Cap5.pdf

  • Uploaded by: Lorena Andreea
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cap5.pdf as PDF for free.

More details

  • Words: 1,471
  • Pages: 5
Tema nr. 5 5H HOHQHXURQDOH+RSILHOG 5H HOHOH +RSILHOG VXQW UH HOH QHXURQDOH UHFXUHQWH VLPHWULFH WRWDO FRQHFWDWH I U  DXWR

-

DVRFLHUH$UKLWHFWXUDDFHVWRUUH HOHHVWHSUH]HQWDW vQILJXUDGHPDLRV

wji wij

i 6LPHWULDFRQH[LXQLORUVHH[SULP SULQHJDOLW

wij=wji , pentru i,j desemnâQGXQLW Lipsa auto-DVRFLHULLVHH[SULP SULQ wii=0. 1LYHOXO GH DFWLYDUH DO XQHL XQLW

LO

e:

LGLQUH HD

L LD YDORUL ELQDUH   VDX ELSRODUH

DMXWRUXOXQHLIXQF LLGHDFWLYDUHGHIRUPD

∑w

1,daca  O j = F( ∑ w ji O i ) =  i 0 / −1,

i

ji

-1,1) , fiind calculat cu

O i > Tj

in rest

,QSXWXULOH VXQW DSOLFDWH WXWXURU QRGXULORU GLQ UH HD vQ DFHODúL WLPS $FHVW OXFUX vQVHDPQ  VHWDUHD XQLW

LORU SH XQ QLYHO GH DFWLYDUH LQL LDO 5H HDXD IXQF LRQHD]  DSRL DXWRQRP WUHFkQG SULQWU

-o

VXFFHVLXQHGHVW UL6HWDUHDLQL LDO HVWHSULPXORXWSXWDOUH HOHLFDUHVHUYHúWHFDXUP WRULQSXWSH ED]D F UXLD VH SURGXFH XQ QRX RXWSXW úDPG SkQ  OD IL[DUHD UH HOHL SH R VWDUH VWDELO  VWDUHD vQ FDUHQLYHOXOGHDFWLYDUHDOXQLW

LORUQXVHPDLVFKLPE 

5H HDXDSRDWHIXQF LRQD

- sincron, atunci cânGWR LQHXURQLLvQFHDUF V -úLVFKLPEHVWDUHDVLPXOWDQ - asincron, atunci câQG ILHFDUHQHXURQvQFHDUF  V -úL VFKLPEH VWDUHD OD XQ PRPHQW GLIHULW GH DO FHLODO L QHXURQL  /D ILHFDUH PRPHQW WDFW  GH WLPS VH VHOHFWHD]  DOHDWRU XQ QHXURQ FDUH vQFHDUF D úL

- schimba starea.

)LHVWDUHDXQHLUH HOHIRUPDWHGLQWUHLXQLW

(O1,O2,O3) = (0,0,0). Fie T1= -0.1, T2=T3=0, w12= -Z

L88úL8

úLZ



3UHVXSXQHPF QHXURQXOLQFHDUF SULPXOV VHDFWLYH]H

∑w

i = 2,3

1i

O i = 0 > T1 ⇒ O1 = 1 .

'HFL UH HDXD FRPXW  SH VWDUHD   )LHFDUH GLQWUH FHLODO L GRL QHXURQL V UkQGXOORUFXSUREDELOLWDWHHJDO   

• neuronul 2:

∑w

i =1,3

2i

Oi = 0 ≤ 0 ⇒ O2 = 0

• neuronul 3:

∑w

i =1,2

3i

Oi = 0 ≤ 0 ⇒ O3 = 0

'HFLGLQVWDUHD  UH HDXD

- va tranzita pe starea (1,0,0), cu probabilitatea 1/3; -YDU PkQHSHDFHHDúLVWDUHFXSUREDELOLWDWHD

-ar putea activa la

6WDUHVWDELO

%D]LQGHDWUDF LH

5H HDXD QHXURQDO  VH DIO  vQWU R VWDUH VWDELO  DWXQFL FkQG QHXURQLL GLQ UH HD DF LRQHD] 

