aplicación de una diferencia de potencial genera una corriente, (b) la
corriente provoca una acumulación de carga en los extremos apareciendo un campo inducido que disminuye el campo original, (c) después de un tiempo muy corto el campo original es cancelado por el campo inducido siendo el campo neto en el interior nulo.
Por lo tanto, para que una corriente (flujo de carga) se mantenga en el conductor, es necesario que el conductor esté conectado a un circuito, más aun debe existir un agente externo el cual debe mantener la diferencia de potencial necesaria para aumentar la energía potencial de las cargas. Este agente no es más sino una fuente de fem (batería, generador, etc).
6.7.1
Fuerza electromotriz (fem).
Se ha dicho que para mantener una corriente eléctrica en un conductor, en alguna parte del circuito debe haber un elemento activo de tal manera que empuje una carga positiva desde un punto de menor potencial a otro de mayor potencial venciendo de esta forma el campo electrostático el que produce una fuerza eléctrica → → " F E = q E . La fuente que hace este trabajo se denomina fuente generadora de fuerza electromotriz o → simplemente fuerza electromotriz (ε) " , la que ejerce una fuerza " F n, sobre los portadores tal como se muestra en la figura 6.21a, llevando los portadores del borne a hacia el borne b. Debemos precisar que el nombre de fuerza electromotriz no es una fuerza, sino más bien una cantidad de energía por unidad de tiempo, siendo sus unidades las mismas que las de diferencia de potencial, esto es: el volt (V). Así por ejemplo, una batería utilizada para la linterna tiene una fem de 1,5 V, es decir, la batería realiza un trabajo de 1J sobre cada coulomb de carga que pasa a través de ella.
En general se llama fuente generadora de fem a cualquier dispositivo que transforma energía no eléctrica (mecánica, química, solar, térmica, etc.) en energía potencial eléctrica y la transfiere al circuito al cual se encuentra conectado el dispositivo. Las principales fuentes fem son: las baterías, los generadores eléctricos, las caldas solares, las pilas termoeléctricas y las celdas de combustibles. Una fuente generadora de fem ideal mantiene sus bornes a una diferencia de potencial constante es decir ε" = Va − Vb. Por esto es que se define a la fem como la magnitud de la diferencia de potencial. Sin embargo, en la naturaleza no existe fuente de fem ideal, ya que todas tienen resistencia interna por tanto la fem se relaciona con la diferencia de potencial mediante la ecuación V " a − Vb = ε − rI. La figura 6.21a, corresponde a una fuente ideal de fem que mantiene una diferencia de potencial entre sus bornes a y b, siendo el borne a el que se encuentra a mayor potencial que el borne b dicha → diferencia de potencial produce un campo electrostático " E el mismo que produce una fuera electrostática → → " F E = q E sobre una carga positiva. Para mantener dicha diferencia de potencial la fuente de fem hace un → trabajo no electrostático produciendo una fuerza no electrostática " F n sobre la carga +q obligándola a moverse del borne b hacia a. Este trabajo por ejemplo en una batería se debe a la energía química producida en el interior de la batería producto de las reacciones químicas que en ella se producen.
288
Física General III
Corriente, resistencia y fuerza electromotriz
"
Optaciano Vásquez García
"
Figura 6.21 (a) diagrama esquemático de una fuente de fem; (b) diagrama de una fuente de fem instalada en un circuito cerrado
Cuando se produce el traslado de una carga +q del borne b al borne a, la fuerza no electrostática realiza un trabajo positivo ( W " b→a = qε ) sobre la carga, originando un desplazamiento en contra del campo electrostático por lo tanto la energía potencial asociada a la carga aumenta en una cantidad (" q ∆ V ), por otro lado la fuerza electrostática también ejerce un trabajo pero en este caso es negativo, de tal manera que el trabajo neto es nulo, es decir no existe variación de energía cinética de la carga. Esto es como si se moviera un cuerpo a velocidad constante. Pues bien, el aumento de energía potencial en la fuente ideal será igual al trabajo no electrostático, es decir
qε = Wb→a = qΔV ε = ΔV "
(6.35)
Con la fuente de fem formemos un circuito como se muestra en la figura 6.21b, la diferencia de potencial establecerá un campo eléctrico en el interior del alambre esto produce un flujo de carga o corriente a través del conductor de mayor a menor potencial. De acuerdo con la ley de Ohm dicha diferencia de potencial será " ∆ V = I R, con lo cual la ecuación 6,35 se escribe en la forma
" ε = ΔV = IR
6.7.2
(6.36)
Resistencia interna de una fem.
En la naturaleza no se encuentra fuente ideal alguna, es decir todas tienen una resistencia interna, entonces la fem (ε) " no es igual a la diferencia de potencial " ∆ V . Esto se debe a que cuando se mueve un portador de carga en el interior de la fuente de fem experimenta una oposición (resistencia). Es a esta resistencia que se le denomina resistencia interna (r) y que si cumple con la ley de Ohm, entonces en ella habrá una caída ) , de tal forma que cuando exite flujo de corriente a través de la fuente, la diferencia de de potencial (–rI " potencial entre los bosrnes será
289
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
" ΔV = ε − rI
(6.37)
Es decir, la diferencia de potencial entre los bornes a y b es inferior a la fuerza electromotriz debido al término " (–rI ), el aumento de energía potencial que se produce cuando se traslada la carga q de b hasta a es menor que el trabajo realizado por la fuente de fem ya que parte de la energía se pierde en la resistencia interna en forma de calor.
Si se tiene una batería de 9 V, tiene una fem de 9 V, pero la diferencia de potencial entre sus bornes será igual a 9 V si ninguna corriente circula a través de ella. Si la batería es parte de un circuito cerrado la diferencia de potencial será menor de 9 V. Es decir, en una fuente real la diferencia de potencial entre sus bornes será menor cuando a través de ella fluya corriente (véase la figura 6.22a) y será igual a la fem si a través de ella no circula corriente (figura 6.22b).
!
Figura 6.22. (a) Cuando el interruptor está cerrado la diferencia de potencial entre los bornes de la fuente de fem es
menor que la fem; (b) cuando el interruptor se encuentra abierto la diferencia de potencial entre los bornes es igual a la fem.
La corriente en el circuito externo conectado a los bornes de la fuente sigue cumpliendo con la ley de Ohm si el elemento pasivo es óhmico (" ∆ V = R I ). Al combinar esta ecuación con la ecuación 6.37, se tiene
" ε − rI = RI
"
I=
ε r+R
(6.38)
Es decir la corriente en el circuito es igual al cociente de la fem y la resistencia total del circuito (r + R).
