BAB 2 METABOLISME
Pengertian Metabolisme : Metabolisme merupakan proses kimia di dalam tubuh. Metabolisme meliputi segala aktivitas hidup yang bertujuan agar sel tersebut mampu untuk tetap bertahan hidup, tumbuh, dan melakukan reproduksi. Semua sel penyusun tubuh makhluk hidup memerlukan energi agar proses kehidupan dapat berlangsung. Sel-sel menyimpan energi kimia dalam bentuk makanan kemudian mengubahnya dalam bentuk energi lain pada proses metabolisme. Metabolisme dibedakan atas anabolisme dan katabolisme Anabolisme adalah pembentukan molekul-molekul besar dari molekul-molekul kecil. Misalnya pembentukan senyawa-senyawa seperti pati, selulosa, lemak, protein dan asam nukleat. Pada peristiwa anabolisme memerlukan masukan energi. Katabolisme adalah penguraian molekul-molekul besar menjadi molekul-molekul kecil, dan prosesnya melepaskan energi. Contoh : respirasi, yaitu proses oksidasi gula menjadi H2O dan CO2
Molekul-molekul yang terkait dengan proses metabolisme 1. ATP merupakan molekul berenergi tinggi. Molekul ini merupakan ikatan adenosin yang mengikat tiga gugusan pospat, dengan ikatan yang lemah / labil sehingga mudah melepaskan ikatan pospatnya pada saat mengalami hidrolisis.
2. Enzim Adalah biokatalisator organik yang dihasilkan organisme hidup di dalam protoplasma, yang terdiri atas protein atau suatu senyawa yang berikatan dengan protein. Enzim mempunyai dua fungsi pokok sebagai berikut. 1. Mempercepat atau memperlambat reaksi kimia. 2. Mengatur sejumlah reaksi yang berbeda-beda dalam waktu yang sama. Enzim disintesis dalam bentuk calon enzim yang tidak aktif, kemudian diaktifkan dalam lingkungan pada kondisi yang tepat. Misalnya, tripsinogen yang disintesis dalam pankreas, diaktifkan dengan memecah salah satu peptidanya untuk membentuk enzim tripsin yang aktif. Bentuk enzim yang tidak aktif ini disebut zimogen. Enzim tersusun atas dua bagian. Apabila enzim dipisahkan satu sama lainnya menyebabkan enzim tidak aktif. Namun keduanya dapat digabungkan menjadi satu, yang disebut holoenzim. Kedua bagian enzim tersebut yaitu apoenzim dan koenzim. Kerja Enzim ada 2 teori yang mengungkapkan cara kerja enzim yaitu: 1. Teori kunci dan anak kunci (Lock and key) Teori ini dikemukakan oleh Emil Fisher yang menyatakan kerja enzim seperti kunci dan anak kunci, melalui hidrolisis senyawa gula dengan enzim invertase, sebagai berikut: 1. Enzim memiliki sisi aktivasi, tempat melekat substrat 2. hubungan antara enzim dan substrat terjadi pada sisi aktivasi 3. Hubungan antara enzim dan substrat membentuk ikatan yang lemah
b. Hipothesis Koshland :
1. Enzim dan sisi aktifnya merupakan struktur yang secara fisik lebih fleksibel daripada hypothesis Fischer. 2. Terjadi interaksi dinamis antara enzim dan substrat 3. Jika substrat berkombinasi dengan enzim, akan terjadi perubahan dalam struktur (konformasi) sisi aktif enzim sehingga fungsi enzim berlangsung efektif. 4. Struktur molekul substrat juga berubah selama diinduksi sehingga kompleks enzimsubstrat lebih berfungsi.