-

DVXSUDFHORUODO LI U DGHWHUPLQDVFKLPEDUHDYDORULORUGHDFWLYDUHDQLFLXQXLDGLQWUHHL'DF 2

s

UHSUH]LQW RVWDUHVWDELO DUH HOHLXQED]LQGHDWUDF LH%HVWHGHILQLWSULQUHOD LD

B(Os)={O|TnO=Os}, XQGH 7 UHSUH]LQW  WUDQVIRUPDUHD VW ULL SULQ LQWHUPHGLXO ) LDU % UHSUH]LQW  VHWXO GH VW UL 2 FDUH HYROXHD] VSUH2

s într-XQQXP

UILQLWGHWUDQ]L LL

5H HOHOH +RSILHOG VXQW XWLOL]DWH SULQ SXQHUHD vQ FRUHVSRQGHQ

 D VW ULORU VWDELOH FX

VROX LLOH SUREOHPHL SH FDUH YUHP V  R UH]ROY P 5H HDXD YD DMXQJH OD IL[DUHD SH R VWDUH VWDELO  GHFLODVROX LH

SunWGRX GLUHF LLLPSRUWDQWHGHXWLOL]DUHDUH HOHORU+RSILHOGúLDQXPH -ca memorii asociative; - pentru rezolvarea problemelor de optimizare. 6WDELOLWDWHDUH HOHORUQHXURQDOH+RSILHOG 6WDELOLWDWHD UHSUH]LQW  SURSULHWDWHD XQHL UH HOHL GH D VH VWDELOL]D

(de a atinge o stare

VWDELO LQGLIHUHQWGHVWDUHDLQL LDO  3HQWUXUH HOHQHXURQDOHVXQWGHILQLWHPDLPXOWH

teoreme de stabilitate, dintre care se pot aminti:

- teorema Cohen - Grossberg; - teorema Kosko; - teorema Abam. &RKHQúL*URVVEHUJDXGHPRQVWUDWF UH HOHOHQHXURQDOHUHFXUHQWHVXQWVWDELOHGDF úLQXPDLGDF 

wij=wji si wii=0. 'HFLRULFHUH HD+RSILHOGHVWHVWDELO $FHDVW WHRUHP DIRVWGHPRQVWUDW FXDMXWRUXOXQHLIXQF LL /\DSXQRYXWLOL]DW FDIXQF LHGHHQHUJLHDUH HOHL

)XQF LDGHHQHUJLHDXQHLUH HOH+RSILHOG )LHF UHLVW ULDUH HOHLLVHDVRFLD] RP ULPH(GHQXPLW HQHUJLH(VFDGHGHILHFDUHGDW  FkQG XQ QHXURQ vúL VFKLPE  VWDUHD )LH

neuronului i. 'DF 2 =0 úLVHSURGXFHVFKLPEDUHD2 i i w ij O j − Ti > 0, DO i > 0 .

∆( VFKLPEDUHD GH HQHUJLH GDWRUDW

 VFKLPE ULL VW ULL

UH]XOW F 

∑ j

'DF 2

i

úLVHSURGXFHVFKLPEDUHD2



i w ij O j − Ti < 0, DO i < 0 .

UH]XOW 

j

Deci:

DO i ( ∑ w ijO j − Ti ) > 0 . j

+RSILHOG D GHILQLW VFKLPEDUHD QLYHOXOXL GH HQHUJLH DO UH HOHL FD XUPDUH D VFKLPE ULL VW U QHXURQXOXLLSULQUHOD LD

DE = − DO i ( ∑ w ij O j − Ti ) . j

(QHUJLDQRGXOXLLFDUHFRQGXFHODDFHDVW VFKLPEDUHHVWH

E i = − O i ( ∑ w ijO j − Ti ) = − ∑ w ij O jO i + O i Ti . j

j

(QHUJLDWRWDO DUH HOHLDúDFXPDIRVWGHILQLW GH+RSILHOGHVWH

ii

E = −1/ 2∑ ∑ w ijO j O i + ∑ O i Ti . i

j

i

ÌQ FRQFOX]LH  WUDQ]L LLOH GH VWDUH FRERDU  QLYHOXO GH HQHUJLH SkQ  FkQG DFHVW OXFUX QX PDL HVWH SRVLELOPRPHQWvQFDUHVHSURGXFHVWDELOL]DUHDUH HOHL6WDELOL]DUHDUH HOHLSRDWHILORFDO  UH HDXD

s-DIL[DWSHXQPLQLPORFDODOHQHUJLHL VDXJOREDO



Rezolvarea problemelor de optimizareFXDMXWRUXOUH

HOHORU+RSILHOG

7UDQ]L LLOH GH VWDUH DOH UH HOHORU QHXURQDOH +RSILHOG GHWHUPLQ  VF GHUHD QLYHOXOXL GH HQHUJLH D UH HOHL SkQ  FkQG DFHVW OXFUX QX PDL HVWH SRVLELO UH HDXD V