El cambio neto de energía potencial de una carga q que recorre un circuito completo debe ser cero. Por tanto, el cambio neto de diferencias de potencial alrededor del circuito debe ser nulo. Es decir, la suma algebraica de las diferencias de potencial a través del circuito cerrado debe ser nula. Entonces se tiene
290
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
ΔVε + ΔVr + ΔVR = 0 ε − rI − RI = 0 (6.39)
Aquí se observa que una ganancia de potencial en la fuente de fem se compensa con las pérdidas de energía en la resistencia interna r y en la resistencia externa R. En la figura 6.23 se observa la variación de potencial a medida que se recorre un circuito.
"
"
Figura 6.23. (a) Diagrama de un circuito en donde se muestra una fuente de fem ε! y resistencia interna r conectada a un resistor externo R; (b) representación gráfica de las variaciones de potencial a través del circuito seguido en sentido anti horario.
8.
ENERGÍA Y POTENCIA EN CIRCUITOS ELECTRICOS.
Cuando se aplica una diferencia de potencial ΔV, entre los extremos de un conductor, aparece un campo → → → eléctrico " E , en el interior del mismo, éste campo produce una fuerza eléctrica " F e = − e E , la misma que acelera a los portadores de carga (electrones) en el metal en un tiempo muy pequeño, haciendo que el conjunto de electrones incremente su energía cinética. Sin embargo, esta energía cinética rápidamente se convierte en energía interna del conductor debido a las interacciones (choques) de los electrones con los iones de la estructura cristalina. El aumento de energía interna da lugar a un incremento de la temperatura del conductor (el conductor se calienta). Este fenómeno se conoce como efecto Joule, el mismo que es aprovechado en el diseño de un conjunto de dispositivos como por ejemplo: planchas eléctricas, hornillos eléctricos, etc.
Para determinar la energía transformada, consideremos una porción de alambre en forma de cilindro circular recto de longitud " ∆ l y sección transversal A, como se muestra en la figura 6.24. En el tiempo " ∆ t , una carga ∆ q entra por el punto a el cual se encuentra a un potencial Va y una cantidad de carga igual sale por el punto b el cual se mantiene a un potencial Vb. Es decir, la carga ∆ q al pasar de un punto de mayor potencial a a otro de menor potencial b, experimenta una pérdida de energía potencial dada por
"
ΔU = Δq (Vb − Va ) = −(ΔV )Δq
291
(6.40)
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
En donde, Va - Vb, es la disminución o caída de potencial a través del segmento de conductor. La energía perdida será
−ΔU e = (ΔV )Δq "
(6.41)
Dividiendo la ecuación (6.41) entre el tiempo dt, se obtiene la pérdida de energía por unidad de tiempo, la misma que se expresa como
ΔU e Δq = ΔV Δt " Δt −
(6.42)
Pero la carga por unidad de tiempo es la intensidad de corriente I" = ∆ q / ∆ t, y la energía por unidad de tiempo es la potencial eléctrica disipada P en el segmento de conductor. Es decir,
" P = I (ΔV )
(6.43)
La unidad de la potencia disipada en el sistema internacional de unidades es el Watt (W), es decir
1Watt = (1C / s )(1J / s ) = (1amperio)(1voltio) 1W = 1A(1V ) "
" Figura 6.24. Diagrama esquemático utilizado para determinar la energía perdida por unidad de tiempo en un conductor.
6.8.1
Resistencia pura.
Si el elemento del circuito es un resistor la diferencia de potencial entre los extremos según la ley de Ohm es (" ∆ V = R I). Entonces, la potencia disipara en el conductor será
"
P = I (ΔV ) = I 2 R =
292
(ΔV ) 2 R
(6.44)
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
Es decir, al fluir carga (corriente) a través del resistor, se disipa energía en este elemento razón de I2R. Por esta razón cada uno de estos elementos vienen especificados con su potencial nominal, es decir debe conocerse la máxima potencia que el dispositivo puede disipar sin sobrecalentarse y sufrir daños. Debe señalarse además que ciertos dispositivos como los calentadores eléctricos, se diseñan para transferir calor a su entorno. Pero si se excede su potencia nominal, esos dispositivos pueden fundirse e incluso estallar.
6.8.2
Potencia de salida en una fuente generadora de fem.
La figura 6.25a, representa una fuente de fem ε con una resistencia interna r, conectada mediante alambres conductores de resistencia despreciable a un circuito externo representado por el rectángulo inferior y en la figura 6.25b se muestra el circuito correspondiente
!
!
Figura 6.25
(a) Circuito eléctrico en donde se realiza la conversión de energía no eléctrica en eléctrica, (b) Circuito equivalente
La fuente de fem , podría ser la batería de un automóvil cuya resistencia interna es r no es visible a simple vista, pero podría tener una representación esquemática tal como se muestra en la figura 6.26a, dicha batería se encuentra instalada al faro de un automóvil como se ve en la figura 6.26b.
" Figura 6.25
" (a) Batería de un automóvil mostrando la resistencia interna, (b) Batería de un automóvil conectada a un faro
El potencial del borne a es mayor que el de b, por tanto la corriente fluye convencionalmente desde el borne de mayor potencial entregándose energía al circuito externo (faro). La rapidez con la que se entrega energía al circuito será
293
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
P = I ΔVab "
(6.45)
Para el caso de una fem ε y resistencia interna r, la diferencia de potencial entre los bornes a y b es
ΔVab = Va − Vb = ε − rI "
Remplazando esta ecuación en la ecuación (6.45) resulta "P =
I (ε − rI ) = ε I − rI 2
(6.46)
En esta ecuación, el término εI representa la rapidez de conversión de energía no eléctrica en energía eléctrica 2 en el interior de la fuente de fem y el término rI representa la proporción a la que se disipa energía eléctrica en 2
la resistencia interna de la fuente de fem. La diferencia " ε I − rI es la potencia neta útil de la fuente, es decir, la rapidez a la que la fuente de fem entrega energía eléctrica al resto de circuito.
6.8.3
Potencia de entrada en una fuente generadora de fem.
