03. Masterplanning

  • Uploaded by: Varun Mangla
  • 0
  • 0
  • August 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 03. Masterplanning as PDF for free.

More details

  • Words: 3,110
  • Pages: 7
3. Masterplanning 3.1 The need for a masterplan 3.2 Orientation 3.3 Zoning

3.4 3.5 3.6

3.1 The need for a masterplan

include not only the direct sporting functions but also very substantial parking areas, pedestrian and vehicular circulation routes, etc.

3.1.1 Basic principles Sports complexes are often constructed over a period of years (or even decades) for reasons of finance, natural growth or land availability. To help ensure that the ultimate development is consistent in terms of aesthetic quality and functional efficiency, and to avoid abortive work, a comprehensive plan for the entire development should be evolved at the very outset. This allows successive phases of the development to be carried out by different committees or boards over a period of time in the safe knowledge that their particular phase will be consistent with the whole (Figure 3.1).

As an example of a masterplan, Figure 3.2 shows in schematic form the masterplan for the new Milton Keynes stadium by HOK Sport Architects.

The art of planning large stadium sites hinges on the correct zoning of the available land and the separation of incompatible uses which must be accommodated within the site boundaries. These uses

Overlay Security against terrorism Conclusion

3.1.2 Sequence of decisions All design must set out from the following determining factors. Pitch/central area The starting point of design is the central area or playing field. Its shape, dimensions and orientation must enable it to fulfil all the functions required of it (see Chapter 6). Seating capacity Next comes the seating capacity. If the pitch is to be of variable size to cater for very different activities then the design capacity should be stated as two figures: the number of seats around the maximum pitch size (perhaps football or athletics) and the maximum capacity around the smallest space user (perhaps the performers in a pop concert, or a boxing ring). The stadium owners will have very strong views on seating capacities as these form the basis of their profitability calculations. 29

Masterplanning

Figure 3.1 An example of a stadium planned for phased development. It is the British ‘Stadium for the Nineties’ proposal by the Lobb Partnership (now HOK Sport Architecture) in association with the Sports Council and the structural engineers YRM Anthony Hunt Associates.

Figure 3.2 The masterplan for the new Milton Keynes stadium in the UK. Architects: HOK Sport Architecture.

30

Masterplanning

Orientation Pitch orientation must be suitable for the events to be staged (see Section 3.2 below), and the masterplan must be structured around this.

0

4

15

-20

5

75

Zoning Finally, a discipline for the arrangement of all the elements of the stadium, from the pitch at the centre to the parking spaces outside, is provided by the need for safety zoning as explained in Section 3.3 below.

N

3.2 Orientation

3.2.1 Design factors The orientation of the playing field will depend on the uses to which it will be put, the main factors being:

• The hemisphere in which the stadium is located. • The period of the year in which the designated sports will be played. • The times of day these events will be played. • Specific local environmental conditions such as wind direction.

Best common axis of operation for many sports Range acceptable for football and rugby Best range of track and field pitch games

Figure 3.3 Recommended pitch orientations in northern Europe for principal sports. The underlying principle is that runners in athletics and sportsmen in ball games should never have the late afternoon sun in their eyes.

All the advice below applies to open stadia in temperate zones in the northern hemisphere, and readers should make the necessary adjustments for stadia in other situations.

3.2.2 Football and rugby Football and rugby in Europe are played during the autumn and winter months, in the early afternoon. This means that the sun is low in the sky and moving from south-south-west to west. An ideal orientation for the playing area is to have its longitudinal axis running north–south, or perhaps northwest– southeast. With these orientations the sun will be at the side of the stadium during play, and the early morning sun will fall on the greatest area of the pitch, thus helping any frost in the ground to thaw before play commences. Figure 3.3 summarizes the situation.

The sun should be at the side of the pitch during play. This suits the players, the spectators and the TV cameras.

3.2.3 Athletics Field and track sports in Europe take place mostly during the summer and autumn months. Runners and hurdlers approaching the finishing line should not have the sun in their eyes and nor, ideally, should spectators. The ideal orientation in the northern hemisphere is for the longitudinal axis of the track to run 15 degrees west of north (Figure 3.3). The same applies to the stadium, which should be situated on the same side as the home straight and as close to the finish line as possible.

Sometimes it is difficult to achieve the above track orientations while also conforming with the requirements for wind direction. Where possible, alternative directions should therefore be provided for running, jumping and throwing events. 31

Masterplanning

3.2.4 Tennis The longitudinal axis of the court should run north– south. Diverging by up to 22 or 23 degrees in either direction is acceptable, and diverging by 45 degrees is the limit. If matches are to be played in early morning or late evening the orientation becomes more critical.

by which they had entered. Because there was no Zone 3 or 4 in the Valley Parade Stadium these gates formed the perimeter between the stadium and the outside world and management took the view that they needed to be secure – therefore the escaping spectators found them locked. Hundreds of people were trapped here, the fire and smoke soon caught up with them, and 56 people died.

3.3 Zoning

Two lessons came out of this experience, one for managers and one for designers.