Inhibitor Merupakan zat yang dapat menghambat kerja enzim. Bersifat reversible dan irreversible. Inhibitor reversible dibedakan menjadi inhibitor kompetitif dan nonkompetitif (Gambar 3.4B ) a. Inhibitor kompetitif Menghambat kerja enzim dengan menempati sisi aktif enzim. Inhibitor ini besaing dengan substrat untuk berikatan dengan sisi aktif enzim. Pengambatan bersifat reversibel (dapat kembali seperti semula) dan dapat dihilangkan dengan menambah konsentrasi substrat. Inhibitor kompetitif misalnya malonat dan oksalosuksinat, yang bersaing dengan substrat untuk berikatan dengan enzim suksinat dehidrogenase, yaitu enzim yang bekerja pada substrat oseli suksinat. b. Inhibitor nonkompetitif Inhibitor ini biasanya berupa senyawa kimia yang tidak mirip dengan substrat dan berikatan pada sisi selain sisi aktif enzim. Ikatan ini menyebabkan perubahan bentuk enzim sehingga sisi aktif enzim tidak sesuai lagi dengan substratnya. Contohnya antibiotik penisilin menghambat kerja enzim penyusun konsentrasi substrat. dinding sel bakteri. Inhibitor ini bersifat reversible tetapi tidak dapat dihilangkan dengan menambahkan
d. Faktor-faktor yang mempengaruhi kecepatan reaksi enzim Konsentrasi substrat Konsentrasi enzim Suhu pH Aktivator dan inhibitor I. KATABOLISME 1. Respirasi merupakan contoh peristiwa Katabolisme. Respirasi merupakan oksidasi senyawa organik secara terkendali untuk membebaskan energi bagi pemeliharaan dan perkembangan makhluk hidup. Produk antara pada respirasi sel dipakai sebagai bahan dasar untuk metabolisme. Berdasarkan kebutuhan terhadap tersedianya oksigen bebas, dibedakan : a. Respirasi aerob : respirasi yang membutuhkan oksigen bebas. Oksigen merupakan penerima hidrogen terakhir. b. Respirasi anaerob : respirasi yang tidak membutuhkan oksigen bebas. Sebagai penerima hidrogen terakhir bukan oksigen,tetapi senyawa lain seperti asam pyruvat, dan asetaldehid. Respirasi sel secara aerob berlangsung melalui 4 tahap, yaitu :
Glikolisis Dekarboksilasi Oksidatif Asam Piruvat Daur Krebs, dan Sistem Transfer Elektron Glikolisis : Berlangsung di sitoplasma Berlangsung secara anaerob Mengubah satu molekul glukosa ( 6C ) menjadi dua molekul asam piruvat ( 3C ) Untuk setiap molekul glukosa dihasilkan energi 2 ATP dan 2 NADH Dikenal sebagai Reaksi Embden dan Meyerhoff Dekarboksilasi Oksidatif Asam Piruvat : Berlangsung pada matriks mitokondria Mengubah asam piruvat (3C) menjadi Asetil Ko-A (2C) Dihasilkan energi sebesar 2 ATP dan 2 NADH untuk setiap molekul glukosa Siklus Krebs : Berlangsung pada matriks mitokondria Mengubah Asetil-KoA (2C) menjadi CO2 (senyawa berkarbon 1) Untuk setiap molekul Asetil-KoA dihasilkan 1 ATP, 1 FADH dan 2 NADH Rantai Pengangkutan Elektron ; NADH2 dan FADH2 merupakan senyawa pereduksi yang menghasilkan ion hidrogen
Melalui rantai respirasi, hidrogen dari NADH2 dan FADH2 yang dihasilkan pada proses glikolisis, dekarboksilasi oksidatif asam piruvat dan daur Krebs dilepaskan ke Oksigen (sebagai penerima hidrogen terakhir) untuk membentuk H2O dengan melepas energi secara bertahap. Satu molekul NADH2 akan menghasilkan 3 ATP, sedang satu molekul FADH2menghasilkan 2 ATP. Glikolisis :
Alternatif 1 : Bila tidak tersedia cukup oksigen, akan berlangsung respirasi anaerob / fermentasi, seperti pada diagram/skema di bawah ini :
ALTERNATIF 2 : Jika tersedia Oksigen, asam piruvat akan memasuki Siklus Krebs dan Sistem Transpor Elektron :