Si el rectángulo de la parte inferior del circuito mostrado en la figura 6.25a es una fuente cuya fuerza electromotriz es mayor que la de la fuente de fem mostrada en la parte superior. En la figura 6.27 se muestra un ejemplo práctico que no es más sino el proceso de carga de una batería de un automóvil (el elemento superior del circuito) por el alternador del automóvil (el elemento inferior en el circuito). Aquí observamos que el sentido de la corriente es opuesta al mostrado en la figura 6.26b; es decir, la fuente inferior está empujada en dirección contraria a través de la fuente de fem superior. Debido a la inversión de esta corriente, la ecuación para la diferencia d potencial entre los bornes a y b sería
"
ΔVab = Va − Vb = ε + rI
Y la potencia sería,
2 " P = I (ε + rI ) = ε I + rI En lugar de que el agente que genera la fuerza no electrostática de la fuente de fem
!
superior realice trabajo sobre los portadores de carga, se está realizando trabajo sobre la fuente de fem. Es decir, en la fuente de fem superior se está realizándose una conversión de energía eléctrica en energía no eléctrica (cargándose la batería). El término rI " 2 es una vez más la disipación de energía en la fuente de fem y el término
(ε I + rI 2 ) es la potencia total de alimentación de la fuente superior. Esto es lo que sucede cuando se conecta
una batería recargable (acumulador) a un cargador. El cargador suministra energía eléctrica a la batería, una parte de esta energía se transforma en energía química, para someterse más tarde a una reconversión y el reto se disipa en la resistencia interna de la batería calentando ésta y provocando un flujo de calor hacia fuera de ella.
294
Física General III
Figura 6.25
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
(a) Circuito eléctrico en donde se muestra la conexión de un alternador con una fem (mayor) con una batería cuya fem es (inferior), este circuito es utilizado para cargar una batería
295
Física General III
Corriente, resistencia y fuerza electromotriz
PROBLEMAS RESUELTOS 1.
Optaciano Vásquez García
n = (3elec / at )
A través de un conductor de cobre de 1,2 mm de diámetro fluye una corriente de 2 A. Determine: (a) la densidad de corriente, (b) la velocidad de desplazamiento de los electrones sabiendo que la densidad electrónica es n = 2,3 .1029 electrones/m3.
(2, 7 g / mol )(6, 02.1023 at / mol ) 27 g / mol
n = 1,866.1023 electrones / cm3 (b) Cálculo de la velocidad de deriva
Solución
j=
(a) Cálculo de la densidad de corriente.
"
vd =
"
I I 4I = = 2 A πd / 4 πd2 4(2 A) j= π [1, 2.10−3 m]2
I I = nqe vd ⇒ vd = A nqe A
10.10−3 A 1,866.1029 elect / m3 (1, 6.10−19 C )(1.10−6 m 2 )
vd = 3, 47.10−7 m / s
j=
"
3.
j = 1, 77.106 A / m 2
(b) Cálculo de la velocidad de deriva. La densidad de corriente y la velocidad de deriva está relacionada por la ecuación
En el modelo de Bohr del átomo de hidrógeno se postula que un electrón del más bajo estado de energía se mueve en una órbita circular de radio a0 = 5,29.10-11 m alrededor de un protón. Determine la velocidad del electrón, (b) ¿cuál será la corriente efectiva asociada con el movimiento del electrón moviéndose en su órbita?.
Solución
j = nqe vd
En la figura se muestra el movimiento del electrón alrededor del núcleo.
6 2 29 3 −19 " 1, 77.10 A / m = 2,3.10 electrones / m (1, 6.10 C )vd
vd = 0, 48.10−4 m / s
2.
La densidad del aluminio es de 2,7 g/cm3 y su masa atómica es de 27 g/mol; cada átomo tiene tres electrones de conducción. (a) Determine el número de electrones por cm3. (b) Si en alambre de aluminio de 1mm2 de área de sección transversal fluye una corriente de 10 mA, obtenga la velocidad de deriva de los electrones. "
El electrón se encuentra sometido a la fuerza eléctrica por tanto, aplicando la segunda ley de newton al movimiento de esta partícula se tiene
Solución
(a) Cálculo de la densidad electrónica
"
n = (# de electrones libres / átomo)
(densidad )(# de Abogadro Masa atómica
296
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
v2 ∑ Fn = man ⇒ Fe = me a0
I (t ) =
e2 v2 k 2 = me a0 a0
"
dq d = (4t 3 + 5t + 6) dt dt I (t ) = 12t 2 + 5 I 2 = 12(2) 2 + 5
"
ke 2 9.109 (1, 6.10−19 ) v= = me a0 9,11.10−31 (5, 29.10−11 )
I 2 = 53 A (b) La densidad de corriente será
6 " v = 2,19.10 m / s
j=
Debido a que el electrón gira uniformemente, se tiene
"
I 53 A = A 1,5.10−4 m 2 j = 35,3 A / m 2
S = 2π a0 = vet 2π (5, 29.10−11 m) = (2,19.106 m / s )t
5.
t = 1,52.10−16 s "
Sobre un anillo de radio R se ha distribuido uniformemente una densidad de carga lineal λq. Si a este anillo se hace rotar alrededor de su eje con una rapidez angular ω. Determine la corriente de convección en un punto del anillo.
La corriente total en este tiempo será Solución
I= "
4.
q 1, 6.10−19 C = t 1,52.10−16 s I = 1, 05 mA
En la figura se muestra el anillo
La cantidad de carga q (en coulombs) que ha pasado a través de una superficie de área igual a 1,5 cm2 varía en función del tiempo según la ecuación q = 4t3 + 5t + 6, estando t especifica en segundo. (a) ¿Cuál es la corriente instantánea que pasa a través de la superficie en t = 2s? (b) ¿Cuál es el valor de la densidad de corriente?. " Solución La carga total que pasa por la sección transversal será (a) Corriente instantánea en t = 2 s
dq q = dl l q = λq (lC ) = λq (2π R) λq =
" 297
Física General III
Corriente, resistencia y fuerza electromotriz
Al hacer girar al anillo en torno al eje z, la rotación da lugar a la aparición de una corriente de convección. Entonces la corriente que fluye a través de la sección M es
"
6.
(b) Cálculo del diámetro del alambre
"
q λ (2π R) I= = q t 2π / ω I = λqω R
7.
Solución
(a) Cálculo de la longitud del alambre. De acuerdo a la definición de densidad de masa se tiene
"
ρm =
m m m = = V L( A) L(π d 2 / 4)
d=
4m 4(5.10−3 kg ) = π Lρm π (5,14m)(8,92.193 kg / m3 )
d = 0,138.10−3 m
Con una masa de 5 g de cobre se desea fabricar un alambre el cual debe tener una resistencia R = 0,8 Ω y se debe utilizar todo el cobre disponible. Asumiendo que no se pierde ninguna cantidad de cobre y que las propiedades del material se mantienen sin ser modificadas antes y después de realizar la fabricación del alambre. Determine: 8ª) la longitud del alambre fabricado y el diámetro de este alambre.
