Tema nr. 5 5H HOHQHXURQDOH+RSILHOG 5H HOHOH +RSILHOG VXQW UH HOH QHXURQDOH UHFXUHQWH VLPHWULFH WRWDO FRQHFWDWH I U DXWR
-
DVRFLHUH$UKLWHFWXUDDFHVWRUUH HOHHVWHSUH]HQWDW vQILJXUDGHPDLRV
wji wij
i 6LPHWULDFRQH[LXQLORUVHH[SULP SULQHJDOLW
wij=wji , pentru i,j desemnâQGXQLW Lipsa auto-DVRFLHULLVHH[SULP SULQ wii=0. 1LYHOXO GH DFWLYDUH DO XQHL XQLW
LO
e:
LGLQUH HD
L LD YDORUL ELQDUH VDX ELSRODUH
DMXWRUXOXQHLIXQF LLGHDFWLYDUHGHIRUPD
∑w
1,daca O j = F( ∑ w ji O i ) = i 0 / −1,
i
ji
-1,1) , fiind calculat cu
O i > Tj
in rest
,QSXWXULOH VXQW DSOLFDWH WXWXURU QRGXULORU GLQ UH HD vQ DFHODúL WLPS $FHVW OXFUX vQVHDPQ VHWDUHD XQLW
LORU SH XQ QLYHO GH DFWLYDUH LQL LDO 5H HDXD IXQF LRQHD] DSRL DXWRQRP WUHFkQG SULQWU
-o
VXFFHVLXQHGHVW UL6HWDUHDLQL LDO HVWHSULPXORXWSXWDOUH HOHLFDUHVHUYHúWHFDXUP WRULQSXWSH ED]D F UXLD VH SURGXFH XQ QRX RXWSXW úDPG SkQ OD IL[DUHD UH HOHL SH R VWDUH VWDELO VWDUHD vQ FDUHQLYHOXOGHDFWLYDUHDOXQLW
LORUQXVHPDLVFKLPE
5H HDXDSRDWHIXQF LRQD
- sincron, atunci cânGWR LQHXURQLLvQFHDUF V -úLVFKLPEHVWDUHDVLPXOWDQ - asincron, atunci câQG ILHFDUHQHXURQvQFHDUF V -úL VFKLPEH VWDUHD OD XQ PRPHQW GLIHULW GH DO FHLODO L QHXURQL /D ILHFDUH PRPHQW WDFW GH WLPS VH VHOHFWHD] DOHDWRU XQ QHXURQ FDUH vQFHDUF D úL
- schimba starea.
)LHVWDUHDXQHLUH HOHIRUPDWHGLQWUHLXQLW
(O1,O2,O3) = (0,0,0). Fie T1= -0.1, T2=T3=0, w12= -Z
L88úL8
úLZ
3UHVXSXQHPF QHXURQXOLQFHDUF SULPXOV VHDFWLYH]H
∑w
i = 2,3
1i
O i = 0 > T1 ⇒ O1 = 1 .
'HFL UH HDXD FRPXW SH VWDUHD )LHFDUH GLQWUH FHLODO L GRL QHXURQL V UkQGXOORUFXSUREDELOLWDWHHJDO
• neuronul 2:
∑w
i =1,3
2i
Oi = 0 ≤ 0 ⇒ O2 = 0
• neuronul 3:
∑w
i =1,2
3i
Oi = 0 ≤ 0 ⇒ O3 = 0
'HFLGLQVWDUHD UH HDXD
- va tranzita pe starea (1,0,0), cu probabilitatea 1/3; -YDU PkQHSHDFHHDúLVWDUHFXSUREDELOLWDWHD
-ar putea activa la
6WDUHVWDELO
%D]LQGHDWUDF LH
5H HDXD QHXURQDO VH DIO vQWU R VWDUH VWDELO DWXQFL FkQG QHXURQLL GLQ UH HD DF LRQHD]
-
DVXSUDFHORUODO LI U DGHWHUPLQDVFKLPEDUHDYDORULORUGHDFWLYDUHDQLFLXQXLDGLQWUHHL'DF 2
s
UHSUH]LQW RVWDUHVWDELO DUH HOHLXQED]LQGHDWUDF LH%HVWHGHILQLWSULQUHOD LD
B(Os)={O|TnO=Os}, XQGH 7 UHSUH]LQW WUDQVIRUPDUHD VW ULL SULQ LQWHUPHGLXO ) LDU % UHSUH]LQW VHWXO GH VW UL 2 FDUH HYROXHD] VSUH2
s într-XQQXP
UILQLWGHWUDQ]L LL
5H HOHOH +RSILHOG VXQW XWLOL]DWH SULQ SXQHUHD vQ FRUHVSRQGHQ
D VW ULORU VWDELOH FX
VROX LLOH SUREOHPHL SH FDUH YUHP V R UH]ROY P 5H HDXD YD DMXQJH OD IL[DUHD SH R VWDUH VWDELO GHFLODVROX LH