Substrat untuk respirasi tidak selalu dalam bentuk karbohidrat, tetapi bisa juga berupa protein atau lemak. Perhatikan skema hubungan antara berbagai substrat tersebut dalam proses respirasi aerob di bawah ini :
II. ANABOLISME A. Fotosintesis merupakan salah satu contoh dari Anabolisme
Fotosintesis terjadi pada tumbuh-tumbuhan yang berklorofil. Fotosintesis merupakan proses penyusunan zat organik dari zat-zat anorganik dengan menggunakan energi dari cahaya. Zat organik yang terbentuk dalam proses fotosintesis berupa karbohidrat, dimana karbohidrat tersebut dapat digunakan untuk membentuk zat-zat lain seperti protein dan lemak. Reaksi umum dari fotosintesis dapat dituliskan sebagai : cahaya 6 CO2 + 12 H2O
C6H12O6 + 6 H2O + 6 O2 klorofil
1. Komponen-komponen Esensial Fotosintesis : Komponen yang mutlak diperlukan dalam proses fotosintesis adalah bahan baku (CO2dan H2O), energi berupa cahaya, pigmen, molekul carrier enzim dan suhu yang tepat. Jika salah satu dari komponen tersebut tidak ada, fotosintesis tidak dapat berlangsung, sehingga komponen tersebut disebut komponen esensial. a). Bahan Baku CO2 dari udara masuk melalui stomata ke dalam jaringan spons daun dan segera dipergunakan untuk proses fotosintesis. Air (H2O) merupakan bahan baku lain yang diperoleh dari lingkungan. Pada tumbuhan tinggi, H2O diabsorbsi oleh akar dan diangkut ke daun melalui berbagai sel dan jaringan. b). Cahaya Energi yang dipergunakan dalam fotosintesis adalah energi cahaya. Dari berbagai penelitian diketahui bahwa energi dari cahaya matahari yang dipergunakan untuk fotosintesis hanya 2% saja. Selebihnya dipantulkan, ditransmisikan atau diabsorbsi senagai panas. Panjang gelombang dari berbagai spektrum sinar matahari tidak sama. Makin besar panjang gelombang, makin kecil energi yang dikandungnya. Gelombang cahaya dari yang terpanjang hingga terpendek adalah merah, jingga, kuning, hijau, biru, nila dan ungu. Dalam berbagai percobaan yang menggunakan obyek Chlorella, ternyata spektrum cahaya yang palig banyak diserap klorofil untuk proses fotosintesis adalah spektrum merah dan biru ungu (nila). c). Pigmen Dengan adanya sistem pigmen, tumbuhan hijau dapat mengabsorbsi energi cahaya dan menggunakan cahaya ini untuk menghasilkan gula. Klorofil merupakan pigmen terpenting dari tumbuhan yang melakukan fotosintesis Ada bermacam-macam klorofil, yaitu klorofil a, b, c dan e. Klorofil a dan b terdapat pada kloroplas tumbuhan tinggi, sedangkan klorofil yang lain terdapat pada jenis alga tertentu. d). Suhu Aktivitas fotosintesis dipengaruhi oleh suhu lingkungan. Fotosintesis umumnya berlangsung pada suhu antara 5 – 40o C. Kecepatan fotosintesis bertambah sampai maksimal pada suhu 35o C
dan setelah itu kecepatannya turun tajam. Penurunan ini dimungkinkan karena enzim menjadi kurang aktif. e). Molekul Carrier dan Enzim Pada kloroplas, selain dari pigmen terdapat pula berbagai molekul carrier yang berfungsi dalam transfer atom hidrogen, elektron dan transfer energi. Selain itu, pada kloroplas pun terdapat bermacam-macam enzim untuk reaksi kimia fotosintesis. 2. Penelitian tentang Fotosintesis Beberapa percobaan yang dilakukan untuk mengetahui hasil-hasil yang diperoleh dari fotosintesis, antara lain :
a). Percobaan Ingenhousz Obyek yang digunakan adalah tumbuhan Hydrilla verticillata. Hasil dari percobaannya disimpulkan bahwa fotosintesis menghasilkan gas, yang ternyata adalah oksigen.