ρm =
Optaciano Vásquez García
Un cubo sólido de plata cuya densidad es 10,5 g/cm3 tiene una masa de 90 g. (a) ¿Cuál será la resistencia eléctrica entre dos caras opuestas si entre ellas se establece una diferencia de potencial de 1.10-5 V?, (b) Si cada átomo de plata contribuye con un electrón de conducción, determine la velocidad de deriva de los electrones cuando se aplica la diferencia de potencial del inciso (a). Se sabe que el número atómico de la plata es 47 y su masa molar es de 107,87 g/mol.
Solución
m ⇒ m = ρ mV = ρ m ( A L) V m A= ρm L
En la figura se muestra el cubo sometido a la diferencia de potencial
De la definición de resistencia tenemos "
R=ρ
L A
Se procede a determinar el avlor de la arista del cubo L. De la definición de densidad de masa tenemos.
ρ m L2 L R=ρ =ρ m / ρ L m m "
m m = V L3 m 90 g =3 ρm 10, 5 g / cm3 ρm =
8,92.193 kg / m3 ( L2 ) 0,8Ω = 1, 7.10−8 Ω.m 5.10−3 kg
L=
L = 5,14 m " 298
3
L = 2, 05cm
Física General III
Corriente, resistencia y fuerza electromotriz
(a) La resistencia entre las caras opuestas será
dicho alambre fluía una intensidad de corriente de 1,00 A. Si posteriormente viaja a la Antártida y en dicho lugar aplica la misma diferencia a los extremos del alambre. ¿Cuál será la intensidad de corriente registrada en un día en que la temperatura es de -88°C?. Suponga que el alambre no ha sufrido cambios en forma y dimensiones.
L L ρ =ρ 2 = A L L −8 1,59.10 Ω.m R= 2, 05,10−2 m
R=ρ
Solución
R = 777.10−7 Ω "
Optaciano Vásquez García
La resistencia mediada a la temperatura de 58°C es
(b) Para determinar la velocidad de deriva de los electrones primero se calcula la intensidad de corriente que fluye por el material, para ello se aplica la ley de Ohm
R = R0 [1 + α (TH − T0 )] "
L = 5,14 m
R = R0 (1 + 38α )
ΔV = IR
R ' = R0 [1 + α (TF − T0 )] "
R ' = R0 [1 + α (−88°C − 20°C )]
La densidad electrónica está dada por
R ' = R0 (1 − 108α )
ΔV = IR ⇒ ΔV = I H [ R0 (1 + 38α )] "
23
(10,5 g / cm )(6, 02.10 at / mol ) 107,87 g / mol
"
ΔV = IR ' ⇒ ΔV = I F [ R0 (1 − 108α )]
IF =
vd =
"
8.
(4)
De las ecuaciones (3) y (4) se tiene
De la definición de densidad de corriente se tiene
j=
(3)
Y para temperaturas bajas es
n = 5,86.1028 electrones / m3 "
(2)
De la aplicación de la ley de OHM se tiene para temperaturas altas
(densidad )(# de Abogadro n = (# elect / at ) Masa atómica " n = (1elec / at )
(1)
La resistencia medita a temperaturas bajas será
1.10−5V = I ( R = 777.10−7 Ω) I = 12,9 A "
3
R = R0 [1 + α (58°C − 20°C )]
I I = nqe vd ⇒ vd = A nqe A
[ R0 (1 + 38α )] IH [ R0 (1 − 108α )] [1 + 38(3,9.10−3 )] [1 − 108(3,9.10−3 )] I F = 1,987 A
I F = 1A
12,9 A 5,86.10 elect / m3 (1, 6.10−19 C )(2, 05m 2 ) 2 vd = 3, 28µ m / s 28
" 9.
Durante un viaje por el desierto de Sahara en un día en que la temperatura era de 58°C un alumno encontró que al aplicar a los extremos de un alambre una diferencia de potencial ΔV a través de
299
A una esfera maciza de hierro de radio b, con una cavidad de radio a, se le aplica una diferencia de potencial ΔV entre el interior y el exterior de manera que fluye una corriente radial uniforme como se muestra en la figura. Si el material entre las cáscaras es débilmente conductor con una
Física General III
Corriente, resistencia y fuerza electromotriz
resistividad ρ. Encuentre: (a) La resistencia eléctrica, (b) la potencia disipada. 10.
" Solución
(a) Para determinar la resistencia total primero se divide a la esfera hueca en elementos diferenciales en forma de cascarones de radio interno r y espesor dr, como se muestra en la figura.
"
La resistencia de este elemento diferencial es
dr 4π r 2 ρ b dr dR = ∫ 4π ∫a r 2 ρ ⎡ 1 1 ⎤ ρ (b − a ) R= ⎢⎣ a − b ⎥⎦ = 4π ab 4 π " dR = ρ
(b) La potencia disipada será
ΔV ΔV = ρ (b − a ) R 4π ab 4π abΔV P= ρ (b − a )
P=
300
Optaciano Vásquez García
Física General III
Corriente, resistencia y fuerza electromotriz
Optaciano Vásquez García
un alambre de cobre de 5 m de longitud si el radio de su sección transversal circular es 0,1 cm?.
15. Un alambre de aluminio de longitud l y sección transversal circular con un radio r tiene un resistencia R. Determine el factor por el que queda multiplicada la resistencia en cada uno de los siguientes casos: (a) se duplica la longitud del alambre, (b) Se triplica la longitud del alambre y se disminuye el radio a r/3 y c) se duplica l y r.
16. La densidad de corriente en un alambre largo y recto con sección transversal circular de radio R, varía con la distancia desde el centro del alambre de acuerdo con la relación j" = λ r , en donde λ es una constante positiva. Determine la intensidad de corriente que fluye por el alambre.
17. El área transversal de un riel de acero es de 30 cm2. Si la resistividad de este material es 6.10-7Ω.m. determine la resistencia de un riel de 6 km de largo.
18. Las dimensiones de un bloque de hierro como un sólido de sección rectangular son de 2 cm x 3 cm x 100 cm. Su resistividad a 20°C es igual a 1.10-7 Ω.m. Determine la resistencia entre las tres pares de caras opuestas.
19. Una barra de cobre mide 0,1 m x 0,3 m por 5 m. Si la resistividad del cobre es de 1,7.10-8 Ω.m. Determine la resistencia del alambre si la corriente fluye a lo largo de la longitud de la misma.