SunWGRX GLUHF LLLPSRUWDQWHGHXWLOL]DUHDUH HOHORU+RSILHOGúLDQXPH -ca memorii asociative; - pentru rezolvarea problemelor de optimizare. 6WDELOLWDWHDUH HOHORUQHXURQDOH+RSILHOG 6WDELOLWDWHD UHSUH]LQW SURSULHWDWHD XQHL UH HOHL GH D VH VWDELOL]D
(de a atinge o stare
VWDELO LQGLIHUHQWGHVWDUHDLQL LDO 3HQWUXUH HOHQHXURQDOHVXQWGHILQLWHPDLPXOWH
teoreme de stabilitate, dintre care se pot aminti:
- teorema Cohen - Grossberg; - teorema Kosko; - teorema Abam. &RKHQúL*URVVEHUJDXGHPRQVWUDWF UH HOHOHQHXURQDOHUHFXUHQWHVXQWVWDELOHGDF úLQXPDLGDF
wij=wji si wii=0. 'HFLRULFHUH HD+RSILHOGHVWHVWDELO $FHDVW WHRUHP DIRVWGHPRQVWUDW FXDMXWRUXOXQHLIXQF LL /\DSXQRYXWLOL]DW FDIXQF LHGHHQHUJLHDUH HOHL
)XQF LDGHHQHUJLHDXQHLUH HOH+RSILHOG )LHF UHLVW ULDUH HOHLLVHDVRFLD] RP ULPH(GHQXPLW HQHUJLH(VFDGHGHILHFDUHGDW FkQG XQ QHXURQ vúL VFKLPE VWDUHD )LH
neuronului i. 'DF 2 =0 úLVHSURGXFHVFKLPEDUHD2 i i w ij O j − Ti > 0, DO i > 0 .
∆( VFKLPEDUHD GH HQHUJLH GDWRUDW
VFKLPE ULL VW ULL
UH]XOW F
∑ j
'DF 2
i
úLVHSURGXFHVFKLPEDUHD2
∑
i w ij O j − Ti < 0, DO i < 0 .
UH]XOW
j
Deci:
DO i ( ∑ w ijO j − Ti ) > 0 . j
+RSILHOG D GHILQLW VFKLPEDUHD QLYHOXOXL GH HQHUJLH DO UH HOHL FD XUPDUH D VFKLPE ULL VW U QHXURQXOXLLSULQUHOD LD
DE = − DO i ( ∑ w ij O j − Ti ) . j
(QHUJLDQRGXOXLLFDUHFRQGXFHODDFHDVW VFKLPEDUHHVWH
E i = − O i ( ∑ w ijO j − Ti ) = − ∑ w ij O jO i + O i Ti . j
j
(QHUJLDWRWDO DUH HOHLDúDFXPDIRVWGHILQLW GH+RSILHOGHVWH
ii
E = −1/ 2∑ ∑ w ijO j O i + ∑ O i Ti . i
j
i
ÌQ FRQFOX]LH WUDQ]L LLOH GH VWDUH FRERDU QLYHOXO GH HQHUJLH SkQ FkQG DFHVW OXFUX QX PDL HVWH SRVLELOPRPHQWvQFDUHVHSURGXFHVWDELOL]DUHDUH HOHL6WDELOL]DUHDUH HOHLSRDWHILORFDO UH HDXD
s-DIL[DWSHXQPLQLPORFDODOHQHUJLHL VDXJOREDO
Rezolvarea problemelor de optimizareFXDMXWRUXOUH
HOHORU+RSILHOG
7UDQ]L LLOH GH VWDUH DOH UH HOHORU QHXURQDOH +RSILHOG GHWHUPLQ VF GHUHD QLYHOXOXL GH HQHUJLH D UH HOHL SkQ FkQG DFHVW OXFUX QX PDL HVWH SRVLELO UH HDXD V
-a stabilizat). Prin
IXQF LRQDUHD VD UH HDXD QHXURQDO GHWHUPLQ VLQJXU PLQLPL]DUHD IXQF LHL GH HQHUJLH 'HFL UH HDXD QHXURQDO SRDWH IL XWLOL]DW SHQWUX UH]ROYDUHD XQRU SUREOHPH GH RSWLPL]DUH SXWkQG GHWHUPLQDVLQJXU QLYHOXOIXQF LHLRELHFWLY 6 SUHVXSXQHP GH H[HPSOX XQ VLVWHP 6 FDUDFWHUL]DW FX DMXWRUXO D 1 YDULD
bile de stare
S1,...,Sn, fiecare putând lua valorile - VDX 3XWHP DILUPD F tuplul (S1,...,Sn).