-a stabilizat). Prin

IXQF LRQDUHD VD UH HDXD QHXURQDO  GHWHUPLQ  VLQJXU  PLQLPL]DUHD IXQF LHL GH HQHUJLH 'HFL UH HDXD QHXURQDO  SRDWH IL XWLOL]DW  SHQWUX UH]ROYDUHD XQRU SUREOHPH GH RSWLPL]DUH SXWkQG GHWHUPLQDVLQJXU QLYHOXOIXQF LHLRELHFWLY 6  SUHVXSXQHP GH H[HPSOX XQ VLVWHP 6 FDUDFWHUL]DW FX DMXWRUXO D 1 YDULD

bile de stare

S1,...,Sn, fiecare putând lua valorile - VDX  3XWHP DILUPD F tuplul (S1,...,Sn).

 VWDUHD VLVWHPXOXL 6 HVWH GDW  GH

)LHRIXQF LHFRVW( 6 GHILQLW SHQWUXDFHVWVLVWHPS WUDWLF úLVLPHWULF vQUDSRUWGH6L

Minimizarea lui E poate fi UHDOL]DW

 FX DMXWRUXO XQHL UH HOH +RSILHOG DYkQG GUHSW LQWHQVLW

L DOH

FRQH[LXQLORUFRHILFLHQ LLHFXD LHLS WUDWLFHDOXL( 'RX  GLILFXOW

L DSDU vQ UH]ROYDUHD FX DMXWRUXO UH HOHORU +RSILHOG D SUREOHPHORU GH

optimizare: -SUREOHPHOHWUHEXLHV DFFHSWHIRUPDS WUDWLF  FXDGUDWLF -PLQLPXORE LQXWGHUHU HDXD+RSILHOGSRDWHILORFDO



5H HOHQHXURQDOH%ROW]PDQQ 5H HOHOH +RSILHOG VH SRW VWDELOL]D SH XQ PLQLP ORFDO HIHFW QHGRULW DWXQFL FkQG  VXQW

utilizate în rezolvarea unor probleme de optimizare.

2 PHWRG  LPSRUWDQW  SHQWUX HYLWDUHD

PLQLPHORUORFDOHHVWHPHWRGDF OLULLVLPXODWH &RPELQDUHD UH HOHORU +RSILHOG FX PHWRGD F OLULL VLPXODWH D GDW QDúWHUH OD UH HOHOH

neuronale Hopfield stohastice cunoscute sub numele de UH HOH PDúini) Boltzmann. În func LRQDUHDUH HOHORU%ROW]PDQQPLQLPXOORFDOHVWHHYLWDWSULQDG XJDUHDXQXLHOHPHQWDOHDWRUvQ SURFHVXOPLQLPL] ULLHQHUJLHL 5H HOHOH %ROW]PDQQ OXFUHD]  FX R IXQF LH GH DFWLYDUH VWRFKDVWLF  3UREDELOLWDWHD GH

activare a unui neuron i, notat cu Pi(1), se calculeaz cu ajutorul rela iei: 1 Pi (1) = −⋅net / T e i Func ia de activare a neuronilor este o func ie stohastic de forma:  1 , cu probabilitatea Pi (1) f ( net i ) =  0 , cu probabilitatea Pi (0) Rela iile anterioare pot fi utilizate úi pentru re ele neuronale cu valori -1/1 ale nivelurilor de activare ale neuronilor, cu deosebirea c neti va fi înlocuit cu 2⋅ neti.

,QFHUWLWXGLQHD LQWURGXV  vQ IXQF LD GH DFWLYDUH HVWH SURSRU LRQDO  FX SDUDPHWUXO GHQXPLW

WHPSHUDWXU QRWDWFX GHWHUPLQD GLILFXOW

T(OHPHQWXODOHDWRUDMXW

ODSUHYHQLUHDIL[ ULLSHXQPLQLPORFDOGDUSRDWH

L vQ IL[DUHD SH RULFDUH DOW  VWDUH LQFOXVLY S

e minimul global. De aceea, func ionarea re elei demareaz  vQ FRQGL LLOH XQHL WHPSHUDWXUL ULGLFDWH XUPDW  GH R U FLUH WUHSWDW  (sc GHUHDLQFHUWLWXGLQLL SHP VXUDGHVI úXU ULLSUHOXFU ULORUGXS PRGHOXOF OLULLVLPXODWH Exemplu Presupunem o re ea neuronal format din trei unit i, cu urm toarele caracteristici: (O1, O2, O3) = (0,1,1);

T1 = -0.1; T2 = -0.2; T3 = 0.7; w12 = -0.5; w13 = 0.4; w23 = -0.2.