PROBLEMAS PROPUESTOS. 11. Un conductor de sección transversal uniforme lleva una corriente de 5 A. ¿Cuántos electrones fluyen por un punto dado en 1 min.
12. En un proceso de galvanostegia (o electro chapeado) se han transmitido 40000C a una corriente de 10 A. ¿Qué tiempo se necesita?.
20. Una barra metálica con 12 m de longitud contiene 6.1025 electrones libres. Si en la barra fluye una corriente de 3 A evalué la velocidad de deriva de los electrones.
13. La densidad del cobre es de 9 g/cm3 y tiene un electrón de conducción por átomo. En un alambre cuya sección transversal uniforme tiene 0,1 cm de diámetro, se establece una corriente constante de 50 A. Determine: (a) la densidad de corriente y (b) la velocidad media de los electrones.
21. La resistividad del aluminio es de 1,6.10-8 Ω.m a 20°C. Se quiere hacer una bobina con 25 km de alambre de ese metal de 1 mm de diámetro.(a) ¿Cuál es su resistencia?. (b) si el alambre se estira uniformemente hasta una longitud de 50 km. ¿Qué valor tendrá la nueva resistencia?.
14. La resistividad del cobre a 20°C es de 1,7 .10-8 Ω.m. ¿Cuál es a esta temperatura la resistencia de
22. La atmósfera lleva cargas positivas hacia la superficie terrestre y retira cargas negativas de ésta.
301
Física General III
Corriente, resistencia y fuerza electromotriz
La corriente total es de 1800 A. Suponga que el flujo de carga es simétrico con respecto a la superficie de la tierra, halle la magnitud de la densidad de corriente en dicha superficie. El campo eléctrico en la mencionada superficie es de 100 V/ m, en dirección hacia aquella. Determine la conductividad eléctrica del aire cerca de la superficie de la tierra.
Optaciano Vásquez García
tiempo se requiere para que hierva esta cantidad de liquido? y (d) ¿Cuánto tiempo más se requiere para convertir el agua completamente en vapor?.
29. Un tostador eléctrico opera en una línea de 110 V. Si toma 6 A, halle la resistencia del elemento calefactor y la energía consumida durante un lapso de 30 s, durante el cual está en operación. A razón de 3 S/. el kilowatt-hora, ¿Cuánto cuesta tostar una rebanada de pan?.
23. La banda de un generador van de Graff es de 75 cm de ancho y se mueve a 30 m/s. Si transmite una corriente de 2.10-4 A a la esfera colectora, obtenga la densidad superficial de carga en la banda.
30. Una lámpara de 300 W opera en una línea de 220 V, y se sumerge en 8 kg de agua a 27 °C. Determine: (a) la corriente que fluye a través de la lámpara y (b) la temperatura del agua después de 5 minutos.
24. Una varilla de aluminio tiene una resistencia de 1,234 Ω a 20 °C. Determine la resistencia de la varilla a 120 °C, tomando en cuenta los cambios tanto en la resistividad como en las dimensiones de la varilla.
31. Suponga que una oscilación de voltaje produce durante un momento 140 V. ¿En qué porcentaje se incrementa la salida de energía de una bombilla de 120 V, 100 W?. Suponga que su resistencia no cambia.
25. Se calienta una barra de cobre desde 20 °C hasta 200 °C y se estira uniformemente al doble de su longitud inicial, no cambiando su volumen. Si inicialmente su longitud era de 1 m y su resistencia era 0,02 Ω. Determine: (a) el área transversal antes de ser estirada y (b) la resistencia de la misma después de su estiramiento y de la elevación de la temperatura.
32. En un tubo fluorescente de 3 cm de diámetro pasan por un punto determinado y por cada segundo 2,0.1018 electrones y 0,5. 1018 iones positivos con una carga (+e). Determine la corriente que circula por el tubo fluorescente.
26. Una bobina circular de alambre de aluminio de 0,254 mm de diámetro tiene 400 vueltas y su diámetro medio es de 17,78 mm. La resistividad del alambre a 20 °C es 2,8.10-8 Ω.m. Si entre los extremos de la bobina se aplica una tensión de 12 V. Determine: (a) la corriente que fluye en el alambre y (b) el calor desprendido durante un intervalo de 5 min.
33. En un cierto haz de electrones existen 5.106 electrones por centímetro cúbico. Suponiendo que la energía cinética de los electrones es 10 keV y el haz es cilíndrico con un diámetro de 1 mm. Determine: (a) la velocidad de deriva de los electrones y (b) la intensidad de corriente del haz.
34. Un conductor de calibre 14 se suelda por un extremo a otro de calibre 10. Por los conductores fluye una corriente de 15 A, Si ambos conductores son de cobre con un electrón libre por átomo. Determine: (a) la velocidad de deriva de los electrones y (b) la energía disipada en el alambre compuesto.
27. En una instalación hidroeléctrica, una turbina suministra 1500 hp a un generador, el cual a su vez, transforma 80% de la energía mecánica en transmisión eléctrica. En estas condiciones, ¿Qué corriente entrega el generador a una diferencia de potencial terminal de 2 kV?.
28. Un calentador de inmersión de 350 W opera en una línea de 120 V, y se utiliza para elevar la temperatura de 250 cm3 de agua desde 27 °C hasta el punto de ebullición. (a) determine la corriente que pasa a través del calentador, (b) ¿Con qué rapidez se transmite energía al agua?. (c) ¿Cuánto
35. La corriente que circula por un alambre varía con el tiempo según la expresión I" = 20 + 3t 2, en donde I se expresa en amperios y t en segundos. (a) ¿cuántos coulombios se transportan por el alambre entre t = 0 y t = 15 s?. (b) ¿Qué corriente constante
302
Física General III
Corriente, resistencia y fuerza electromotriz
transportaría la misma carga en igual intervalo de tiempo?.
Optaciano Vásquez García
41. Un hilo de 5 Ω de resistencia se conecta a una batería de 2 V de fem y 1,0 Ω de resistencia interna. transcurridos dos minutos de esta situación- ¿Qué cantidad de energía química se ha transformado en energía eléctrica?. (b) ¿Qué cantidad de energía ha aparecido en forma de calor en el hilo conductor?.
36. Por un alambre de cobre calibre 10 pueden circular hasta 30 A. Determine: (a) la resistencia de 100 m de alambre de cobre calibre 10, (b) el campo eléctrico en el alambre cuando la corriente es de 30 A. (c) el tiempo que tarda un electrón en recorrer 100 m del alambre cuando la corriente es de 30 A.