b). Percobaan Engelmann Obyek yang digunakan adalah ganggang Spirogyra dan bakteri thermo. Di bawah mikroskop terlihat bakteri thermo berkumpul pada bagian kloroplas yang terkena cahaya matahari (B) akibat banyaknya oksigen di daerah ini. Kesimpulan yang dapat ditarik oleh Engelmann, yaitu bahwa fotosintesis membebaskan gas oksigen dan kloroplast yang bertanggung jawab terhadap produksi oksigentersebut. c). Percobaan Sacchs Dalam percobaan ini, Sacchs membuktikan bahwa fotosintesis memerlukan cahaya, berlangsung pada bagian yang berklorofil, sedang hasil akhir dari fotosintesis adalah zat tepung (amylum). Percobaan ini didasari atas pengertian bahwa amylum, jika bereaksi dengan iodium akan berwarna biru. Pada bagian daun yang ditutup dengan kertas timah (tidak kena cahaya) tidak berwarna biru, berarti di daerah tersebut tidak berlangsug fotosintesis.
3. Reaksi Fotosintesis Fotosintesis merupakan proses pengubahan energi cahaya menjadi energi kimia dalam bentuk gula yang dihasilkan dari reduksi karbondioksida yang miskin energi. Fotosintesis dapat dituliskan dengan persamaan reaksi sederhana :
6 CO2 + 12 H2O
C6H12O6 + 6 H2O + 6 O2
Pada dasarnya proses fotosintesis terjadi dalam dua tahap, yaitu reaksi terang (reaksi tergantung cahaya) dan reaksi gelap (reaksi tak tergantung cahaya). a). Reaksi Terang (Reaksi Tergantung Cahaya) Reaksi pertama dalam fotosintesis memang tergantung adanya cahaya, sehingga disebut sebagai reaksi terang. Sering reaksi ini disebut reaksi fotokimia / reaksi fotolisis / reaksi Hill, prosesnya berlangsung di Grana. Dalam reaksi terang terdapat dua pusat reaksi, yaitu fotosistem I (FS I) dan fotosistem II (FS II). Pada FS I terdapat klorofil a.683 (kl A.683) dan karotenoid yang mampu menyerap energi cahaya maksimum pada gelombang 700 nm (P 700), sedangkan untuk FS II dengan P 680 diserap oleh klorofil a 673 (kl A.673) dan klorofil b. Jika kloroplast mendapat cahaya, maka electron dari klorofil pada kedua fotosistem akan tereksitasi. Elektron kaya energi ini kemudian dipindahkan melalui akseptor-akseptor untuk dimanfaatkan energinya. 1). Fotosistem I (FS I) Elektron yang dikeluarkan dari FS I diteima oleh akseptor feredoksin sebagai akseptor utama. Elektron ini lalu ditransfer ke NADP. Pada saat yang sama juga menerima ion H+sehingga terbentuk nikotinamida adenin dinukleotid fosfat tereduksi (NADPH2). NADP + 2 H+ + 2e NADPH2 2). Fotosistem II ( FS II ) Elektron dari FS II diterima oleh akseptor-akseptor elektron (plastoquinon, sitokrom dan plastosianin) menuju FS I. Elektron ini digunakan untuk mengisi lubang pada FS I. Waktu mengalir melaui ekseptor-akseptornya, elektron ini melepaskan energinya. Energi ini digunakan untuk mensintesis ATP dari ADP dan Pi (fotofosforilasi) ADP + Pi
ATP
FS II yang telah kehilangan elektron ini akan segera diganti dari pemecahan air (fotolisis) : 2 H2O 2 H+ + 2 OH– – 2 OH 2 e + H2O + ½ O2 H2O 2 H+ + 2 e– + ½ O2 2 H2O 4 H+ + 4 e– + O2 Pada fotolisis terlihat bahwa O2 yang dibebaskan berasal dari dua molekul air ( 2 H2O ), Jadi pada reaksi terang dihasilkan ATP, NADPH2 dan O2. b). Reaksi gelap (reaksi tak tergantung cahaya) Reaksi gelap (reaksi tak tergantung cahaya / Reaksi Blackman) adalah suatu proses fiksasi CO2 untuk membentuk glukosa dengan menggunakan