3.3.1 Planning for safety Having set the orientation the next priority is to plan the position of the stadium on the site, and to start thinking about the interrelationship of its major parts; and this is best done by identifying the five zones which make up the safety plan (Figure 3.4). The size and location of these zones are critical to the performance of the stadium in an emergency, and they are:

Zone 1 The activity area (that is the central area and/or pitch on which the games take place). Zone 2 The spectator terraces. Zone 3 The concourses surrounding the activity area. Zone 4 The circulation area surrounding the stadium structure and separating it from the perimeter fence. Zone 5 The open space outside the perimeter fence and separating it from the car parks.

The purpose of such zoning is to allow spectators to escape from their seats, in an emergency, to a series of intermediate safety zones leading ultimately to a place of permanent safety outside. It provides a clear and helpful framework for design not only for new stadia but also for the refurbishment of existing facilities.

A tragic example is provided by the fire which killed 56 people at the Valley Parade Stadium in Bradford, UK in 1985. The stand was an old one, built of framing and timber steppings. On 11 May 1985 a fire started in the accumulated litter under the steppings and spread rapidly through the antiquated structure. Most spectators fled from the stands (Zone 2) to the open pitch (Zone 1) and were safe; but many made their way back through the stand towards the gates 32

• Managers must ensure that gates offering escape from the spectator terraces to places of safety must be manned at all times when the stadium is in use, and easily openable to let spectators escape in case of emergency. • Designers must recognize that management procedures such as the above can never be foolproof, and the stadium must be designed on the assumption of management failure. There should, where possible, be a Zone 4 within the outer perimeter to which spectators can escape and where they will be safe even if the perimeter gates are locked, cutting them off from the outside world.

The arrangements whereby disabled spectators, particularly those in wheelchairs, are enabled to make their way to this area, and be safely accommodated within it, need particularly careful thought – see Chapter 10.

More detailed design notes follow below, starting with Zone 5 (the area of ‘permanent safety’) and proceeding to Zone 1 (a place of ‘temporary safety’).

3.3.2 Zone 5 The stadium should ideally be surrounded by car parks, bus parks and access to transport. The car park (well-designed, to avoid bleakness) should ideally surround the stadium on all sides so that spectators can park their cars on the same side of the stadium as their seats and then walk straight to an entrance gate and to their individual seats without having to circumnavigate.

Between this ring of parking areas and the stadium perimeter there should be a vehicle-free zone

Masterplanning

Outside the sports ground

Outer circulation area

Zone one: The playing field. Internal concourse Seating

Field of play

Zone two: The spectator seating and standing areas. Zone three: The internal concourses, restaurants, bars, and other social areas.

Zone One

Zone Two Zone Three

Zone four: The circulation area between the stadium structure and the perimeter fence. Zone five: The open space outside the perimeter fence

Zone Four

Zone Five

Figure 3.4 Zoning diagram showing the five ‘safety zones’ which form the basis for a safe stadium.

usually described as Zone 5, which can serve several useful purposes:

• From the point of view of safety, it is a so-called ‘permanent’ safety zone to which spectators can escape from the stands via Zones 3 and 4, and safely remain until the emergency has been dealt with. It should be possible to accommodate the whole of the stadium population here at a density of 4 to 6 people per square metre. • From the point of view of everyday circulation, Zones 4 or 5 provide a belt of space in which spectators may circumnavigate the stadium to get from one entrance gate to another, assuming their first choice of gate was wrong (see Section 14.3.1). Every effort should be made to ensure that people are directed from their cars (or other points of arrival) to the appropriate gate for their particular seat, but mistakes will always be made and there should be an easy route round the stadium to allow for this. • Retail points, meeting points and information boards can also very usefully be located in this zone of open space. To serve this social function the surface and its fittings (kiosks, information boards, etc) should be pleasantly designed, not left as a bleak band of tarmac. • The above point can be taken further with Zone 5 serving as a pleasantly landscaped buffer zone between the ‘event’ and the outside world.

Stadium performances (whether they be sport, music or general entertainment) are essentially escapist, and their enjoyment can be heightened by visually disconnecting the audience from the workaday outside environment.

3.3.3 Zone 4 The stadium perimeter will form the security line across which no one may pass without a valid ticket. Between this line of control and the actual stadium structure is Zone 4, which may have two functions:

• From the point of view of safety, it is a place of ‘temporary safety’ to which spectators may escape directly from the stadium, and from which they can then proceed to permanent safety in Zone 5. It is therefore a kind of reservoir between Zones 3 and 5. If the pitch (Zone 1) is not designated as a temporary safety zone, then Zone 4 should be large enough to accommodate the whole stadium population at a density of 4 to 6 people per square metre. But if Zone 1 is so designated Zone 4 may be reduced appropriately. In all cases the number of exit gates, and their dimensions, must allow the necessary ease and speed of egress from one zone to another (see Section 14.6). • From the point of view of everyday circulation, Zone 4 is the main circumnavigation route for people inside the stadium perimeter (i.e. who have 33

Masterplanning

surrendered their tickets and passed the control points).

additional purpose of being a place of temporary safety, on the following conditions:

The importance of Zone 4 can be seen from the Valley Parade fire. Because that stadium had no such zone, management felt that the link between Zones 2 and 5 had to be secure. The gates were therefore locked, inadequately supervised, and many people died horribly. Had there been a Zone 4 and good signposting many lives could have been saved even with the outer gates being locked.