Rta. "
42. El radio de un alambre de longitud L crece linealmente con su longitud según la expresión b −a r" = a + x, en donde x es la distancia del [ L ] extremo menor de radio a. Determine la resistencia del alambre en función de su resistividad ρ, longitud L, radio a y radio b.
37. Determine la resistencia entre los extremos del semianillo de la figura. La resistividad del material del cual está hecho el anillo es ρ.
43. Se sumerge un tubo de plástico de 2,5 m de largo y 4 cm de diámetro en una solución de plata y se deposita una capa uniforme de 0,1 mm de espesor sobre la superficie externa del tubo. Si el tubo recubierto se conecta a los bornes de una fuente de tensión de 120 V. Determine la corriente que fluye a través del dispositivo.
"
38. La corriente que puede soportar con seguridad un conductor cilíndrico de cobre de 1,29 mm de diámetro es de 6 A. si se considera un hilo conductor de 40 m de largo. Determine: (a) la diferencia de potencial máxima que se puede aplicar entre sus extremos, (b) la densidad de corriente y el campo eléctrico en el conductor cuando éste transporta 6 A y (c) la potencia disipada en el conductor en la situación citada. Considere que la resistividad del cobre es 1,7.10-8 Ω.m.
44. El espacio comprendido entre dos cortezas esféricas conductoras concéntricas se llena con un material de resistividad 109 Ω.m. Si los radios de las cortezas son 1,5 cm y 5 cm, respectivamente. Determine la resistencia entre ambos conductores.
45. El espacio comprendido entre dos cilindros conductores coaxiales de longitud L y radios a y b se llena completamente con un material de resistividad ρ. (a) ¿Cuál es la resistencia entre los dos cilindros coaxiales?. (b) Determine la intensidad de corriente entre los dos cilindros si ρ " = 30 Ω . m, a = 1,5 cm, b = 2,5 cm, L = 50 cm y se aplica una diferencia de potencial de 10 V entre los dos cilindros.
39. Un hilo conductor de 6 Ω de resistencia se funde para construir otro hilo conductor cuya longitud sea el triple de la del hilo original. Determine la resistencia del nuevo hilo suponiendo que en el proceso de fusión y solidificación permanecen inalterados los valores de la resistividad y de la densidad del material
40. Se ha observado que la intensidad de corriente que circula por un alambre de cobre de 1 mm de diámetro y 2,5 m de longitud cuando se le aplica una diferencia de potencial de 0,1 V es de 2 A. Sabiendo que la concentración de electrones en el cobre es de 8,45.1028 electrones /m3. Determine: (a) la velocidad de arrastre, (b) la movilidad de los electrones y (c) la conductividad del cobre
46. Un tostador con un elemento de calefacción de (α Nicromo " = 4,5 . 10−4 /°C ) p o s e e u n a resistencia de 80 Ω a 20 °C y una corriente inicial de 1,5 A. Cuando este elemento alcanza su temperatura final, la corriente es de 1,3 A. Determine: (a) la temperatura final del elemento calefactor. (b) la energía que se disipa en el elemento calefactor (i) inicialmente, (ii) finalmente
303
Física General III
Corriente, resistencia y fuerza electromotriz
47. Una bobina de alambre de nicromo tiene 25 m de largo. El alambre tiene un diámetro de 0,4 mm y se encuentra a 20 °C. Si el alambre transporta una corriente de 0,5 A, ¿Cuáles son: (a) la magnitud del campo eléctrico en el alambre y (b) la potencia entregada?. (c) ¿Qué pasaría si? Si la temperatura se incrementara hasta 340 °C y el voltaje aplicado al alambre se mantiene constante. ¿Cuál es la potencia entregada
Optaciano Vásquez García
52. El cable de conexión para el arranque de un automóvil es de 3 m de longitud y está formado por múltiples hebras de cobre que en conjunto tienen un área transversal de 10 mm2. (a) ¿Cuál es la resistencia de este cable?. (b) Cuando se utiliza se el arranque, transporta una corriente de 90 A. ¿Cuál es la caída de voltaje que tiene lugar a su través?. (c) ¿Cuánta potencia se disipa en el cable?.
53. Se utiliza una espiral de alambre de Nicromo como elemento calefactor en un evaporador de agua que genera 8 g de vapor por segundo. El alambre posee un diámetro de 1,8 mm y está conectado a una fuente de alimentación de 120 V. Determine la longitud del alambre.
48. Un calentador ambiental eléctrico posee un alambre de nicromo con una resistencia de 8 Ω a 20 °C. Aplicando una diferencia de potencial de 120 V, la corriente eléctrica calienta el alambre de nicromo hasta 1000 °C. Determine: (a) la corriente inicial que fluye por el elemento calefactor frio, (b) la resistencia del elemento de calefacción a 1000 °C y (c) la potencia operativa de éste calefactor.
54. Los cables eléctricos de una casa deben ser suficientemente gruesos de diámetro para que no se calienten demasiado y provoquen un incendio. Supongamos que un alambre determinado transporta una corriente de 20 A, y se especifica que el calentamiento por efecto Joule no debe exceder los 2 W/m. ¿Qué diámetro debe tener un alambre de cobre para que se convierta “seguro” con esta corriente?.
49. Un automóvil eléctrico ha sido diseñado para funcionar a partir de un banco de baterías de 12 V con un almacenamiento total de energía de 2.107 J. (a) si el motor eléctrico consume 8 kW, ¿Cuál es la corriente que se le suministra al motor?, (b) Si el motor consume 8 kW conforme el auto se mueve a velocidad constante de 20 m/s. ¿Qué distancia recorrerá el auto antes de quedarse sin energía?.
55. Un rayo cae en un extremo de un pararrayos de acero, y produce una oleada de corriente de 15 kA que dura durante 65 µs. El pararrayos tiene 2 m de largo y 1,8 cm de diámetro, y su otro extremo está conectado a tierra por medio de un alambre de cobre de 35 m de longitud 8 mm de diámetro. Determine: (a) la diferencia de potencial entre la parte superior del pararrayos de acero y el extremo inferior del alambre de cobre durante la oleada de corriente, (b) la energía total depositada en el pararrayos y en el alambre por la oleada de corriente.
50. Un calentador ambiental de una vieja mansión se alimenta con una corriente de 12,5 A. Un par de cables de cobre de calibre 12 transportan la corriente desde la caja de fusibles al enchufe de la pared a lo largo de una distancia de 30 m. El voltaje en la caja de fusibles es exactamente de 120 V. (a) ¿Cuál es el voltaje distribuido al calefactor ambiental?. (b) si el fusible se funde al pasar una corriente de 20 A. ¿Cuántas bombillas de 60 W pueden encenderse en esta línea cuando el calefactor está funcionando?. Supóngase que los cables desde la pared al calefactor ambiental y a las tomas de luz son de resistencia depreciable).
