4.docx

  • Uploaded by: Syaiful Arifin
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 4.docx as PDF for free.

More details

  • Words: 500
  • Pages: 5
4. u = ( k+1,k+1,1 ) dan v = (–k–1, –k–1, k ) karena θ = 180 berarti u berlawanan arah dengan v dan cos θ = -1 sehingga : u.v = - |u|.|v| |u| = √((k+1)^2+(k+1)^2+1^2) = √(k^2+2k+1+(k^2+2k+1)+1) = √(2k^2+4k+3) |v| = √((-k-1)^2+(-k-1)^2+k^2) = √(k^2+2k+1)+(k^2+2k+1)+k^2) = √(3k^2+4k+2)

u.v = - |u|.|v| ( k+1,k+1,1 ).(–k–1, –k–1, k ) = - |u|.|v| ((-k^2-2k-1)+ (-k^2-2k-1) + k) = -√(2k^2+4k+3).√(3k^2+4k+2) (-2k^2-3k-2) = -√(6k^4+8k^3+4k^2+12k^3+16k^2+8k+9k^2+12... (-2k^2-3k-2) = -√(6k^4+20k^3+29k^2+20k+6) (-2k^2-3k-2)^2 = (-√(6k^4+20k^3+29k^2+20k+6))^2 4k^4 + 6k^3 + 4k^2 +6k^3+9k^2+6k +4k^2+6k +4 = (6k^4+20k^3+29k^2+20k+6) 4k^4 + 12k^3 +17k^2+12k +4 = (6k^4+20k^3+29k^2+20k+6) 2k^4 + 8k^3 + 12k^2 + 8k + 2 = 0 --------------------------------------... x 1/2 k^4 + 4k^3 + 6k^2 + 4k + 1 = 0 (k +1)(k+1)(k+1)(k+1)= 0 k+1=0 k = -1

u.v = IuI IvI cos buat misal a = k+1 , k= a-1 maka -a= -k-1

IuI = = IvI = = cos 180 = -1 . = . . (-1) a(-a)+ a(-a)+ 1.k = . . (-1) -2 + a-1 = . . (-1) 2-a+1 = . kuadratkan ruas kiri , kuadratkan ruas kanan = (2) () 4 = 2+ 3 + 1

a(=0 shgga a = 0 atau ( = 0 ambil a= 0 sedangkan k=a-1 =0-1 =-1

Simak lebih lanjut di Brainly.co.id - https://brainly.co.id/tugas/1122992#readmore

AB = (-2,2,1) - (1,2,3) = (-3, 0, -2) AC = (3,1,3) - (1,2,3) = (2, -1, 0) Luas = ½ |AB x AC| Luas = ½ |(-3, 0, -2) x (2, -1, 0)| Luas = ½ |(-2, -4, 3)| Luas = ½ √29

7u=axc u = (1,2,1) x (1,3,2) u = (1, -1, 1) yang lainnya bisa dicari sendiri...

(b). u=a-b u = (1,2,1) - (1,-1,1) u = (0, 3, 0) v=a-c v = (1,2,1) - (1,3,2) v = (0, -1, -1) luas segitiga, L = ½ |u x v| L = ½ |(0, 3, 0) x (0, -1, -1)| L = ½ |(-3, 0, 0)| L = 3/2 satuan luas Misalkan vektor yang tegak lurus tersebut adalah u = (x, y, z)

Vektor a dan u tegak lurus artinya (1)(x)+(2)(y)+(1)(z) = 0 x + 2y + z = 0

Vektor c dan u tegak lurus artinya (1)(x) + (3)(y) + (2)(z) = 0 x + 3y + 2z = 0

Diperoleh sistem persaman linear, x + 2y + z = 0 x + 3y + 2z = 0

Eliminasi kedua persamaan, x + 2y + z = 0 x + 3y + 2z = 0 ---------------------- -y - z = 0 -y = z y = -z

x = - 2y - z x = - 2(-z) - z x = 2z - z x=z

Solusi dari sistem persaman linear adalah solusi banyak dengan, z=t y = -t x=t

Sehingga vektor u = (t, -t, t) Contoh 1, pilih t = 1 u = (1, -1, 1)

Contoh 2, pilih t = 2 u = (2, -2, 2) Contoh 3, pilih t = 3 u = (3, -3, 3)

Simak lebih lanjut di Brainly.co.id - https://brainly.co.id/tugas/20863440#readmore

More Documents from "Syaiful Arifin"

4.docx
July 2020 3
Analka 4 Angka.docx
July 2020 3
4.docx
July 2020 2
Simrs Jos Tenan.docx
July 2020 9
Azhari Indo.docx
November 2019 41