ùWLLQGF LQSXWXOQHWHVWHFDOFXODWFRQIRUPUHOD

iei:

net i = ∑ w ⋅ O − T j

ij

j

i

se ob ine: net1= 0; net2 = 0.7; net3 = -0.2. P ( 1 ) =1 /( 1 +e - n e t / T ) T =0 .2 5 T =0 .5

ne t

)XQF LHGHDFWLYDUHVWRKDVWLF

Se calculeaz : P(0) = 1-P(1) SHQWUX WRDWH QRGXULOH M

 SHQWUX 7

 úL UHVSHFWLY 7

 5H]XOWDWHOH VXQW SUH]HQWDWH vQ

tabelul de mai jos. Neuron

T=0.25 P(1) 0.5 0.94 0.31

U1 U2 U3

T=1 P(0) 0.5 0.06 0.69

P(1) 0.5 0.67 0.45

P(0) 0.5 0.33 0.55

3H ED]D DFHVWRU YDORUL VH FDOFXOHD]  SUREDELOLWDWHD WUDQ]L LLORU SH DOWH VW UL 3UHVXSXQHP IXQF LRQDUHDVLQFURQ 6W ULOHFDUHSRWXUPDXQHLVW ULGDWHVXQW

-VWDUHDvQV úL PHQ LQHUHDFRQVHUYDUHDDFHOHLVW UL  -VW ULOHFHGLIHU GHVWDUHDGDW SULQYDORDUHDGHDFWLYDUHDXQXLVLQJXUQHXURQ 'HH[HPSOXVW ULOHFHSRWXUPDVW ULL  VXQW

- (0,1,1) - (1,1,1) - (0,0,1) - (0,1,0). &DOFXOXOSUREDELOLW

LORUWUDQ]L LLORUGHFXUJHDVWIHO

3UHVXSXQHPWUDQ]L LD

(0,1,1) -> (1,1,1). 6H DFWLYHD]  GHFL SULPXO QHXURQ 3UREDELOLWDWHD GH DFWLYDUH D SULPXOXL QHXURQ R YRP QRWD FX

P1(1).

Acest eveniment (activarea primului neuron) aUH SUREDELOLWDWHD GH DSDUL LH HJDO (1) /3.

3UREDELOLWDWHDWRWDO GHWUDQ]L LHVSUHVWDUHD  HVWHHJDO FX31

 FX 

'DF  R VWDUH HVWH DWLQV  SULQ VFKLPEDUHD QLYHOXOXL GH DFWLYDUH D QHXURQXOXL SUREDELOLWDWHD DWLQJHULL DFHVWHL VW UL HVWH HJDO

cu Pi   GDF

i,

 2i HVWH  SHQWUX DFHDVW  VWDUH úL

Pi   GDF  2i HVWH  SHQWUX DFHD VWDUH 3ULQ XUPDUH SUREDELOLWDWHD WUDQ]L LHL SH R DQXPLW stare când neuronul i îúLVFKLPE VWDUHDHVWHGDW de rela ia:

(O ⋅ P (1) + (1 − O ) ⋅ P (0)) 3 i

i

i

i

Probabilitatea de conservDUHDVW 1−

∑ (O i

i

ULLHVWH

)

⋅ Pi (1) + (1 − O i ) ⋅ Pi (0) 3 .

8UP ULQGWUDQ]L LLOHGHVWDUHvQDFHDVW VLWXD LHVHFRQVWDW F ODWHPSHUDWXULULGLFDWHVDOWXOSHVW UL FX HQHUJLH PDL ULGLFDW  HVWH PDL SUREDELO GHFkW OD WHPSHUDWXUL MRDVH /D VF GHUHD WHPSHUDWXULL

probabilitDWHD IL[ echilibrul termic.

ULL SH VWDUHD FRUHFW  FX HQHUJLH FHD PDL MRDV  HVWH  GHFL UH HDXD DWLQJH

More Documents from "Lorena Andreea"