56. Una empresa pública suministra energía al domicilio de un consumidor a partir de las líneas de energía propia (a 120 V) mediante dos alambres de cobre, cada uno de los cuales tiene 50 m de longitud y una resistencia de 0,108 Ω por tramo de 300 m. Determine el voltaje en el domicilio del cliente para una corriente de carga de 110 A. Para esta corriente, encuentre (b) la potencia que está recibiendo el cliente y (c) la energía eléctrica disipada en los alambres de cobre
51. Un conductor de cobre calibre 16 aislado con caucho puede transportar con seguridad una corriente máxima de 6 A. (a) ¿Cuál es el valor máximo de la diferencia de potencial que puede aplicarse en los extremos de 40 m de longitud de un conductor de este tipo?. (b) Hallar el campo eléctrico en el conductor cuando por él circulan 6 A. (c) Determine la potencia disipada en el alambre conductor en éste último caso.
57. Los grandes electroimanes convencionales utilizan la refrigeración con agua para evitar el excesivo calentamiento de los arrollamientos de las bobinas.
304
Física General III
Corriente, resistencia y fuerza electromotriz
Uno de estos electroimanes utiliza una corriente de 100 A cuando se aplica un voltaje de 240 V a los terminales de las bobinas de excitación. Para refrigerar las bobinas, circula agua a una temperatura inicial de 15°C a través de ellas. ¿Cuántos litros por segundo deben pasar a través de las bobinas para que la temperatura de éstas no exceda los 50 °C?.
Optaciano Vásquez García
obedece a la ley de Ohm, sino que tiene una relación entre el voltaje y corriente V = αI+βI2, con α = 3,8 Ω y β = 1,3 Ω/A. Determine la resistencia en el elemento de 3,2 Ω.
63. La tensión de bornes de una fuente en circuito abierto es de 7,86 V, y su corriente de cortocircuito es de 9,25 A. (a) ¿Cuál es la corriente cuando se conecta a los bornes de la fuente una resistencia óhmica de 2,4 Ω?. (b) ¿Cuál sería la corriente si en lugar de la resistencia óhmica de 2,4 Ω se instala entre los bornes de la fuente el dispositivo no óhmico del problema anterior?. (b) ¿Cuál es la tensión de bornes de la fuente con la corriente calculada en el inciso (b)?.
58. Cuando se calienta un alambre recto, su resistencia está expresada por R " = R 0[1 + α (T − T0)] donde α es el coeficiente de resistividad por temperatura. Demuestre que su resultado más preciso, ya que incluye el hecho de que tanto la longitud como el área cambian con la temperatura, es
R0 [1 + α (T − T0 )][1 + α ' (T − T0 )] R= [1 + 2α ' (T − T0 )]
64. A una temperatura de 0°C la resistencia de un conductor 1 es η veces menor que la de otro conductor 2. Sus coeficientes de resistencia por temperatura son iguales a α1 y α2. Determine el coeficiente de resistencia por temperatura del circuito compuesto por esos dos conductores, si ellos se conectan: (a) en serie y (b) en paralelo
Donde α´ es el coeficiente de dilatación lineal 59. Un conductor eléctrico proyectado para transportar corrientes grandes tiene una sección circular de 2,5 mm de diámetro y mide 14 m de largo. La resistencia entre sus extremos es de 0,104 Ω. (a) ¿Cuál es la resistividad del material?. (b) Si la magnitud del campo eléctrico en el conductor es de 1,28 V/m, ¿Cuál es la corriente total?. (c) Si el material tiene una densidad electrónica de 8,5 electrones /m3. ¿Cuál es la velocidad de arrastre en las condiciones del inciso (b)?.
65. Dos conductores paralelos cuyos radios de su sección transversal es r se encuentran en un medio débil conductor cuya resistividad es ρ. Si la distancia entre los ejes de los conductores es l. Determine la resistencia del medio por unidad de longitud de los conductores si l >> a.
60. La diferencia de potencial entre los bornes de una batería es de 8,4 V cuando existe una corriente de 1,5 A en la batería, del borne negativo al borne positivo. Cuando la corriente es de 3,5 A en el sentido inverso, la diferencia de potencial cambia a 9,4 V. Determine: (a) la resistencia interna de la batería y (b) la fem de la batería.
66. El huelgo entre las placas de un capacitor plano se llena con un medio heterogéneo débil conductor, cuya conductividad varía en dirección perpendicular a las placas según una ley lineal desde σ1 = 1,0 pS/m hasta σ2 = 2,0 pS/m. El área de cada placa es A = 230 cm2, el ancho del huelgo es d = 2 mm. Determine la corriente a través del capacitor cuando la tensión entre placas es ΔV = 300 V.
61. Una persona con una resistencia corporal de 10 kΩ entre sus manos sujeta accidentalmente los bornes de una fuente de energía de 14 kV. (a) Si la resistencia interna de la fuente es de 2 kΩ, ¿cuál es la corriente a través de la persona?. (b) ¿Cuánta energía eléctrica se disipa en su cuerpo?. (c) Si se va a eliminar la peligrosidad de la fuente de energía aumentando su resistencia interna, ¿cuál debe ser la resistencia interna para que la corriente máxima en la situación que se ha descrito sea de 1 mA o menos?.
67. La densidad del aluminio es de 2,7 g/cm3 y su peso atómico es 27. Suponiendo que cada átomo tiene 3 electrones de conducción. Determine: (a) El número de electrones por centímetro cúbico, (b) si una corriente de 200 mA fluye por el alambre conductor de 1,5 mm2 de área transversal, calcular la velocidad de desplazamiento vd.
62. Una batería de auto de 12,6 V con resistencia interna insignificante está conectada a una combinación en serie de un resistor de 3,2 Ω que obedece a la ley de Ohm y un termistor que no
305
Física General III
Corriente, resistencia y fuerza electromotriz
68. Un anillo de radio R que tiene una carga por unidad de longitud λq gira con una velocidad angular ω constante alrededor de su eje. Determine la corriente en un punto del anillo.