• The escape routes from the seating areas to the pitch must be suitably designed – i.e. escape will not be an easy matter if there is a barrier separating pitch and seating terraces (see Chapter 9). • The surface material of the pitch must be taken into account. The heat in the Valley Parade fire was so intense that clothing of the police and spectators standing on the grass pitch ignited: had the pitch been covered with a synthetic material that too might have ignited. These matters must be thoroughly discussed with the fire authorities at design stage and it must be ensured that management cannot take decisions many years later to change the pitch surfacing without being aware of the implications for safety.

3.3.4 Zone 3 This comprises the stadium’s internal concourses and social areas (restaurants, bars, etc.) and is situated between Zones 2 and 4. Spectators must pass through this zone in order to reach a final place of safety (Zones 4 or 5). For this reason this zone, or the circulation areas within it, are often designed with a good level of fire safety so that large numbers of people can move through them at low risk in the short term.

Sometimes the main line of turnstiles is at the face of the stadium, at the outside of Zone 3. If the turnstiles are at the edge of Zone 4, the external precinct, then there may also be a secondary ticket check at the boundary between Zones 3 and 4 as people enter the main stadium.

3.3.5 Zone 2 This comprises the viewing terraces around the pitch. In many cases the greatest safety risk is thought to come from the building behind the terraces, so the seating terraces are seen as a place where spectators can stay in relative safety.

There may be a ticket check between Zones 2 and 3, where stewards guide people to their seat. There will often be a barrier at the edge of the arena (Zone 1) to prevent people entering the field of play, but this barrier must not impede people trying to flee from a fire or other emergency.

3.3.6 Zone 1 The pitch or event space forms the very centre of the stadium. Along with Zone 4 it can serve the 34

3.3.7 Barriers between zones In all cases the number of exit gates, and their dimensions, must allow the necessary ease and speed of egress from one zone to another. The principles involved are given in Section 14.6.

3.4 Overlay

At stadia there is normally a regular schedule of events through the year, and sometimes on top of this there are more infrequent, bigger events that are hosted there. For example a club football ground will hold the annual list of matches of the club, and then it might bid to hold an international cup final that will come to the stadium once every few years. Such a match will attract more spectators, more media and more sponsors for whom it is not worth constructing permanent accommodation, so temporary arrangements can be made, called an ‘overlay’ (see also Section 3.4). In order for the overlay to be accounted for in the masterplan, some idea of the events to be hosted is required. In general an infrequent event at a stadium is likely to require more space, certainly outside the building and possibly also inside. Some of the temporary areas that might be needed are:

• Additional space for larger crowds to arrive at the stadium. This might be more car parking, wider access routes, more bus drop-off areas.

Masterplanning

• Sponsors’ advertising, additional catering, sales areas and visitor attractions. Some major events are even accompanied by activities for people who come along, but don’t have a ticket for the event. • Additional security. High-profile events often require greater security measures, for example everyone may be searched before they enter the ground, and this activity, along with the associated queuing, can take a great deal of space. • Temporary media areas including space for television outside broadcast vehicles, rooms for sports writers to work, and associated dining, electrical generators and the like. Note that television satellite uplink vehicles will require a view of the sky where the satellite is located. • Additional back-of-house areas. The need for extra offices, waste rooms, storage, ticketing, etc., should not be forgotten.

These areas will require space around the stadium and the best method is to keep the areas partly flexible and non-specific so that it does not constrain the layout of temporary accommodation, because, not only does every major event have different requirements, but the overlay for each event is likely to change over time.

sports activities might become the target of terrorists. The actual likelihood of a terrorist attack and the possible methods that such people might use are best known by the police, who should be consulted at an early stage. The security arrangements of the building should be tailored around their advice.

In general, lines for security cordons can be drawn around the sports building, firstly for vehicles further away from the stadium and secondly for people as they have their tickets checked. The cordons for staff and spectators are likely to require space for searching of people and their belongings.

For more detail on these matters see Chapter 6.

3.6 Conclusion

The matters above represent merely the first few decisions in a process that will ultimately involve hundreds of design judgements. But these are controlling decisions, and once they have been rationally made there should be regular checks to ensure that the evolving design never contradicts or moves away from them.

3.5 Security against terrorism

Unfortunately in recent years it has become necessary to consider the possibility that high-profile

35

Related Documents

03. Masterplanning
August 2019 16
03
November 2019 43
03
November 2019 35
03
November 2019 37
03
October 2019 32
03
October 2019 38

More Documents from ""

02. Future
August 2019 17
03. Masterplanning
August 2019 16
04. External Planning.pdf
August 2019 17
Case Facts - Hidesign
April 2020 20
Data Science Domains.pdf
December 2019 32