VWDUHD VLVWHPXOXL 6 HVWH GDW GH
)LHRIXQF LHFRVW(6 GHILQLW SHQWUXDFHVWVLVWHPS WUDWLF úLVLPHWULF vQUDSRUWGH6L
Minimizarea lui E poate fi UHDOL]DW
FX DMXWRUXO XQHL UH HOH +RSILHOG DYkQG GUHSW LQWHQVLW
L DOH
FRQH[LXQLORUFRHILFLHQ LLHFXD LHLS WUDWLFHDOXL( 'RX GLILFXOW
L DSDU vQ UH]ROYDUHD FX DMXWRUXO UH HOHORU +RSILHOG D SUREOHPHORU GH
optimizare: -SUREOHPHOHWUHEXLHV DFFHSWHIRUPDS WUDWLF FXDGUDWLF -PLQLPXORE LQXWGHUHU HDXD+RSILHOGSRDWHILORFDO
5H HOHQHXURQDOH%ROW]PDQQ 5H HOHOH +RSILHOG VH SRW VWDELOL]D SH XQ PLQLP ORFDO HIHFW QHGRULW DWXQFL FkQG VXQW
utilizate în rezolvarea unor probleme de optimizare.
2 PHWRG LPSRUWDQW SHQWUX HYLWDUHD
PLQLPHORUORFDOHHVWHPHWRGDF OLULLVLPXODWH &RPELQDUHD UH HOHORU +RSILHOG FX PHWRGD F OLULL VLPXODWH D GDW QDúWHUH OD UH HOHOH
neuronale Hopfield stohastice cunoscute sub numele de UH HOH PDúini) Boltzmann. În func LRQDUHDUH HOHORU%ROW]PDQQPLQLPXOORFDOHVWHHYLWDWSULQDG XJDUHDXQXLHOHPHQWDOHDWRUvQ SURFHVXOPLQLPL] ULLHQHUJLHL 5H HOHOH %ROW]PDQQ OXFUHD] FX R IXQF LH GH DFWLYDUH VWRFKDVWLF 3UREDELOLWDWHD GH
activare a unui neuron i, notat cu Pi(1), se calculeaz cu ajutorul rela iei: 1 Pi (1) = −⋅net / T e i Func ia de activare a neuronilor este o func ie stohastic de forma: 1 , cu probabilitatea Pi (1) f ( net i ) = 0 , cu probabilitatea Pi (0) Rela iile anterioare pot fi utilizate úi pentru re ele neuronale cu valori -1/1 ale nivelurilor de activare ale neuronilor, cu deosebirea c neti va fi înlocuit cu 2⋅ neti.
,QFHUWLWXGLQHD LQWURGXV vQ IXQF LD GH DFWLYDUH HVWH SURSRU LRQDO FX SDUDPHWUXO GHQXPLW
WHPSHUDWXU QRWDWFX GHWHUPLQD GLILFXOW
T(OHPHQWXODOHDWRUDMXW
ODSUHYHQLUHDIL[ ULLSHXQPLQLPORFDOGDUSRDWH
L vQ IL[DUHD SH RULFDUH DOW VWDUH LQFOXVLY S
e minimul global. De aceea, func ionarea re elei demareaz vQ FRQGL LLOH XQHL WHPSHUDWXUL ULGLFDWH XUPDW GH R U FLUH WUHSWDW (sc GHUHDLQFHUWLWXGLQLL SHP VXUDGHVI úXU ULLSUHOXFU ULORUGXS PRGHOXOF OLULLVLPXODWH Exemplu Presupunem o re ea neuronal format din trei unit i, cu urm toarele caracteristici: (O1, O2, O3) = (0,1,1);
T1 = -0.1; T2 = -0.2; T3 = 0.7; w12 = -0.5; w13 = 0.4; w23 = -0.2.