75. Un cubo sólido de plata de densidad 10,5 g/cm3 tiene una masa de 200 g . (a) ¿Cuál es la resistencia entre las caras opuestas del cubo, (b) suponga que cada átomo de plata contribuye con 1 electrón de conducción. Determine la velocidad promedio de arrastre de los electrones cuando se le aplica una deferencia de potencial de 1.10-5 V entre las caras opuestas del cubo. El número atómico de la plata es 47 y su masa molar es de 107,87 g/mol
69. Suponga que la corriente que pasa por un conductor se reduce de manera exponencial en función del tiempo, de acuerdo con la ecuación I(t) = I0e-t/τ siendo I0 la corriente inicial ( en t = 0), y τ es una constante que tiene unidades de tiempo. Considere un puno de observación fijo del conducto. (a) ¿Cuánta descarga pasa por este punto en el inérvalo de tiempo entre t = 0 y t = τ? (b) ¿Cuánta carga pasa por este punto en el intervalo de tiempo entre t = 0 y t = 10τ? (c) ¿Qué pasaría si? ¿ Cuánta carga pasaría por este punto en el intervalo de tiempo entre t = 0 y t" = ∞
76. La varilla de la figura está fabricada con dos materiales. La figura no está a escala cada conductor tiene una sección transversal cuadrada de 3 mm de lado. El primer material tiene una resistividad de 4.10-3 Ω.m y tiene 25 cm de largo, en tanto que el segundo material tiene una resistividad de 6.10-3 Ω.m y tiene 40 cm de largo. (a) ¿Cuál es la resistencia de un extremo a otro de la varilla. (b) Si entre los extremos del alambre compuesto se establece una diferencia de potencial de 110 V, ¿Cuál sería densidad de corriente en cada uno de los alambres?. (c) Cual es la potencia disipada en el alambre compuesto
70. En el modelo de Bohr del átomo de hidrogeno, un electrón del más bajo estado de energía sigue la × 10−11 m del protón. (a) trayectoria a 5.29 " Demuestre que la velocidad del electrón es igual a 2.19 × 10 6 m/s. (b) ¿Cuál es la corriente efectiva " asociada con este electrón en órbita?
71.
Optaciano Vásquez García
Una corriente eléctrica está definida por la expresión I(t) = 100 sen(120 π" t), donde I esta en amperes y t en segundos. ¿Cuál es el valor de la densidad de corriente de t = 0 hasta t = (1/240) s?
" 77. Mientras tomaba fotografía en México en un día en que la temperatura era 58°C Luis encontró que cierto voltaje, al aplicarlo a un alambre de cobre, produce una corriente de 1 A. A continuación viaja a la antártica y aplica ese mismo voltaje sobre el mismo alambre. ¿Qué corriente se registrará entonces si la temperatura es de -88°C?. Suponga que el alambre no h sufrido ningún cambio en su forma y dimensiones.
72. Una bombilla tiene una resistencia de 240 Ω cuando está funcionando, sujeta a una diferencia de potencial de 220 V. ¿Cuál es la corriente que pasa por la bombilla?
73. Se mantiene una diferencia de potencial de 0.900 V de un extremo a otro de un alambre de tungsteno de 2 m de longitud y área trasversal igual a 0.600 mm2, ¿Cuál es la corriente del alambre?.
78. Cierta bombilla tiene un filamento de tungsteno con una resistencia de 19 Ω cuando está frio y de 140 Ω cuando está caliente. Suponga que la resistividad del tungsteno varía linealmente con la temperatura incluso en el amplio rango de temperaturas que aquí se mencionan y determine la temperatura del filamento caliente. Suponga que la temperatura inicial es de 20°C.
74. Suponga que desea fabricar un alambre uniforme a partir de 10 g de cobre. Si el alambre debe tener una resistencia R = 0,5 Ω, y si debe utilizarse todo el cobre disponible, ¿Cuál será (a) la longitud y (b) el diámetro de este alambre.
306
Física General III
Corriente, resistencia y fuerza electromotriz
79. ¿Cuál es la resistencia requerida de un calefactor por inmersión que incremente la temperatura de 0,5 kg de agua de 15 °C a 75 °C en 30 minutos estando operando a 220V?.
Optaciano Vásquez García
83. Un material con una resistividad uniforme ρ se modela en forma de una cuña como se muestra en la figura. Determine la resistencia entre la cara A y B de la cuña es.
80. A una esfera maciza de hierro de radio b = 10 cm, con una cavidad de radio a = 5 cm, se le aplica una diferencia de potencial ΔV = 110 V entre el interior y el exterior de manera que fluye una corriente radial uniforme como se muestra en la figura. Si el material entre las cáscaras es débilmente conductor con una resistividad ρ = 104 Ω.m. Encuentre: (a) La resistencia eléctrica, (b) la potencia disipada.
" 84. El material dieléctrico que existe entre las placas de un capacitor de placas paralelas tiene siempre alguna conductividad σ diferente de cero. Si el área de las placas es A, la distancia entre ellas es d y el material dieléctrico tiene una constante κ. (a) Demuestre que el producto de la resistencia R y la capacitancia está dado por RC " = κ ε0 /σ , (b) Determine la resistencia entre las placas de un capacitor de 14 nF con dieléctrico de cuarzo fundido
"
81. Un capacitor de placas paralelas está constituido por placas cuadradas de bordes de longitud L, separadas por una distancia d, donde d << L. entre las placas se mantiene una diferencia de potencial ΔV. Un material de constante dieléctrica κ llena la mitad del espacio entre las placas. Ahora la placa dieléctrica se retira del capacitor, como se observa en la figura. (a) Determine la capacitancia cuando el borde izquierdo del material dieléctrico esté a una distancia x del centro del capacitor. (b) si se va retirando el dieléctrico a una rapidez constante v, ¿Cuál será la corriente en el circuito conforme se retira el dieléctrico.
85. Un material de resistividad ρ se modela como un cono truncado de altura h como se muestra en la figura. El extremo inferior tiene un radio b, en tanto que el extremo superior tiene un radio a. Suponga que la corriente está uniformemente distribuida en cualquier sección transversal circular del tronco de cono, de forma que la densidad de corriente no dependerá de la posición radial. (La densidad de corriente variará dependiendo de su posición a lo largo del eje del cono). Determine la resistencia entre ambas caras del cono trucado
"
"
82. Halle la corriente total en un conductor circular de 2 mm de radio si la densidad de corriente varía con r de acuerdo a "j = 10 3 /r (A/m).
86. El espacio entre las armaduras de un capacitor plano se llena con vidrio, cura resistividad es ρ =
307
Física General III
Corriente, resistencia y fuerza electromotriz
100 HΩ.m. la capacidad del capacitor es C = 4 nF. Determine la corriente de escape a través del capacitor cuando a éste se le aplica una diferencia de potencial de ΔV = 2 kV.
308
Optaciano Vásquez García