energi yang dihasilkan oleh reaksi terang. Reaksi ini terjadi di stroma pada kloroplas dan tidak memerlukan cahaya. Reaksi biokimiawinya berlangsung melalui suatu siklus yang disebut siklus Calvin Benson. PGAL yang terbentuk dalam reaksi gelap merupakan hasil berdih fotosintesis secara keseluruhan. Untuk membentuk satu molekul glukosa diperlukan dua molekul PGAL dan ini diperoleh dari mereduksi enam molekul CO2. Dengan mereduksi enam mulekul CO2, akan dihasilkan 12 molekul PGAL. Dua molekul PGAL digunakan untuk membentuk glukosa, sedangkan 10 molekul lainnya akan direduksi kembali melalui senyawa antara seperti fruktosa 1,6 difosfst (FDP) dan glukosa 5-fosfat (G 5-P) untuk menghasilkan RuDP. Untuk lebih jelasnya perhatikan skema fotosintesis, yang menunjukkan keterkaitan antara reaksi terang dan reaksi gelap di bawah ini :
Keterangan : hv : cahaya matahari Kotak dalam adalah reaksi terang (reaksi tergantung cahaya) Kotak luar adalah reaksi tak tergantung cahaya (siklus Calvin Benson) Senyawa pertama yang ditemukan setelah pengikatan CO2 oleh RuDP adalah PGA ( asam fosfogliserat ) yang terdiri atas 3 atom karbon. Oleh karenanya, tumbuhan yang melakukan fotosintesis menggunakan cara ini disebut tumbuhan C3. Fotosintesis melalui jalur C4 (Jalur metabolisme Hatch – Slack) Terjadi pada tumbuhan golongan C4; yaitu tumbuhan tebu, jagung, berbagai rerumputan (crabgrass, shorghum dan Bermuda grass) dan beberapa tumbuhan padang pasir. Tumbuhan ini digolongkan ke dalam tumbuhan C4 karena senyawa pertama yang dijumpai setelah fiksasi CO2 adalah asam oksaloasetat yang merupakan senyawa dengan 4 atom karbon.
Kelebihan Tumbuhan C4 dibanding dengan C3 1. 2. 3. 4.
Membutuhkan lebih banyak ATP; Sintesis glukosa berlangsung lebih cepat per satuan luas daun; Berlangsung lebih efisien dalam keadaan intensitas cahaya yang tinggi; Affinitas enzym fosfoenolpiruvat karboksilase terhadap CO2 lebih besar dibanding dengan RuDP 5. Penambatan CO2 lebih efektif; 6. Proses fotosintesis berlangsung cukup baik dalam keadaan jumlah CO2 yang sangat sedikit di udara. 7. Tumbuh lebih cepat. 2. KEMOSINTESIS Kemosintesis terjadi pada beberapa jenis bakteri yang menggunakan energi dari reaksi kimia anorganik sederhana untuk sintesa karbohidrat, dan menggunakan energi kimia dari luar tubuh.
Sumber karbon untuk kemosintesis berasal dari CO2. Bahan baku anorganik adalah air dan karbon dioksida. Sumber energi dari reaksi kimia (bukan dari cahaya). Energi diperoleh dari hasil oksidasi senyawa anorganik yang diserap dari lingkungan; Seperti : hidrogen, hidrogen sulfida, sulfur (belerang), besi, amonia dan nitrit.
Beberapa organisme yang melakukan kemosintesis : 1. Bakteri sulfur tidak berpigmen yang mengoksidasi sulfida menjadi sulfat :
Menyerap (H2S) maupun S2 dari lingkungan Kedua senyawa tsb bergabung dengan oksigen dan menghasilkan energi yang digunakan untuk membuat Karbohidrat Hasil samping berupa S2, bila bahan asalnya H2S dan ion sulfat (SO42-) bila asalnya S2
2. Bakteri besi yang mengoksidasi ferrohidroksida menjadi ferrihidroksida. Hidup di air tawar atau air asin yang mengandung senyawa besi terlarut. Bakteri menyerap senyawa besi terlarut dan menggabungkannya dengan oksigen sehingga menjadi bentuk tidak larut dengan mengeluarkan energi.