ùWLLQGF LQSXWXOQHWHVWHFDOFXODWFRQIRUPUHOD
iei:
net i = ∑ w ⋅ O − T j
ij
j
i
se ob ine: net1= 0; net2 = 0.7; net3 = -0.2. P ( 1 ) =1 /( 1 +e - n e t / T ) T =0 .2 5 T =0 .5
ne t
)XQF LHGHDFWLYDUHVWRKDVWLF
Se calculeaz : P(0) = 1-P(1) SHQWUX WRDWH QRGXULOH M
SHQWUX 7
úL UHVSHFWLY 7
5H]XOWDWHOH VXQW SUH]HQWDWH vQ
tabelul de mai jos. Neuron
T=0.25 P(1) 0.5 0.94 0.31
U1 U2 U3
T=1 P(0) 0.5 0.06 0.69
P(1) 0.5 0.67 0.45
P(0) 0.5 0.33 0.55
3H ED]D DFHVWRU YDORUL VH FDOFXOHD] SUREDELOLWDWHD WUDQ]L LLORU SH DOWH VW UL 3UHVXSXQHP IXQF LRQDUHDVLQFURQ 6W ULOHFDUHSRWXUPDXQHLVW ULGDWHVXQW
-VWDUHDvQV úLPHQ LQHUHDFRQVHUYDUHDDFHOHLVW UL -VW ULOHFHGLIHU GHVWDUHDGDW SULQYDORDUHDGHDFWLYDUHDXQXLVLQJXUQHXURQ 'HH[HPSOXVW ULOHFHSRWXUPDVW ULL VXQW
- (0,1,1) - (1,1,1) - (0,0,1) - (0,1,0). &DOFXOXOSUREDELOLW
LORUWUDQ]L LLORUGHFXUJHDVWIHO
3UHVXSXQHPWUDQ]L LD
(0,1,1) -> (1,1,1). 6H DFWLYHD] GHFL SULPXO QHXURQ 3UREDELOLWDWHD GH DFWLYDUH D SULPXOXL QHXURQ R YRP QRWD FX
P1(1).
Acest eveniment (activarea primului neuron) aUH SUREDELOLWDWHD GH DSDUL LH HJDO (1) /3.
3UREDELOLWDWHDWRWDO GHWUDQ]L LHVSUHVWDUHD HVWHHJDO FX31
FX
'DF R VWDUH HVWH DWLQV SULQ VFKLPEDUHD QLYHOXOXL GH DFWLYDUH D QHXURQXOXL SUREDELOLWDWHD DWLQJHULL DFHVWHL VW UL HVWH HJDO
cu Pi GDF
i,
2i HVWH SHQWUX DFHDVW VWDUH úL
Pi GDF 2i HVWH SHQWUX DFHD VWDUH 3ULQ XUPDUH SUREDELOLWDWHD WUDQ]L LHL SH R DQXPLW stare când neuronul i îúLVFKLPE VWDUHDHVWHGDW de rela ia:
(O ⋅ P (1) + (1 − O ) ⋅ P (0)) 3 i
i
i
i
Probabilitatea de conservDUHDVW 1−
∑ (O i
i
ULLHVWH
)
⋅ Pi (1) + (1 − O i ) ⋅ Pi (0) 3 .
8UP ULQGWUDQ]L LLOHGHVWDUHvQDFHDVW VLWXD LHVHFRQVWDW F ODWHPSHUDWXULULGLFDWHVDOWXOSHVW UL FX HQHUJLH PDL ULGLFDW HVWH PDL SUREDELO GHFkW OD WHPSHUDWXUL MRDVH /D VF GHUHD WHPSHUDWXULL
probabilitDWHD IL[ echilibrul termic.
ULL SH VWDUHD FRUHFW FX HQHUJLH FHD PDL MRDV HVWH GHFL UH HDXD DWLQJH