3. Bakteri Nitrifikasi Tipe bakteri yang menggunakan amonia dan melepaskan ion nitrit. Contoh :Nitrosomonas Tipe bakteri yang menggunakan ion nitrit dan melepaskan ion nitrat : Nitrobakter
PERBANDINGAN ANTARA FOTOSINTESIS DAN KEMOSINTESIS
Organisme
Bahan yang Type proses dipakai
Sumber energi
Hasil
Tumbuhan hijau
Bakteri belerang hijau
Bakteri belerang ungu
Bakteri Nitrifikasi
Bakteri Nitrifikasi
Bakteri belerang tak berwarna
Bakteri besi
Fotosintesis
Fotosintesis
Fotosintesis
CO2 , H2O
Cahaya yang Gula, diabsorbsi klorofil H O, 2 O2
CO2 , H2S
Cahaya yang diabsorbsi klorofil Gula, bakteri H2O , S
CO2 , H2S, H2O
Kemosintesis CO 2 , H2O Kemosintesis CO 2 , H2O
Kemosintesis CO 2 H , 2O Kemosintesis CO 2 , H2O
Cahaya yang diserap bakteriopurpurin
Gula, H2SO4
Oksidasi ammonia Gula, menjadi nitrit H2O, O2 Oksidasi nitrit menjadi nitrat
Oksidasi H2S menjadi sulfat Oksidasi ferro menjadi ferri
Gula, H2O, O2
Gula, H2O, O2 Gula, H2O, O2
3. Sintesis Lemak Terjadi di sitosol Lemak atau lipida adalah senyawa yang terdiri atas satu molekul gliserol (R–OH) dan tiga molekul asam lemak ( R-COOH) Lemak penting sebagai komponen structural sel, khususnya membrane sel dan sebagai bahan baker biologis. Untuk memenuhi kebutuhan tersebut, lemak dapat diperoleh dari makanan dan dapat pula disintesis di dalam tubuh. Di dalam tubuh, lemak dapat disintesis dari produk antara (intermediate product) pada proses respirasi, seperti PGAL dan asetil KoA. Baik tumbuhan maupun hewan dapat mensintesis lemak dari karbohidrat, melalui tahaptahap : 1. Sintesis gliserol [ C3H5(OH)3 ] 2. Sintesis asam lemak 4. Sintesis Protein
Terjadi di ribosom Unit penyusunnya adalah asam amino Protein merupakan polimer dari asam amino yang dihubungkan oleh ikatan peptida Ikatan peptida adalah ikatan yang meng-hubungkan antara gugus amine dari satu asam amino dengan gugus karboksil dari asam amino yang lain. ASAM AMINO ESSENSIAL Yaitu asam amino yang tidak dapat dibentuk oleh tubuh; Yang termasuk ke dalam golongan ini : Arginin, histidin, isoleusin, leusin, lisin, metionin, fenilalanin, treonin, triptofan, valin ASAM AMINO NON ESENSIAL Yaitu asam amino yang dapat dibentuk oleh tubuh melalui senyawa antara respirasi. Yang termasuk golongan ini : Alanin, asparagin, asam aspartat, sistein, asam glutamat, glutamin, glisin, prolin, serin dan tirosin Klasifikasi protein berdasar fungsi biologiknya Enzim, menkatalisis reaksi-reaksi biokimia Protein cadangan, disimpan sebagai cadangan makanan Protein transpor, mentranspor zat/unsur tertentu Protein kontraktil pada jaringan tertentu Protein pelindung, misalnya antibodi Toksin, merupakan racun Hormon,mengatur proses-proses hidup Protein struktural, penyusun struktur sel, jaringan, dan tubuh.